Articles | Volume 12, issue 1
https://doi.org/10.5194/amt-12-253-2019
https://doi.org/10.5194/amt-12-253-2019
Research article
 | 
15 Jan 2019
Research article |  | 15 Jan 2019

Implementation of polarization diversity pulse-pair technique using airborne W-band radar

Mengistu Wolde, Alessandro Battaglia, Cuong Nguyen, Andrew L. Pazmany, and Anthony Illingworth

Related authors

Comparative experimental validation of microwave hyperspectral atmospheric soundings in clear-sky conditions
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 18, 471–485, https://doi.org/10.5194/amt-18-471-2025,https://doi.org/10.5194/amt-18-471-2025, 2025
Short summary
High ice water content in tropical mesoscale convective systems (a conceptual model)
Alexei Korolev, Zhipeng Qu, Jason Milbrandt, Ivan Heckman, Mélissa Cholette, Mengistu Wolde, Cuong Nguyen, Greg M. McFarquhar, Paul Lawson, and Ann M. Fridlind
Atmos. Chem. Phys., 24, 11849–11881, https://doi.org/10.5194/acp-24-11849-2024,https://doi.org/10.5194/acp-24-11849-2024, 2024
Short summary
Radiative closure tests of collocated hyperspectral microwave and infrared radiometers
Lei Liu, Natalia Bliankinshtein, Yi Huang, John R. Gyakum, Philip M. Gabriel, Shiqi Xu, and Mengistu Wolde
Atmos. Meas. Tech., 17, 2219–2233, https://doi.org/10.5194/amt-17-2219-2024,https://doi.org/10.5194/amt-17-2219-2024, 2024
Short summary
Sizing ice hydrometeor populations using the dual-wavelength radar ratio
Sergey Y. Matrosov, Alexei Korolev, Mengistu Wolde, and Cuong Nguyen
Atmos. Meas. Tech., 15, 6373–6386, https://doi.org/10.5194/amt-15-6373-2022,https://doi.org/10.5194/amt-15-6373-2022, 2022
Short summary
Observation of secondary ice production in clouds at low temperatures
Alexei Korolev, Paul J. DeMott, Ivan Heckman, Mengistu Wolde, Earle Williams, David J. Smalley, and Michael F. Donovan
Atmos. Chem. Phys., 22, 13103–13113, https://doi.org/10.5194/acp-22-13103-2022,https://doi.org/10.5194/acp-22-13103-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Optimization of a direct-detection UV wind lidar architecture for 3D wind reconstruction at high altitude
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech., 17, 7049–7064, https://doi.org/10.5194/amt-17-7049-2024,https://doi.org/10.5194/amt-17-7049-2024, 2024
Short summary
The GRAS-2 radio occultation mission
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024,https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024,https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-126,https://doi.org/10.5194/amt-2024-126, 2024
Revised manuscript accepted for AMT
Short summary
Tracking Traveling Ionospheric Disturbances through Doppler-shifted AM radio transmissions
Claire Trop, James LaBelle, Philip Erickson, Shun-Rong Zhang, David McGaw, and Terrence Kovacs
EGUsphere, https://doi.org/10.5194/egusphere-2024-2383,https://doi.org/10.5194/egusphere-2024-2383, 2024
Short summary

Cited articles

Battaglia, A. and Kollias, P.: Error Analysis of a Conceptual Cloud Doppler Stereoradar with Polarization Diversity for Better Understanding Space Applications, J. Atmos. Ocean Technol., 32, 1298–1319, https://doi.org/10.1175/JTECH-D-14-00015.1, 2014. a
Battaglia, A., Tanelli, S., Kobayashi, S., Zrnic, D., Hogan, R., and Simmer, C.: Multiple-scattering in radar systems: a review, J. Quant. Spectrosc. Ra., 111, 917–947, https://doi.org/10.1016/j.jqsrt.2009.11.024, 2010. a
Battaglia, A., Augustynek, T., Tanelli, S., and Kollias, P.: Multiple scattering identification in spaceborne W-band radar measurements of deep convective cores, J. Geophys. Res., 116, D19201, https://doi.org/10.1029/2011JD016142, 2011. a
Battaglia, A., Tanelli, S., and Kollias, P.: Polarization diversity for millimeter space-borne Doppler radars: an answer for observing deep convection?, J. Atmos. Ocean Technol., 30, 2768–2787, https://doi.org/10.1175/JTECH-D-13-00085.1, 2013. a, b
Battaglia, A., Wolde, M., D'Adderio, L. P., Nguyen, C., Fois, F., Illingworth, A., and Midthassel, R.: Characterization of Surface Radar Cross Sections at W-Band at Moderate Incidence Angles, IEEE T. Geosci. Remote, 55, 3846–3859, https://doi.org/10.1109/TGRS.2017.2682423, 2017. a, b, c, d
Download
Short summary
This paper presents an implementation of polarization diversity pulse-pair processing (PDPP) on the National Research Council of Canada airborne W-band radar (NAW) system. A description of the NAW PDPP pulsing schemes and an analysis of comprehensive airborne data collected in diverse weather conditions in Canada is presented. The analysis shows a successful airborne measurement of Doppler velocity exceeding 100 m s−1 using PDPP approach, the first such measurement from a moving platform.