Research article
02 Nov 2012
Research article | 02 Nov 2012
Robust extraction of baseline signal of atmospheric trace species using local regression
A. F. Ruckstuhl et al.
Related subject area
Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland
Michael Müller, Peter Graf, Jonas Meyer, Anastasia Pentina, Dominik Brunner, Fernando Perez-Cruz, Christoph Hüglin, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 3815–3834, https://doi.org/10.5194/amt-13-3815-2020,https://doi.org/10.5194/amt-13-3815-2020, 2020
Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach
Martin Kunz, Jost V. Lavric, Rainer Gasche, Christoph Gerbig, Richard H. Grant, Frank-Thomas Koch, Marcus Schumacher, Benjamin Wolf, and Matthias Zeeman
Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020,https://doi.org/10.5194/amt-13-1671-2020, 2020
Short summary
Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik
Friedemann Reum, Mathias Göckede, Jost V. Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt, and Martin Heimann
Atmos. Meas. Tech., 12, 5717–5740, https://doi.org/10.5194/amt-12-5717-2019,https://doi.org/10.5194/amt-12-5717-2019, 2019
Short summary
Traffic-related air pollution near roadways: discerning local impacts from background
Nathan Hilker, Jonathan M. Wang, Cheol-Heon Jeong, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michael Noble, Anthony Munoz, Geoff Doerksen, Luc White, Céline Audette, Dennis Herod, Jeffrey R. Brook, and Greg J. Evans
Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019,https://doi.org/10.5194/amt-12-5247-2019, 2019
Short summary
Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment
Laura Cartwright, Andrew Zammit-Mangion, Sangeeta Bhatia, Ivan Schroder, Frances Phillips, Trevor Coates, Karita Negandhi, Travis Naylor, Martin Kennedy, Steve Zegelin, Nick Wokker, Nicholas M. Deutscher, and Andrew Feitz
Atmos. Meas. Tech., 12, 4659–4676, https://doi.org/10.5194/amt-12-4659-2019,https://doi.org/10.5194/amt-12-4659-2019, 2019
Short summary
Evaluating and improving the reliability of gas-phase sensor system calibrations across new locations for ambient measurements and personal exposure monitoring
Sharad Vikram, Ashley Collier-Oxandale, Michael H. Ostertag, Massimiliano Menarini, Camron Chermak, Sanjoy Dasgupta, Tajana Rosing, Michael Hannigan, and William G. Griswold
Atmos. Meas. Tech., 12, 4211–4239, https://doi.org/10.5194/amt-12-4211-2019,https://doi.org/10.5194/amt-12-4211-2019, 2019
Short summary
A novel approach for simple statistical analysis of high-resolution mass spectra
Yanjun Zhang, Otso Peräkylä, Chao Yan, Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Qiaozhi Zha, Matthieu Riva, Olga Garmash, Heikki Junninen, Pentti Paatero, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 12, 3761–3776, https://doi.org/10.5194/amt-12-3761-2019,https://doi.org/10.5194/amt-12-3761-2019, 2019
Short summary
The ICAD (iterative cavity-enhanced DOAS) method
Martin Horbanski, Denis Pöhler, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 12, 3365–3381, https://doi.org/10.5194/amt-12-3365-2019,https://doi.org/10.5194/amt-12-3365-2019, 2019
Short summary
Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019,https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
Atmospheric CO2, CH4, and CO with the CRDS technique at the Izaña Global GAW station: instrumental tests, developments, and first measurement results
Angel J. Gomez-Pelaez, Ramon Ramos, Emilio Cuevas, Vanessa Gomez-Trueba, and Enrique Reyes
Atmos. Meas. Tech., 12, 2043–2066, https://doi.org/10.5194/amt-12-2043-2019,https://doi.org/10.5194/amt-12-2043-2019, 2019
Short summary
Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian
Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019,https://doi.org/10.5194/amt-12-903-2019, 2019
Short summary
Analysis of spatial and temporal patterns of on-road NO2 concentrations in Hong Kong
Ying Zhu, Ka Lok Chan, Yun Fat Lam, Martin Horbanski, Denis Pöhler, Johannes Boll, Ivo Lipkowitsch, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 11, 6719–6734, https://doi.org/10.5194/amt-11-6719-2018,https://doi.org/10.5194/amt-11-6719-2018, 2018
Short summary
Uncertainty of eddy covariance flux measurements over an urban area based on two towers
Leena Järvi, Üllar Rannik, Tom V. Kokkonen, Mona Kurppa, Ari Karppinen, Rostislav D. Kouznetsov, Pekka Rantala, Timo Vesala, and Curtis R. Wood
Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018,https://doi.org/10.5194/amt-11-5421-2018, 2018
Short summary
Examination on total ozone column retrievals by Brewer spectrophotometry using different processing software
Anna Maria Siani, Francesca Frasca, Francesco Scarlatti, Arianna Religi, Henri Diémoz, Giuseppe R. Casale, Massimiliano Pedone, and Volodya Savastiouk
Atmos. Meas. Tech., 11, 5105–5123, https://doi.org/10.5194/amt-11-5105-2018,https://doi.org/10.5194/amt-11-5105-2018, 2018
Short summary
Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO2 and CH4
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018,https://doi.org/10.5194/amt-11-1599-2018, 2018
Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements
Caroline B. Alden, Subhomoy Ghosh, Sean Coburn, Colm Sweeney, Anna Karion, Robert Wright, Ian Coddington, Gregory B. Rieker, and Kuldeep Prasad
Atmos. Meas. Tech., 11, 1565–1582, https://doi.org/10.5194/amt-11-1565-2018,https://doi.org/10.5194/amt-11-1565-2018, 2018
Short summary
Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018,https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
Naomi Zimmerman, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu, Aliaksei Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian
Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018,https://doi.org/10.5194/amt-11-291-2018, 2018
Short summary
CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements
Hannah Sonderfeld, Hartmut Bösch, Antoine P. R. Jeanjean, Stuart N. Riddick, Grant Allen, Sébastien Ars, Stewart Davies, Neil Harris, Neil Humpage, Roland Leigh, and Joseph Pitt
Atmos. Meas. Tech., 10, 3931–3946, https://doi.org/10.5194/amt-10-3931-2017,https://doi.org/10.5194/amt-10-3931-2017, 2017
Short summary
Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases
Stephen Conley, Ian Faloona, Shobhit Mehrotra, Maxime Suard, Donald H. Lenschow, Colm Sweeney, Scott Herndon, Stefan Schwietzke, Gabrielle Pétron, Justin Pifer, Eric A. Kort, and Russell Schnell
Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017,https://doi.org/10.5194/amt-10-3345-2017, 2017
Short summary
A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components
Mathias Hoffmann, Maximilian Schulz-Hanke, Juana Garcia Alba, Nicole Jurisch, Ulrike Hagemann, Torsten Sachs, Michael Sommer, and Jürgen Augustin
Atmos. Meas. Tech., 10, 109–118, https://doi.org/10.5194/amt-10-109-2017,https://doi.org/10.5194/amt-10-109-2017, 2017
Short summary
Impact of biomass burning emission on total peroxy nitrates: fire plume identification during the BORTAS campaign
Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival
Atmos. Meas. Tech., 9, 5591–5606, https://doi.org/10.5194/amt-9-5591-2016,https://doi.org/10.5194/amt-9-5591-2016, 2016
Short summary
Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS)
Linda M. J. Kooijmans, Nelly A. M. Uitslag, Mark S. Zahniser, David D. Nelson, Stephen A. Montzka, and Huilin Chen
Atmos. Meas. Tech., 9, 5293–5314, https://doi.org/10.5194/amt-9-5293-2016,https://doi.org/10.5194/amt-9-5293-2016, 2016
Short summary
Industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm
Youwen Sun, Cheng Liu, Pinhua Xie, Andreas Hartl, Kalok Chan, Yuan Tian, Wei Wang, Min Qin, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 9, 1167–1180, https://doi.org/10.5194/amt-9-1167-2016,https://doi.org/10.5194/amt-9-1167-2016, 2016
Short summary
Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection
B. Langford, W. Acton, C. Ammann, A. Valach, and E. Nemitz
Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015,https://doi.org/10.5194/amt-8-4197-2015, 2015
Determining air pollutant emission rates based on mass balance using airborne measurement data over the Alberta oil sands operations
M. Gordon, S.-M. Li, R. Staebler, A. Darlington, K. Hayden, J. O'Brien, and M. Wolde
Atmos. Meas. Tech., 8, 3745–3765, https://doi.org/10.5194/amt-8-3745-2015,https://doi.org/10.5194/amt-8-3745-2015, 2015
Short summary
Cited articles
Balzani Lööv, J. M., Henne, S., Legreid, G., Staehelin, J., Reimann, S., Prevot, A. S. H., Steinbacher, M., and Vollmer, M. K.: Estimation of background concentrations of trace gases at the Swiss Alpine site Jungfraujoch (3580 m asl), J. Geophys. Res., 113, DD22305, https://doi.org/10.1029/2007JD009751, 2008.
Bond, S. W., Vollmer, M. K., Steinbacher, M., Henne, S., and Reimann, S.: Atmospheric molecular hydrogen \chem{(H_2)}: observations at the high-altitude site Jungfraujoch, Switzerland, Tellus B, 63, 64–76, https://doi.org/10.1111/j.1600-0889.2010.00509.x, 2011.
Calvert, J. G.: Glossary of Atmospheric Chemistry Terms – (Recommondations 1990), Pure Appl. Chem., 62, 2167–2219, 1990.
Carpenter, L., Green, T., Mills, G., Bauguitte, S., Penkett, S., Zanis, P., Schuepbach, E., Schmidbauer, N., Monks, P., and Zellweger, C.: Oxidized nitrogen and ozone production efficiencies in the springtime free troposphere over the Alps, J. Geophys. Res., 105, 14547–14559, 2000.
Cleveland, W. S.: Robust Locally Weighted Regression and Smoothing Scatterplots, J. Am. Stat. Assoc., 74, 829–836, 1979.
Cox, M. L., Sturrock, G. A., Fraser, P. J., Siems, S. T., and Krummel, P. B.: Identification of Regional Sources of Methyl Iodide from AGAGE Observations at Cape Grim, Tasmania, J. Atmos. Chem., 50, 59–77, 2005.
Derwent, R., Simmonds, P., O'Doherty, S., Ciais, P., and Ryall, D.: European source strengths and northern hemisphere baseline concentrations of radiatively active trace gases at Mace Head, Ireland, Atmos. Environ., 32, 3703–3715, 1998.
Fan, J. and Gijbels, I.: Local Polynomial Modelling and Its Applications, vol. 66 of Monographs on Statistics and Applied Probability, Chapman & Hall New York, 1996.
Forrer, J., R{ü}ttimann, R., Schneiter, D., Fischer, A., Buchmann, B., and Hofer, P.: Variability of trace gases at the high-Alpine site Jungfraujoch caused by meteorological transport processes, J. Geophys. Res., 105, 12241–12251, 2000.
Greally, B. R., Manning, A. J., Reimann, S., McCulloch, A., Huang, J., Dunse, B. L., Simmonds, P. G., Prinn, R. G., Fraser, P. J., Cunnold, D. M., O'Doherty, S., Porter, L. W., Stemmler, K., Vollmer, M. K., Lunder, C. R., Schmidbauer, N., Hermansen, O., Arduini, J., Salameh, P. K., Krummel, P. B., Wang, R. H. J., Folini, D., Weiss, R. F., Maione, M., Nickless, G., Stordal, F., and Derwent, R. G.: Observations of 1,1-difluoroethane (HFC-152a) at AGAGE and SOGE monitoring stations in 1994–2004 and derived global and regional emission estimates, J. Geophys. Res., 112, D06308, https://doi.org/10.1029/2006JD007527, 2007.
Henne, S., Klausen, J., Junkermann, W., Kariuki, J. M., Aseyo, J. O., and Buchmann, B.: Representativeness and climatology of carbon monoxide and ozone at the global GAW station Mt. Kenya in equatorial Africa, Atmos. Chem. Phys., 8, 3119–3139, https://doi.org/10.5194/acp-8-3119-2008, 2008.
Hirdman, D., Sodemann, H., Eckhardt, S., Burkhart, J. F., Jefferson, A., Mefford, T., Quinn, P. K., Sharma, S., Ström, J., and Stohl, A.: Source identification of short-lived air pollutants in the Arctic using statistical analysis of measurement data and particle dispersion model output, Atmos. Chem. Phys., 10, 669–693, https://doi.org/10.5194/acp-10-669-2010, 2010.
Jacob, D. J.: Introduction to Atmospheric Chemistry, Princeton University Press, Princeton New Jersey, 1999.
Maronna, A., Martin, R., and Yohai, V.: Robust Statistics: Theory and Methods, Wiley Series in Probability and Statistics, John Wiley and Sons Ltd., Chichester, UK, 2006.
Miller, B. R., Weiss, R. F., Salameh, P. K., Tanhua, T., Greally, B. R., M{ü}hle, J., and Simmonds, P. G.: Medusa: A sample preconcentration and GC/MS detector system for in situ measurements of atmospheric trace halocarbons, hydrocarbons, and sulfur compounds, Anal. Chem., 80, 1536–1545, https://doi.org/10.1021/ac702084k, 2008.
Novelli, P., Masarie, K., Lang, P., Hall, B., Myers, R., and Elkins, J.: Reanalysis of tropospheric CO trends: Effect of the 1997–1998 wildfires, J. Geophys. Res., 108, 4464, https://doi.org/10.1029/2002JD003031,031, 2003.
O'Doherty, S., Simmonds, P., Cunnold, D., Wang, H., Sturrock, G., Fraser, P., Ryall, D., Derwent, R., Weiss, R., Salameh, P., Miller, B., and Prinn, R.: In situ chloroform measurements at Advanced Global Atmospheric Gases Experiment atmospheric research stations from 1994 to 1998, J. Geophys. Res., 106, 20429–20444, 2001.
Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh, P., O'Doherty, S., Wang, R. H. J., Porter, L., and Miller, B. R.: Evidence for substantial variations of atmospheric hydroxyl radicals in the past two decades, Science, 292, 1882–1888, 2001.
R Development Core Team: R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, available at: http://www.R-project.org (last access: 13 July 2012), ISBN 3-900051-07-0, 2009.
Reimann, S., Manning, A. J., Simmonds, P. G., Cunnold, D. M., Wang, R. H. J., Li, J., McCulloch, A., Prinn, R. G., Huang, J., Weiss, R. F., Fraser, P. J., O'Doherty, S., Greally, B. R., Stemmler, K., Hill, M., and Folini, D.: Low European methyl chloroform emissions inferred from long-term atmospheric measurements, Nature, 433, 506–508, 2005.
Reimann, S., Vollmer, M. K., Folini, D., Steinbacher, M., Hill, M., Buchmann, B., Zander, R., and Mahieu, E.: Observations of long-lived anthropogenic halocarbons at the high-Alpine site of Jungfraujoch (Switzerland) for assessment of trends and European sources, Sci. Total Environ., 391, 224–231, https://doi.org/10.1016/j.scitotenv.2007.10.022, 2008.
Ruckstuhl, A. F., Jacobson, M. P., Field, R. W., and Dodd, J. A.: Baseline Subtraction Using Robust Local Regression Estimation, J. Quant. Spectrosc. Ra., 68, 179–193, 2001.
Ryall, D. B., Maryon, R. H., Derwent, R. G., and Simmonds, P. G.: Modelling long-range transport of CFCs to Hace Head, Ireland, Q. J. Roy. Meteorol. Soc., 124, 417–446, 1998.
Ryall, D. B., Derwent, R., Manning, A., Simmonds, P., and O'Doherty, S.: Estimating source regions of European emissions of trace gases from observations at Mace Head, Atmos. Environ., 35, 2507–2523, https://doi.org/10.1016/S1352-2310(00)00433-7, 2001.
Schuepbach, E., Friedli, T., Zanis, P., Monks, P., and Penkett, S.: State space analysis of changing seasonal ozone cycles (1988–1997) at Jungfraujoch (3580 m above sea level) in Switzerland, J. Geophys. Res., 106, 20413–20427, 2001.
Simmonds, P. G., O'Doherty, S., Nickless, G., Sturrock, G. A., Swaby, R., Knight, P., Ricketts, J., Woffendin, G., and Smith, R.: Automated Gas Chromatograph Mass Spectrometer For Routine Atmospheric Field Measurements of the CFC Replacement Compounds, the hydrofluorocarbons and hydrochlorofluorocarbons, Anal. Chem., 67, 717–723, 1995.
Simmonds, P. G., Manning, A., Cunnold, D., McCulloch, A., O'Doherty, S., Derwent, R., Krummel, P., Fraser, P., Dunse, B., Porter, L., Wang, R., Greally, B., Miller, B., Salameh, P., Weiss, R., and Prinn, R.: Global trends, seasonal cycles, and European emissions of dichloromethane, trichloroethene from the AGAGE observations at Mace Head, Ireland, and Cape Grim, Tasmania, J. Geophys. Res., 111, D18304, https://doi.org/10.1029/2006JD007082, 2001.
Simonoff, J. S.: Smoothing Methods in Statistics, Springer Series in Statistics, Springer-Verlag New York, 1996.
Thoning, K., Tans, P., and Komhyr, W.: Atmospheric Carbon Dioxide at Mauna Loa Observatory. 2. Analysis of the NOAA GMCC Data, 1974–1985, J. Geophys. Res., 94, 8549–8565, 1989.
Yurganov, L. N., Duchatelet, P., Dzhola, A. V., Edwards, D. P., Hase, F., Kramer, I., Mahieu, E., Mellqvist, J., Notholt, J., Novelli, P. C., Rockmann, A., Scheel, H. E., Schneider, M., Schulz, A., Strandberg, A., Sussmann, R., Tanimoto, H., Velazco, V., Drummond, J. R., and Gille, J. C.: Increased Northern Hemispheric carbon monoxide burden in the troposphere in 2002 and 2003 detected from the ground and from space, Atmos. Chem. Phys., 5, 563–573, https://doi.org/10.5194/acp-5-563-2005, 2005.
Zanis, P., Ganser, A., Zellweger, C., Henne, S., Steinbacher, M., and Staehelin, J.: Seasonal variability of measured ozone production efficiencies in the lower free troposphere of Central Europe, Atmos. Chem. Phys., 7, 223–236, https://doi.org/10.5194/acp-7-223-2007, 2007.
Zellweger, C., Ammann, M., Buchmann, B., Hofer, P., Lugauer, M., R{ü}ttimann, R., Streit, N., Weingartner, E., and Baltensperger, U.: Summertime NO$_y$ speciation at the Jungfraujoch, 3580 m above sea level, Switzerland, J. Geophys. Res., 105, 6655–6667, 2000.
Zellweger, C., Forrer, J., Hofer, P., Nyeki, S., Schwarzenbach, B., Weingartner, E., Ammann, M., and Baltensperger, U.: Partitioning of reactive nitrogen (NO$_y$) and dependence on meteorological conditions in the lower free troposphere, Atmos. Chem. Phys., 3, 779–796, https://doi.org/10.5194/acp-3-779-2003, 2003.
Zellweger, C., Hüglin, C., Klausen, J., Steinbacher, M., Vollmer, M., and Buchmann, B.: Inter-comparison of four different carbon monoxide measurement techniques and evaluation of the long-term carbon monoxide time series of Jungfraujoch, Atmos. Chem. Phys., 9, 3491–3503, https://doi.org/10.5194/acp-9-3491-2009, 2009.