Articles | Volume 11, issue 7
Atmos. Meas. Tech., 11, 3883–3916, 2018
https://doi.org/10.5194/amt-11-3883-2018
Atmos. Meas. Tech., 11, 3883–3916, 2018
https://doi.org/10.5194/amt-11-3883-2018

Research article 04 Jul 2018

Research article | 04 Jul 2018

From model to radar variables: a new forward polarimetric radar operator for COSMO

Daniel Wolfensberger and Alexis Berne

Related authors

RainForest: a random forest algorithm for quantitative precipitation estimation over Switzerland
Daniel Wolfensberger, Marco Gabella, Marco Boscacci, Urs Germann, and Alexis Berne
Atmos. Meas. Tech., 14, 3169–3193, https://doi.org/10.5194/amt-14-3169-2021,https://doi.org/10.5194/amt-14-3169-2021, 2021
Short summary
Multifractal evaluation of simulated precipitation intensities from the COSMO NWP model
Daniel Wolfensberger, Auguste Gires, Ioulia Tchiguirinskaia, Daniel Schertzer, and Alexis Berne
Atmos. Chem. Phys., 17, 14253–14273, https://doi.org/10.5194/acp-17-14253-2017,https://doi.org/10.5194/acp-17-14253-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
Hironori Iwai, Makoto Aoki, Mitsuru Oshiro, and Shoken Ishii
Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021,https://doi.org/10.5194/amt-14-7255-2021, 2021
Short summary
Monitoring the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module instrument stability using desert sites
Tim A. van Kempen, Filippo Oggionni, and Richard M. van Hees
Atmos. Meas. Tech., 14, 6711–6722, https://doi.org/10.5194/amt-14-6711-2021,https://doi.org/10.5194/amt-14-6711-2021, 2021
Short summary
Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome
Susanna Hagelin, Roohollah Azad, Magnus Lindskog, Harald Schyberg, and Heiner Körnich
Atmos. Meas. Tech., 14, 5925–5938, https://doi.org/10.5194/amt-14-5925-2021,https://doi.org/10.5194/amt-14-5925-2021, 2021
Short summary
Towards operational multi-GNSS tropospheric products at GFZ Potsdam
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-197,https://doi.org/10.5194/amt-2021-197, 2021
Revised manuscript accepted for AMT
Short summary
Inter-comparison of wind measurements in the atmospheric boundary layer with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-260,https://doi.org/10.5194/amt-2021-260, 2021
Revised manuscript accepted for AMT
Short summary

Cited articles

Andsager, K., Beard, K. V., and Laird, N. F.: Laboratory measurements of axis ratios for large rain drops, J. Atmos. Sci., 56, 2673–2683, https://doi.org/10.1175/1520-0469(1999)056<2673:LMOARF>2.0.CO;2, 1999. a
Auer, A. H. and Veal, D. L.: The dimensions of ice crystals in natural clouds, J. Atmos. Sci., 27, 919–926, https://doi.org/10.1175/1520-0469(1970)027<0919:TDOICI>2.0.CO;2, 1970. a
Augros, C., Caumont, O., Ducrocq, V., Gaussiat, N., and Tabary, P.: Comparisons between S-, C- and X-band polarimetric radar observations and convective-scale simulations of the HyMeX first special observing period, Q. J. Roy. Meteor. Soc., 142, 347–362, https://doi.org/10.1002/qj.2572, 2016. a, b, c, d, e
Babb, D. M., Verlinde, J., and Rust, B. W.: The Removal of Turbulent Broadening in Radar Doppler Spectra Using Linear Inversion with Double-Sided Constraints, J. Atmos. Ocean. Tech., 17, 1583–1595, https://doi.org/10.1175/1520-0426(2000)017<1583:TROTBI>2.0.CO;2, 2000. a
Bailey, M. P. and Hallett, J.: A comprehensive habit diagram for atmospheric ice crystals: conformation from the laboratory, AIRS II, and other field studies, J. Atmos. Sci., 66, 2888–2899, https://doi.org/10.1175/2009JAS2883.1, 2009. a
Download

The requested paper has a corresponding corrigendum published. Please read the corrigendum first before downloading the article.

Short summary
This work presents a polarimetric forward operator for the COSMO weather prediction model. This tool is able to simulate radar observables from the state of the atmosphere simulated by the model, taking into account most physical aspects of radar beam propagation and backscattering. This operator was validated with a large dataset of radar observations from several instruments and it was shown that is able to simulate a realistic radar signature in liquid precipitation.