Articles | Volume 13, issue 6
Atmos. Meas. Tech., 13, 2923–2948, 2020
https://doi.org/10.5194/amt-13-2923-2020
Atmos. Meas. Tech., 13, 2923–2948, 2020
https://doi.org/10.5194/amt-13-2923-2020

Research article 05 Jun 2020

Research article | 05 Jun 2020

Correcting high-frequency losses of reactive nitrogen flux measurements

Pascal Wintjen et al.

Related authors

Forest-atmosphere exchange of reactive nitrogen in a low polluted area – temporal dynamics and annual budgets
Pascal Wintjen, Frederik Schrader, Martijn Schaap, Burkhard Beudert, and Christian Brümmer
Biogeosciences Discuss., https://doi.org/10.5194/bg-2020-364,https://doi.org/10.5194/bg-2020-364, 2020
Preprint under review for BG
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Emissions relationships in western forest fire plumes – Part 1: Reducing the effect of mixing errors on emission factors
Robert B. Chatfield, Meinrat O. Andreae, ARCTAS Science Team, and SEAC4RS Science Team
Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020,https://doi.org/10.5194/amt-13-7069-2020, 2020
Short summary
A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020,https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water
Fan Zhou, Liwei Hou, Rui Zhong, Wei Chen, Xunpeng Ni, Shengda Pan, Ming Zhao, and Bowen An
Atmos. Meas. Tech., 13, 4899–4909, https://doi.org/10.5194/amt-13-4899-2020,https://doi.org/10.5194/amt-13-4899-2020, 2020
Short summary
High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application to Amsterdam
Bas Mijling
Atmos. Meas. Tech., 13, 4601–4617, https://doi.org/10.5194/amt-13-4601-2020,https://doi.org/10.5194/amt-13-4601-2020, 2020
Short summary
Towards standardized processing of eddy covariance flux measurements of carbonyl sulfide
Kukka-Maaria Kohonen, Pasi Kolari, Linda M. J. Kooijmans, Huilin Chen, Ulli Seibt, Wu Sun, and Ivan Mammarella
Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020,https://doi.org/10.5194/amt-13-3957-2020, 2020
Short summary

Cited articles

Ammann, C.: On the applicability of relaxed eddy accumulation and common methods for measuring trace gas fluxes, PhD thesis, ETH Zurich, https://doi.org/10.3929/ethz-a-002031554, 1999 a, b, c, d, e, f, g, h, i, j
Ammann, C., Brunner, A., Spirig, C., and Neftel, A.: Technical note: Water vapour concentration and flux measurements with PTR-MS, Atmos. Chem. Phys., 6, 4643–4651, https://doi.org/10.5194/acp-6-4643-2006, 2006. a, b, c, d
Ammann, C., Wolff, V., Marx, O., Brümmer, C., and Neftel, A.: Measuring the biosphere-atmosphere exchange of total reactive nitrogen by eddy covariance, Biogeosciences, 9, 4247–4261, https://doi.org/10.5194/bg-9-4247-2012, 2012. a, b, c, d, e, f
Aubinet, M., Grelle, A., Ibrom, A., Rannik, U., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Adv. Ecol. Res., 30 113–175, https://doi.org/10.1016/S0065-2504(08)60018-5, 1999. a, b, c, d, e, f
Aubinet, M., Vesala, T., and Papale, D. (Eds.): Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Science+Business Media B.V., Dordrecht, The Netherlands, 2012. a, b, c, d, e, f, g, h
Download
Short summary
With recent technological advances it is now possible to measure the exchange of trace gases between the land surface and the atmosphere. When using the so-called eddy-covariance method, certain corrections need to be applied to account for attenuation in the flux signal. These losses were found to be setup- and site-specific and can be up to 38 % for reactive nitrogen fluxes. We evaluated five different methods and recommend using an empirical version with locally measured cospectra.