Articles | Volume 17, issue 22
https://doi.org/10.5194/amt-17-6595-2024
https://doi.org/10.5194/amt-17-6595-2024
Research article
 | 
18 Nov 2024
Research article |  | 18 Nov 2024

Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer

Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson

Related authors

A large-eddy simulation exploration of the assumptions used in retrieving entrainment from a mixing diagram approach with ground-based remote sensors
Tessa E. Rosenberger, Thijs Heus, Girish N. Raghunathan, David D. Turner, Timothy J. Wagner, and Julia M. Simonson
Atmos. Meas. Tech., 18, 5129–5140, https://doi.org/10.5194/amt-18-5129-2025,https://doi.org/10.5194/amt-18-5129-2025, 2025
Short summary

Cited articles

Behrendt, A., Wulfmeyer, V., Hammann, E., Muppa, S. K., and Pal, S.: Profiles of second- to fourth-order moments of turbulent temperature fluctuations in the convective boundary layer: first measurements with rotational Raman lidar, Atmos. Chem. Phys., 15, 5485–5500, https://doi.org/10.5194/acp-15-5485-2015, 2015. a
Behrendt, A., Wulfmeyer, V., Senff, C., Muppa, S. K., Späth, F., Lange, D., Kalthoff, N., and Wieser, A.: Observation of sensible and latent heat flux profiles with lidar, Atmos. Meas. Tech., 13, 3221–3233, https://doi.org/10.5194/amt-13-3221-2020, 2020. a
Berg, L. and Stull, R.: A Simple Parameterization Coupling the Convective Daytime Boundary Layer and Fair-Weather Cumuli, J. Atmos. Sci., 62, 1976–1988, 2005. a
Berg, L. K., Gustafson, W. I., Kassianov, E. I., and Deng, L.: Evaluation of a Modified Scheme for Shallow Convection: Implementation of CuP and Case Studies, Mon. Weather Rev., 141, 134–147, https://doi.org/10.1175/MWR-D-12-00136.1, 2013. a
Berg, L. K., Newsom, R. K., and Turner, D. D.: Year-Long Vertical Velocity Statistics Derived from Doppler Lidar Data for the Continental Convective Boundary Layer, J. Appl. Meteorol. Clim., 56, 2441–2454, https://doi.org/10.1175/jamc-d-16-0359.1, 2017. a, b
Download
Short summary
This work used model output to show that considering the changes in boundary layer depth over time in the calculations of variables such as fluxes and variance yields more accurate results than cases where calculations were done at a constant height. This work was done to improve future observations of these variables at the top of the boundary layer.

 
Share