Articles | Volume 10, issue 3
Atmos. Meas. Tech., 10, 1093–1110, 2017
https://doi.org/10.5194/amt-10-1093-2017
Atmos. Meas. Tech., 10, 1093–1110, 2017
https://doi.org/10.5194/amt-10-1093-2017
Research article
16 Mar 2017
Research article | 16 Mar 2017

Tropospheric dry layers in the tropical western Pacific: comparisons of GPS radio occultation with multiple data sets

Therese Rieckh et al.

Related authors

Evaluating two methods of estimating error variances using simulated data sets with known errors
Therese Rieckh and Richard Anthes
Atmos. Meas. Tech., 11, 4309–4325, https://doi.org/10.5194/amt-11-4309-2018,https://doi.org/10.5194/amt-11-4309-2018, 2018
Short summary
Estimating observation and model error variances using multiple data sets
Richard Anthes and Therese Rieckh
Atmos. Meas. Tech., 11, 4239–4260, https://doi.org/10.5194/amt-11-4239-2018,https://doi.org/10.5194/amt-11-4239-2018, 2018
Short summary
Evaluating tropospheric humidity from GPS radio occultation, radiosonde, and AIRS from high-resolution time series
Therese Rieckh, Richard Anthes, William Randel, Shu-Peng Ho, and Ulrich Foelsche
Atmos. Meas. Tech., 11, 3091–3109, https://doi.org/10.5194/amt-11-3091-2018,https://doi.org/10.5194/amt-11-3091-2018, 2018
Short summary
Reducing representativeness and sampling errors in radio occultation–radiosonde comparisons
Shay Gilpin, Therese Rieckh, and Richard Anthes
Atmos. Meas. Tech., 11, 2567–2582, https://doi.org/10.5194/amt-11-2567-2018,https://doi.org/10.5194/amt-11-2567-2018, 2018
Short summary
Characteristics of tropopause parameters as observed with GPS radio occultation
T. Rieckh, B. Scherllin-Pirscher, F. Ladstädter, and U. Foelsche
Atmos. Meas. Tech., 7, 3947–3958, https://doi.org/10.5194/amt-7-3947-2014,https://doi.org/10.5194/amt-7-3947-2014, 2014
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
SAGE III/ISS ozone and NO2 validation using diurnal scaling factors
Sarah A. Strode, Ghassan Taha, Luke D. Oman, Robert Damadeo, David Flittner, Mark Schoeberl, Christopher E. Sioris, and Ryan Stauffer
Atmos. Meas. Tech., 15, 6145–6161, https://doi.org/10.5194/amt-15-6145-2022,https://doi.org/10.5194/amt-15-6145-2022, 2022
Short summary
An improved OSIRIS NO2 profile retrieval in the upper troposphere–lower stratosphere and intercomparison with ACE-FTS and SAGE III/ISS
Kimberlee Dubé, Daniel Zawada, Adam Bourassa, Doug Degenstein, William Randel, David Flittner, Patrick Sheese, and Kaley Walker
Atmos. Meas. Tech., 15, 6163–6180, https://doi.org/10.5194/amt-15-6163-2022,https://doi.org/10.5194/amt-15-6163-2022, 2022
Short summary
TROPESS/CrIS carbon monoxide profile validation with NOAA GML and ATom in situ aircraft observations
Helen M. Worden, Gene L. Francis, Susan S. Kulawik, Kevin W. Bowman, Karen Cady-Pereira, Dejian Fu, Jennifer D. Hegarty, Valentin Kantchev, Ming Luo, Vivienne H. Payne, John R. Worden, Róisín Commane, and Kathryn McKain
Atmos. Meas. Tech., 15, 5383–5398, https://doi.org/10.5194/amt-15-5383-2022,https://doi.org/10.5194/amt-15-5383-2022, 2022
Short summary
Validation of Copernicus Sentinel-3/OLCI Level 2 Land Integrated Water Vapour product
Niilo Kalakoski, Viktoria F. Sofieva, René Preusker, Claire Henocq, Matthieu Denisselle, Steffen Dransfeld, and Silvia Scifoni
Atmos. Meas. Tech., 15, 5129–5140, https://doi.org/10.5194/amt-15-5129-2022,https://doi.org/10.5194/amt-15-5129-2022, 2022
Short summary
Evaluation of MOPITT and TROPOMI carbon monoxide retrievals using AirCore in situ vertical profiles
Sara Martínez-Alonso, Merritt N. Deeter, Bianca C. Baier, Kathryn McKain, Helen Worden, Tobias Borsdorff, Colm Sweeney, and Ilse Aben
Atmos. Meas. Tech., 15, 4751–4765, https://doi.org/10.5194/amt-15-4751-2022,https://doi.org/10.5194/amt-15-4751-2022, 2022
Short summary

Cited articles

Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011.
Berrisford, P., Kållberg, P., Kobayashi, S., Dee, D., Uppala, S., Simmons, A., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. Roy. Meteorol. Soc., 137, 1381–1399, https://doi.org/10.1002/qj.864, 2011.
Brown, R. G. and Zhang, C.: Variability of midtropospheric moisture and its effect on cloud-top height distribution during TOGA COARE, J. Atmos. Sci., 54, 2760–2774, https://doi.org/10.1175/1520-0469(1997)054<2760:VOMMAI>2.0.CO;2, 1997.
Casey, S. P. F., Dessler, A. E., and Schumacher, C.: Five-Year Climatology of Midtroposphere Dry Air Layers in Warm Tropical Ocean Regions as Viewed by AIRS/Aqua, J. Appl. Meteorol. Clim., 48, 1831–1842, https://doi.org/10.1175/2009JAMC2099.1, 2009.
Cau, P., Methven, J., and Hoskins, B.: Representation of dry tropical layers and their origins in ERA-40 data, J. Geophys. Res., 110, D06110, https://doi.org/10.1029/2004JD004928, 2005.
Download
Short summary
We use GPS radio occultation (RO) data to investigate the structure and temporal behavior of extremely dry, high-ozone tropospheric air in the tropical western Pacific and compare them to various data sets (research aircraft, radiosonde, infrared sounder, and model reanalyses). All these data sets have limitations. We show that the RO data contribute significant information on the water vapor content. Our results also verify the quality of the reanalyses.