Articles | Volume 6, issue 1
Atmos. Meas. Tech., 6, 121–129, 2013
https://doi.org/10.5194/amt-6-121-2013
Atmos. Meas. Tech., 6, 121–129, 2013
https://doi.org/10.5194/amt-6-121-2013

Research article 22 Jan 2013

Research article | 22 Jan 2013

A simplified approach for generating GNSS radio occultation refractivity climatologies

H. Gleisner and S. B. Healy

Related authors

Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record
Hans Gleisner, Kent B. Lauritsen, Johannes K. Nielsen, and Stig Syndergaard
Atmos. Meas. Tech., 13, 3081–3098, https://doi.org/10.5194/amt-13-3081-2020,https://doi.org/10.5194/amt-13-3081-2020, 2020
Short summary
Consistency and structural uncertainty of multi-mission GPS radio occultation records
Andrea K. Steiner, Florian Ladstädter, Chi O. Ao, Hans Gleisner, Shu-Peng Ho, Doug Hunt, Torsten Schmidt, Ulrich Foelsche, Gottfried Kirchengast, Ying-Hwa Kuo, Kent B. Lauritsen, Anthony J. Mannucci, Johannes K. Nielsen, William Schreiner, Marc Schwärz, Sergey Sokolovskiy, Stig Syndergaard, and Jens Wickert
Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020,https://doi.org/10.5194/amt-13-2547-2020, 2020
Short summary
Comparison study of COSMIC RO dry-air climatologies based on average profile inversion
Julia Danzer, Marc Schwärz, Veronika Proschek, Ulrich Foelsche, and Hans Gleisner
Atmos. Meas. Tech., 11, 4867–4882, https://doi.org/10.5194/amt-11-4867-2018,https://doi.org/10.5194/amt-11-4867-2018, 2018
Short summary
CHAMP climate data based on the inversion of monthly average bending angles
J. Danzer, H. Gleisner, and S. B. Healy
Atmos. Meas. Tech., 7, 4071–4079, https://doi.org/10.5194/amt-7-4071-2014,https://doi.org/10.5194/amt-7-4071-2014, 2014
Quantification of structural uncertainty in climate data records from GPS radio occultation
A. K. Steiner, D. Hunt, S.-P. Ho, G. Kirchengast, A. J. Mannucci, B. Scherllin-Pirscher, H. Gleisner, A. von Engeln, T. Schmidt, C. Ao, S. S. Leroy, E. R. Kursinski, U. Foelsche, M. Gorbunov, S. Heise, Y.-H. Kuo, K. B. Lauritsen, C. Marquardt, C. Rocken, W. Schreiner, S. Sokolovskiy, S. Syndergaard, and J. Wickert
Atmos. Chem. Phys., 13, 1469–1484, https://doi.org/10.5194/acp-13-1469-2013,https://doi.org/10.5194/acp-13-1469-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Leveraging machine learning for quantitative precipitation estimation from Fengyun-4 geostationary observations and ground meteorological measurements
Xinyan Li, Yuanjian Yang, Jiaqin Mi, Xueyan Bi, You Zhao, Zehao Huang, Chao Liu, Lian Zong, and Wanju Li
Atmos. Meas. Tech., 14, 7007–7023, https://doi.org/10.5194/amt-14-7007-2021,https://doi.org/10.5194/amt-14-7007-2021, 2021
Short summary
Deriving column-integrated thermospheric temperature with the N2 Lyman–Birge–Hopfield (2,0) band
Clayton Cantrall and Tomoko Matsuo
Atmos. Meas. Tech., 14, 6917–6928, https://doi.org/10.5194/amt-14-6917-2021,https://doi.org/10.5194/amt-14-6917-2021, 2021
Short summary
Atmospheric tomography using the Nordic Meteor Radar Cluster and Chilean Observation Network De Meteor Radars: network details and 3D-Var retrieval
Gunter Stober, Alexander Kozlovsky, Alan Liu, Zishun Qiao, Masaki Tsutsumi, Chris Hall, Satonori Nozawa, Mark Lester, Evgenia Belova, Johan Kero, Patrick J. Espy, Robert E. Hibbins, and Nicholas Mitchell
Atmos. Meas. Tech., 14, 6509–6532, https://doi.org/10.5194/amt-14-6509-2021,https://doi.org/10.5194/amt-14-6509-2021, 2021
Short summary
Using vertical phase differences to better resolve 3D gravity wave structure
Corwin J. Wright, Neil P. Hindley, M. Joan Alexander, Laura A. Holt, and Lars Hoffmann
Atmos. Meas. Tech., 14, 5873–5886, https://doi.org/10.5194/amt-14-5873-2021,https://doi.org/10.5194/amt-14-5873-2021, 2021
Short summary
High-temporal-resolution wet delay gradients estimated from multi-GNSS and microwave radiometer observations
Tong Ning and Gunnar Elgered
Atmos. Meas. Tech., 14, 5593–5605, https://doi.org/10.5194/amt-14-5593-2021,https://doi.org/10.5194/amt-14-5593-2021, 2021
Short summary

Cited articles

Ao, C. O., Mannucci, A. J., and Kursinski E. R.: Improving GPS Radio occultation stratospheric refractivity retrievals for climate benchmarking, Geophys. Res. Lett., 39, L12701, https://doi.org/10.1029/2012GL051720, 2012.
Gobiet, A. and Kirchengast, G.: Advancements of {G}lobal {N}avigation {S}atellite {S}ystem radio occultation retrieval in the upper stratosphere for optimal climate monitoring utility, J. Geophys. Res., 109, D24110, https://doi.org/10.1029/2004JD005117, 2004.
Gorbunov, M. E.: Ionospheric correction and statistical optimization of radio occultation data, Radio Sci., 37, 1084, https://doi.org/10.1029/2000RS002370, 2002.
Hedin, A. E.: Extension of the MSIS thermosphere model into the middle and lower atmosphere, J. Geophys. Res., 96, 1159–1172, 1991.
Ho, S.-P., Kirchengast, G., Leroy, S., Wickert, J., Mannucci, A. J., Steiner, A., Hunt, D., Schreiner, W., Sokolovskiy, S., Ao, C., Borsche, M., von Engeln, A., Foelsche, U., Heise, S., Iijima, B., Kuo, Y.-H., Kursinski, R., Pirscher, B., Ringer, M., Rocken, C., and Schmidt, T.: Estimating the uncertainty of using GPS radio occultation data for climate monitoring: Intercomparison of CHAMP refractivity climate records from 2002 to 2006 from different data centers, J. Geophys. Res., 114, D23197, https://doi.org/10.1029/2009JD011969, 2009.
Download