Articles | Volume 13, issue 10
https://doi.org/10.5194/amt-13-5715-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-5715-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Inter-calibration of nine UV sensing instruments over Antarctica and Greenland since 1980
Clark J. Weaver
CORRESPONDING AUTHOR
Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Earth System Science Interdisciplinary Center (ESSIC), University
of Maryland, College Park, MD 20742, USA
Pawan K. Bhartia
Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Dong L. Wu
Climate and Radiation Laboratory, NASA Goddard Space Flight Center,
Greenbelt, MD 20771, USA
Gordon J. Labow
Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Science Systems and Applications (SSAI), Inc., Lanham, MD 20706, USA
David E. Haffner
Atmospheric Chemistry and Dynamics Branch, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Science Systems and Applications (SSAI), Inc., Lanham, MD 20706, USA
Related authors
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638, https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary
Short summary
We calculate the total amount of solar energy reflected by the earth from the EPIC camera onboard the DSCOVR satellite positioned 1.5 million km from earth. We compare it with another estimate of the reflected energy from the NISTAR instrument, that is also on the DSCOVR satellite. Both energy estimates agree within the uncertainties of each instrument. Finally, we compare with a third estimate of solar reflected energy from the CERES instruments that are on board low-earth orbit satellites.
Jie Gong, Dong L. Wu, Michelle Badalov, Manisha Ganeshan, and Minghua Zheng
Atmos. Meas. Tech., 18, 4025–4043, https://doi.org/10.5194/amt-18-4025-2025, https://doi.org/10.5194/amt-18-4025-2025, 2025
Short summary
Short summary
Marine boundary layer (MABL) water vapor is among the key factors to couple the ocean and atmosphere, but it is also among the hardest to retrieve from a satellite remote sensing perspective. Here we propose a novel way to retrieve MABL specific humidity profiles using the GNSS (Global Navigation Satellite System) Level-1 signal-to-noise ratio. Using a machine learning approach, we successfully obtained a retrieval product that outperforms the ERA-5 reanalysis and operational Level-2 retrievals globally, except in the deep tropics.
Daniel J. Emmons, Cornelius Csar Jude H. Salinas, Dong L. Wu, Nimalan Swarnalingam, Eugene V. Dao, Jorge L. Chau, Yosuke Yamazaki, Kyle E. Fitch, and Victoriya V. Forsythe
EGUsphere, https://doi.org/10.5194/egusphere-2025-3731, https://doi.org/10.5194/egusphere-2025-3731, 2025
This preprint is open for discussion and under review for Annales Geophysicae (ANGEO).
Short summary
Short summary
The E-region of the Earth’s ionosphere plays an important role in atmospheric energy balance and High Frequency radio propagation. In this paper, we compare predictions from two recently developed ionospheric models to observations by ionospheric sounders (ionosondes). Overall, the models show reasonable agreement with the observations. However, there are several areas for improvement in the models as well as questions about the accuracy of the automatically processed ionosonde dataset.
Manisha Ganeshan, Dong L. Wu, Joseph A. Santanello, Jie Gong, Chi Ao, Panagiotis Vergados, and Kevin J. Nelson
Atmos. Meas. Tech., 18, 1389–1403, https://doi.org/10.5194/amt-18-1389-2025, https://doi.org/10.5194/amt-18-1389-2025, 2025
Short summary
Short summary
This study explores the potential of two newly launched commercial Global Navigation Satellite System (GNSS) radio occultation (RO) satellite missions for advancing Arctic lower-atmospheric studies. The products have a good sampling of the lower Arctic atmosphere and are useful to derive the planetary boundary layer (PBL) height during winter months. This research is a step towards closing the observation gap in polar regions due to the decomissioning of Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC-1) GNSS RO mission and the lack of high-latitude coverage by its successor (COSMIC-2).
Dong L. Wu, Valery A. Yudin, Kyu-Myong Kim, Mohar Chattopadhyay, Lawrence Coy, Ruth S. Lieberman, C. C. Jude H. Salinas, Jae N. Lee, Jie Gong, and Guiping Liu
Atmos. Meas. Tech., 18, 843–863, https://doi.org/10.5194/amt-18-843-2025, https://doi.org/10.5194/amt-18-843-2025, 2025
Short summary
Short summary
Global Navigation Satellite System radio occultation data help monitor climate and weather prediction but are affected by residual ionospheric errors (RIEs). A new excess-phase-gradient method detects and corrects RIEs, showing both positive and negative values, varying by latitude, time, and solar activity. Tests show that RIE impacts polar stratosphere temperatures in models, with differences up to 3–4 K. This highlights the need for RIE correction to improve the accuracy of data assimilation.
Kanghyun Baek, Jae Hwan Kim, Juseon Bak, David P. Haffner, Mina Kang, and Hyunkee Hong
Atmos. Meas. Tech., 16, 5461–5478, https://doi.org/10.5194/amt-16-5461-2023, https://doi.org/10.5194/amt-16-5461-2023, 2023
Short summary
Short summary
The GEMS mission was the first mission of the geostationary satellite constellation for hourly atmospheric composition monitoring. The GEMS ozone measurements were cross-compared to those of Pandora, OMPS, and TROPOMI satellite sensors and excellent agreement was found. GEMS has proven to be a powerful new instrument for monitoring and assessing the diurnal variation in atmospheric ozone. This experience can be used to advance research with future geostationary environmental satellite missions.
Clark Jay Weaver, Jay Herman, Alexander Marshak, Steven R. Lorentz, Yinan Yu, Allan W. Smith, and Adam Szabo
EGUsphere, https://doi.org/10.5194/egusphere-2023-638, https://doi.org/10.5194/egusphere-2023-638, 2023
Preprint archived
Short summary
Short summary
We calculate the total amount of solar energy reflected by the earth from the EPIC camera onboard the DSCOVR satellite positioned 1.5 million km from earth. We compare it with another estimate of the reflected energy from the NISTAR instrument, that is also on the DSCOVR satellite. Both energy estimates agree within the uncertainties of each instrument. Finally, we compare with a third estimate of solar reflected energy from the CERES instruments that are on board low-earth orbit satellites.
Cornelius Csar Jude H. Salinas, Dong L. Wu, Jae N. Lee, Loren C. Chang, Liying Qian, and Hanli Liu
Atmos. Chem. Phys., 23, 1705–1730, https://doi.org/10.5194/acp-23-1705-2023, https://doi.org/10.5194/acp-23-1705-2023, 2023
Short summary
Short summary
Upper mesospheric carbon monoxide's (CO) photochemical lifetime is longer than dynamical timescales. This work uses satellite observations and model simulations to establish that the migrating diurnal tide and its seasonal and interannual variabilities drive CO primarily through vertical advection. Vertical advection is a transport process that is currently difficult to observe. This work thus shows that we can use CO as a tracer for vertical advection across seasonal and interannual timescales.
Ákos Horváth, James L. Carr, Dong L. Wu, Julia Bruckert, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 22, 12311–12330, https://doi.org/10.5194/acp-22-12311-2022, https://doi.org/10.5194/acp-22-12311-2022, 2022
Short summary
Short summary
We estimate plume heights for the April 2021 La Soufrière daytime eruptions using GOES-17 near-limb side views and GOES-16–MODIS stereo views. These geometric heights are then compared with brightness-temperature-based radiometric height estimates to characterize the biases of the latter. We also show that the side view method can be applied to infrared imagery and thus nighttime eruptions, albeit with larger uncertainty.
Jay Herman, Liang Huang, David Hafner, and Adam Szabo
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2022-481, https://doi.org/10.5194/acp-2022-481, 2022
Publication in ACP not foreseen
Short summary
Short summary
The research object is to see if reflections from clouds by the DSCOVR satellite at the Earth-Sun Lagrange point are enhanced as the backscattering angle nears 180 degrees. The 388 nm wavelength channel sees almost nothing from the Earth's surface. The result is that the Southern Hemisphere radiance increase in December 2020 and 2021 is likely caused by cloud amount increase and not by enhanced reflectivity at a 178-degree backscatter angle.
Jie Gong, Dong L. Wu, and Patrick Eriksson
Earth Syst. Sci. Data, 13, 5369–5387, https://doi.org/10.5194/essd-13-5369-2021, https://doi.org/10.5194/essd-13-5369-2021, 2021
Short summary
Short summary
Launched from the International Space Station, the IceCube radiometer orbited the Earth for 15 months and collected the first spaceborne radiance measurements at 874–883 GHz. This channel is uniquely important to fill in the sensitivity gap between operational visible–infrared and microwave remote sensing for atmospheric cloud ice and snow. This paper delivers the IceCube Level 1 radiance data processing algorithm and provides a data quality evaluation and discussion on its scientific merit.
Jerald R. Ziemke, Gordon J. Labow, Natalya A. Kramarova, Richard D. McPeters, Pawan K. Bhartia, Luke D. Oman, Stacey M. Frith, and David P. Haffner
Atmos. Meas. Tech., 14, 6407–6418, https://doi.org/10.5194/amt-14-6407-2021, https://doi.org/10.5194/amt-14-6407-2021, 2021
Short summary
Short summary
Seasonal and interannual ozone profile climatologies are produced from combined MLS and MERRA-2 GMI ozone for the general public. Both climatologies extend from pole to pole at altitudes of 0–80 km (1 km spacing) for the time record from 1970 to 2018. These climatologies are important for use as a priori information in satellite ozone retrieval algorithms, as validation of other measured and model-simulated ozone, and in radiative transfer studies of the atmosphere.
Ákos Horváth, James L. Carr, Olga A. Girina, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12189–12206, https://doi.org/10.5194/acp-21-12189-2021, https://doi.org/10.5194/acp-21-12189-2021, 2021
Short summary
Short summary
We give a detailed description of a new technique to estimate the height of volcanic eruption columns from near-limb geostationary imagery. Such oblique angle observations offer spectacular side views of eruption columns protruding from the Earth ellipsoid and thereby facilitate a height-by-angle estimation method. Due to its purely geometric nature, the new technique is unaffected by the limitations of traditional brightness-temperature-based height retrievals.
Ákos Horváth, Olga A. Girina, James L. Carr, Dong L. Wu, Alexey A. Bril, Alexey A. Mazurov, Dmitry V. Melnikov, Gholam Ali Hoshyaripour, and Stefan A. Buehler
Atmos. Chem. Phys., 21, 12207–12226, https://doi.org/10.5194/acp-21-12207-2021, https://doi.org/10.5194/acp-21-12207-2021, 2021
Short summary
Short summary
We demonstrate the side view plume height estimation technique described in Part 1 on seven volcanic eruptions from 2019 and 2020, including the 2019 Raikoke eruption. We explore the strengths and limitations of the new technique in comparison to height estimation from brightness temperatures, stereo observations, and ground-based video footage.
Lily N. Zhang, Susan Solomon, Kane A. Stone, Jonathan D. Shanklin, Joshua D. Eveson, Steve Colwell, John P. Burrows, Mark Weber, Pieternel F. Levelt, Natalya A. Kramarova, and David P. Haffner
Atmos. Chem. Phys., 21, 9829–9838, https://doi.org/10.5194/acp-21-9829-2021, https://doi.org/10.5194/acp-21-9829-2021, 2021
Short summary
Short summary
In the 1980s, measurements at the British Antarctic Survey station in Halley, Antarctica, led to the discovery of the ozone hole. The Halley total ozone record continues to be uniquely valuable for studies of long-term changes in Antarctic ozone. Environmental conditions in 2017 forced a temporary cessation of operations, leading to a gap in the historic record. We develop and test a method for filling in the Halley record using satellite data and find evidence to further support ozone recovery.
Nick Gorkavyi, Zachary Fasnacht, David Haffner, Sergey Marchenko, Joanna Joiner, and Alexander Vasilkov
Atmos. Meas. Tech., 14, 961–974, https://doi.org/10.5194/amt-14-961-2021, https://doi.org/10.5194/amt-14-961-2021, 2021
Short summary
Short summary
Various instrumental or geophysical artifacts, such as saturation, stray light or obstruction of light, negatively impact satellite measured ultraviolet and visible Earthshine radiance spectra. Here, we introduce a straightforward detection method that is based on the correlation, r, between the observed Earthshine radiance and solar irradiance spectra over a 10 nm spectral range; our decorrelation index (DI for brevity) is simply defined as DI of 1–r.
Lok N. Lamsal, Nickolay A. Krotkov, Alexander Vasilkov, Sergey Marchenko, Wenhan Qin, Eun-Su Yang, Zachary Fasnacht, Joanna Joiner, Sungyeon Choi, David Haffner, William H. Swartz, Bradford Fisher, and Eric Bucsela
Atmos. Meas. Tech., 14, 455–479, https://doi.org/10.5194/amt-14-455-2021, https://doi.org/10.5194/amt-14-455-2021, 2021
Short summary
Short summary
The NASA standard nitrogen dioxide (NO2) version 4.0 product for OMI Aura incorporates the most salient improvements. It represents the first global satellite trace gas retrieval with OMI–MODIS synergy accounting for surface reflectance anisotropy in cloud and NO2 retrievals. Improved spectral fitting procedures for NO2 and oxygen dimer (for cloud) retrievals and reliance on high-resolution field-of-view-specific input information for NO2 and cloud retrievals help enhance the NO2 data quality.
Jie Gong, Xiping Zeng, Dong L. Wu, S. Joseph Munchak, Xiaowen Li, Stefan Kneifel, Davide Ori, Liang Liao, and Donifan Barahona
Atmos. Chem. Phys., 20, 12633–12653, https://doi.org/10.5194/acp-20-12633-2020, https://doi.org/10.5194/acp-20-12633-2020, 2020
Short summary
Short summary
This work provides a novel way of using polarized passive microwave measurements to study the interlinked cloud–convection–precipitation processes. The magnitude of differences between polarized radiances is found linked to ice microphysics (shape, size, orientation and density), mesoscale dynamic and thermodynamic structures, and surface precipitation. We conclude that passive sensors with multiple polarized channel pairs may serve as cheaper and useful substitutes for spaceborne radar sensors.
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020, https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Short summary
We combine the ground-based observations and radiative transfer model to quantify the impact of the 2017 solar eclipse on surface shortwave irradiation reduction. We find that the eclipse caused local reductions of time-averaged surface flux of about 379 W m-2 (50 %) and 329 W m-2 (46 %) during the ~ 3 h course of the eclipse at the Casper and Columbia sites, respectively. We estimate that the Moon’s shadow caused a reduction of approximately 7 %–8 % in global average surface broadband SW radiation.
Cited articles
Casey, K. A., Polashenski, C. M., Chen, J., and Tedesco, M.: Impact of MODIS sensor calibration updates on Greenland Ice Sheet surface reflectance and albedo trends, The Cryosphere, 11, 1781–1795, https://doi.org/10.5194/tc-11-1781-2017, 2017.
Damoah, R., Spichtinger, N., Forster, C., James, P., Mattis, I., Wandinger, U., Beirle, S., Wagner, T., and Stohl, A.: Around the world in 17 days – hemispheric-scale transport of forest fire smoke from Russia in May 2003, Atmos. Chem. Phys., 4, 1311–1321, https://doi.org/10.5194/acp-4-1311-2004, 2004.
DeLand, M. T., Cebula, R. P., Huang, L.-K., Taylor, S. L., Stolarski, R. S., and
McPeters, R. D.: Observations of “Hysteresis” in Backscattered Ultraviolet
Ozone Data. J. Atmos. Ocean. Technol., 18, 914–924, https://doi.org/10.1175/1520-0426(2001)018<0914:OOHIBU>2.0.CO;2, 2001.
DeLand, M. T., Taylor, S. L., Huang, L. K., and Fisher, B. L.: Calibration of the SBUV version 8.6 ozone data product, Atmos. Meas. Tech., 5, 2951–2967, https://doi.org/10.5194/amt-5-2951-2012, 2012.
Herman, J., DeLand, M. T., Huang, L.-K., Labow, G., Larko, D., Lloyd, S. A., Mao, J., Qin, W., and Weaver, C.: A net decrease in the Earth's cloud, aerosol, and surface 340 nm reflectivity during the past 33 yr (1979–2011), Atmos. Chem. Phys., 13, 8505–8524, https://doi.org/10.5194/acp-13-8505-2013, 2013.
Huang, L.-K., Cebula, R. P., Taylor, S. L., DeLand, M. T., McPeters, R. D., and Stolarski,
R. S.: Determination of NOAA-11 SBUV/2 radiance sensitivity drift
based on measurements of polar ice cap radiance. Int. J. Remote Sens., 24,
305–314, https://doi.org/10.1080/01431160304978, 2003.
Jaross, G. and Warner, J.: Use of Antarctica for validating reflected solar
radiation measured by satellite sensors, J. Geophys. Res., 113, D16S34,
https://doi.org/10.1029/2007JD008835, 2008.
Labow, G., Herman, J. R., Huang, L.-K., Lloyd, S. A., DeLand, M. T., Qin, W.,
Mao, J., and Larko, D. E.: Diurnal variation of 340 nm Lambertian equivalent
reflectivity due to clouds and aerosols over land and oceans, J. Geophys.
Res., 116, D11202, https://doi.org/10.1029/2010JD014980, 2011.
Nghiem, S. V., Hall, D. K., Mote, T. L., Tedesco, M., Albert, M. R., Keegan,
K., Shuman, C. A., DiGirolamo, N. E., and Neumann, G.: The extreme melt across the Greenland Ice Sheet in 2012.
Geophys. Res. Lett., 39, L20502, https://doi.org/10.1029/2012GL053611, 2012.
Polashenski, C. M., Dibb, J. E., Flanner, M. G., Chen, J. Y., Courville, Z. R.,
Lai, A. M.,
Schauer, J. J., Shafer, M. M., and Bergin, M.: Neither dust nor black carbon
causing apparent albedo decline in Greenland's dry snow zone: Implications
for MODIS C5 surface reflectance, Geophys. Res. Lett., 42, 9319–9327,
https://doi.org/10.1002/2015GL065912, 2015.
Seftor, C. J., Jaross G., Kowitt M., Haken, M., Li, J., and Flynn, L. E.:
Postlaunch performance of the Suomi National Polar- orbiting Partnership
Ozone Mapping and Profiler Suite (OMPS) nadir sensors, J. Geophys. Res.-Atmos., 119, 4413–4428, https://doi.org/10.1002/2013JD020472, 2014.
Spurr, R. J. D.: VLIDORT: A linearized pseudo-spherical vector discrete
ordinate radiative transfer code for forward model and retrieval studies in
multilayer multiple scattering media, J. Quant. Spectrosc. Rad. Transf.,
102, 316–342, https://doi.org/10.1016/j.jqsrt.2006.05.005, 2006.
Stohl, A., Andrews, E., Burkhart, J. F., Forster, C., Herber, A., Hoch, S. W., Kowal, D., Lunder, C., Mefford, T., Ogren, J. A., Sharma, S., Spichtinger, N., Stebel, K., Stone, R., Ström, J., Tørseth, K., Wehrli, C., and Yttri, K. E.: Pan-Arctic enhancements of light absorbing aerosol concentrations due to North American boreal forest fires during summer 2004, J. Geophys. Res., 111, D22214, https://doi.org/10.1029/2006JD007216, 2006.
Weaver, C. J., Herman, J. R., Labow, G. J., Larko, D., and Huang, L.-K.:
Shortwave TOA Cloud Radiative Forcing Derived from a Long-Term
(1980–Present) Record of Satellite UV Reflectivity and CERES Measurements,
J. Climate, 28, 9473–9488, https://doi.org/10.1175/JCLI-D-14-00551.1, 2015.
Weaver, C. J., Wu, D. L., Bhartia, P. K., Labow, G. J., and Haffner, D. P.: A
Long-Term Cloud Albedo Data Record Since 1980 from UV Satellite Sensors, Remote Sens., 12, 1982, https://doi.org/10.3390/rs12121982, 2020.
Wotawa, G. and Trainer, M.: The influence of Canadian forest fires on
pollutant concentrations in the United States, Science, 288, 324–328, 2000.
Short summary
Currently, we do not know whether clouds will accelerate or moderate climate. We look to the past and ask whether cloudiness has changed over the last 4 decades. Using a suite of nine satellite instruments, we need to ensure that the first satellite, which was launched in 1980 and died in 1991, observed the same measurement as the eight other satellite instruments used in the record. If the instruments were measuring length and observing a 1.00 m long stick, they would all see 0.99 to 1.01 m.
Currently, we do not know whether clouds will accelerate or moderate climate. We look to the...