Articles | Volume 8, issue 9
https://doi.org/10.5194/amt-8-3631-2015
https://doi.org/10.5194/amt-8-3631-2015
Research article
 | Highlight paper
 | 
08 Sep 2015
Research article | Highlight paper |  | 08 Sep 2015

The feasibility of water vapor sounding of the cloudy boundary layer using a differential absorption radar technique

M. D. Lebsock, K. Suzuki, L. F. Millán, and P. M. Kalmus

Related authors

Retrieval simulations of a spaceborne differential absorption radar near the 380 GHz water vapor line
Luis F. Millán, Matthew D. Lebsock, and Marcin J. Kurowski
EGUsphere, https://doi.org/10.5194/egusphere-2025-322,https://doi.org/10.5194/egusphere-2025-322, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Vertical Wind and Drop Size Distribution Retrieval with the CloudCube G-band Doppler Radar
Nitika Yadlapalli Yurk, Matthew Lebsock, Juan Socuellamos, Raquel Rodriguez Monje, Ken Cooper, and Pavlos Kollias
EGUsphere, https://doi.org/10.5194/egusphere-2025-618,https://doi.org/10.5194/egusphere-2025-618, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
The Diurnal Susceptibility of Subtropical Clouds to Aerosols
Marcin J. Kurowski, Matthew D. Lebsock, and Kevin M. Smalley
EGUsphere, https://doi.org/10.5194/egusphere-2025-714,https://doi.org/10.5194/egusphere-2025-714, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Dual-frequency (Ka-band and G-band) radar estimates of liquid water content profiles in shallow clouds
Juan M. Socuellamos, Raquel Rodriguez Monje, Matthew D. Lebsock, Ken B. Cooper, and Pavlos Kollias
Atmos. Meas. Tech., 17, 6965–6981, https://doi.org/10.5194/amt-17-6965-2024,https://doi.org/10.5194/amt-17-6965-2024, 2024
Short summary
A random forest algorithm for the prediction of cloud liquid water content from combined CloudSat–CALIPSO observations
Richard M. Schulte, Matthew D. Lebsock, John M. Haynes, and Yongxiang Hu
Atmos. Meas. Tech., 17, 3583–3596, https://doi.org/10.5194/amt-17-3583-2024,https://doi.org/10.5194/amt-17-3583-2024, 2024
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Chilean Observation Network De Meteor Radars (CONDOR): multi-static system configuration and wind comparison with co-located lidar
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech., 18, 1091–1104, https://doi.org/10.5194/amt-18-1091-2025,https://doi.org/10.5194/amt-18-1091-2025, 2025
Short summary
ScintPi measurements of low-latitude ionospheric irregularity drifts using the spaced-receiver technique and SBAS signals
Josemaria Gomez Socola, Fabiano S. Rodrigues, Isaac G. Wright, Igo Paulino, and Ricardo Buriti
Atmos. Meas. Tech., 18, 909–919, https://doi.org/10.5194/amt-18-909-2025,https://doi.org/10.5194/amt-18-909-2025, 2025
Short summary
Quantitative error analysis of polarimetric phased-array radar weather measurements to reveal radar performance and configuration potential
Junho Ho, Zhe Li, and Guifu Zhang
Atmos. Meas. Tech., 18, 619–638, https://doi.org/10.5194/amt-18-619-2025,https://doi.org/10.5194/amt-18-619-2025, 2025
Short summary
Spectral performance analysis of the Fizeau interferometer onboard ESA's Aeolus wind lidar satellite
Michael Vaughan, Kevin Ridley, Benjamin Witschas, Oliver Lux, Ines Nikolaus, and Oliver Reitebuch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-202,https://doi.org/10.5194/amt-2024-202, 2024
Revised manuscript accepted for AMT
Short summary
Optimization of a direct-detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech., 17, 7049–7064, https://doi.org/10.5194/amt-17-7049-2024,https://doi.org/10.5194/amt-17-7049-2024, 2024
Short summary

Cited articles

Andersson, E., Hólm, E., Bauer, P., Beljaars, A., Kelly, G. A., McNally, A. P., Simmons, A. J., Thépaut, J.-N., and Tompkins, A. M.: Analysis and forecast impact of the main humidity observing systems, Q. J. Roy. Meteor. Soc., 133, 1473–1485, https://doi.org/10.1002/qj.112, 2007.
Ao, C. O., Meehan, T. K., Hajj, G. A., Mannucci, A. J., and Beyerle, G.: Lower troposphere refractivity bias in GPS occultation retrievals, J. Geophys. Res.-Atmos., 108, 4577, https://doi.org/10.1029/2002JD003216, 2003.
Betts, A. K. and Boers, R.: A Cloudiness Transition in a Marine Boundary Layer, J. Atmos. Sci., 47, 1480–1497, https://doi.org/10.1175/1520-0469(1990)047<1480:ACTIAM>2.0.CO;2, 1990.
Bohren, C. F. and Huffman, D. R.: Absorption and scattering of light by small particles, Wiley, New York, 477–482, 1983.
Browell, E. V., Wilkerson, T. D., and McIlrath, T. J.: Water vapor differential absorption lidar development and evaluation, Appl. Optics, 18, 3474, https://doi.org/10.1364/AO.18.003474, 1979.
Download
Short summary
This paper describes the feasibility of using a differential absorption radar technique for the remote sensing of water vapor within clouds near the Earth surface from a spaceborne platform. The proposed methodology is shown to be theoretically achievable and complimentary to existing water vapor remote sensing methods.
Share