Articles | Volume 10, issue 3
https://doi.org/10.5194/amt-10-1093-2017
https://doi.org/10.5194/amt-10-1093-2017
Research article
 | 
16 Mar 2017
Research article |  | 16 Mar 2017

Tropospheric dry layers in the tropical western Pacific: comparisons of GPS radio occultation with multiple data sets

Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche

Related authors

Introducing ELSA v2.0: an isochronal model for ice-sheet layer tracing
Therese Rieckh, Andreas Born, Alexander Robinson, Robert Law, and Gerrit Gülle
EGUsphere, https://doi.org/10.5194/egusphere-2023-3127,https://doi.org/10.5194/egusphere-2023-3127, 2024
Short summary
Evaluating two methods of estimating error variances using simulated data sets with known errors
Therese Rieckh and Richard Anthes
Atmos. Meas. Tech., 11, 4309–4325, https://doi.org/10.5194/amt-11-4309-2018,https://doi.org/10.5194/amt-11-4309-2018, 2018
Short summary
Estimating observation and model error variances using multiple data sets
Richard Anthes and Therese Rieckh
Atmos. Meas. Tech., 11, 4239–4260, https://doi.org/10.5194/amt-11-4239-2018,https://doi.org/10.5194/amt-11-4239-2018, 2018
Short summary
Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018,https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Reducing representativeness and sampling errors in radio occultation–radiosonde comparisons
Shay Gilpin, Therese Rieckh, and Richard Anthes
Atmos. Meas. Tech., 11, 2567–2582, https://doi.org/10.5194/amt-11-2567-2018,https://doi.org/10.5194/amt-11-2567-2018, 2018
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
First validation of high-resolution satellite-derived methane emissions from an active gas leak in the UK
Emily Dowd, Alistair J. Manning, Bryn Orth-Lashley, Marianne Girard, James France, Rebecca E. Fisher, Dave Lowry, Mathias Lanoisellé, Joseph R. Pitt, Kieran M. Stanley, Simon O'Doherty, Dickon Young, Glen Thistlethwaite, Martyn P. Chipperfield, Emanuel Gloor, and Chris Wilson
Atmos. Meas. Tech., 17, 1599–1615, https://doi.org/10.5194/amt-17-1599-2024,https://doi.org/10.5194/amt-17-1599-2024, 2024
Short summary
Ship- and aircraft-based XCH4 over oceans as a new tool for satellite validation
Astrid Müller, Hiroshi Tanimoto, Takafumi Sugita, Prabir K. Patra, Shin-ichiro Nakaoka, Toshinobu Machida, Isamu Morino, André Butz, and Kei Shiomi
Atmos. Meas. Tech., 17, 1297–1316, https://doi.org/10.5194/amt-17-1297-2024,https://doi.org/10.5194/amt-17-1297-2024, 2024
Short summary
Using a portable FTIR spectrometer to evaluate the consistency of TCCON measurements on a global scale: The COCCON Travel Standard
Benedikt Herkommer, Carlos Alberti, Paolo Castracane, Jia Chen, Angelika Dehn, Florian Dietrich, Nicholas M. Deutscher, Matthias Max Frey, Jochen Groß, Lawson Gillespie, Frank Hase, Isamu Morino, Nasrin Mostafavi Pak, Brittany Walker, and Debra Wunch
EGUsphere, https://doi.org/10.5194/egusphere-2023-3089,https://doi.org/10.5194/egusphere-2023-3089, 2024
Short summary
Single-blind test of nine methane-sensing satellite systems from three continents
Evan D. Sherwin, Sahar H. El Abbadi, Philippine M. Burdeau, Zhan Zhang, Zhenlin Chen, Jeffrey S. Rutherford, Yuanlei Chen, and Adam R. Brandt
Atmos. Meas. Tech., 17, 765–782, https://doi.org/10.5194/amt-17-765-2024,https://doi.org/10.5194/amt-17-765-2024, 2024
Short summary
Water vapor measurements inside clouds and storms using a differential absorption radar
Luis F. Millán, Matthew D. Lebsock, Ken B. Cooper, Jose V. Siles, Robert Dengler, Raquel Rodriguez Monje, Amin Nehrir, Rory A. Barton-Grimley, James E. Collins, Claire E. Robinson, Kenneth L. Thornhill, and Holger Vömel
Atmos. Meas. Tech., 17, 539–559, https://doi.org/10.5194/amt-17-539-2024,https://doi.org/10.5194/amt-17-539-2024, 2024
Short summary

Cited articles

Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011.
Brown, R. G. and Zhang, C.: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE, J. Atmos. Sci., 54, 2760–2774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2, 1997.
Casey, S. P. F., Dessler, A. E., and Schumacher, C.: Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua, J. Appl. Meteorol. Clim., 48, 1831–1842, https://doi.org/10.1175/2009JAMC2099.1, 2009.
Cau, P., Methven, J., and Hoskins, B.: Representation of dry tropical layers and their origins in ERA-40 data, J. Geophys. Res., 110, D06110, https://doi.org/10.1029/2004JD004928, 2005.
Download
Short summary
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific and compare them to various data sets (research aircraft, radiosonde, infrared sounder, and model reanalyses). All these data sets have limitations. We show that the RO data contribute significant information on the water vapor content. Our results also verify the quality of the reanalyses.