Articles | Volume 13, issue 12
Atmos. Meas. Tech., 13, 6593–6611, 2020

Special issue: Tropospheric profiling (ISTP11) (AMT/ACP inter-journal SI)

Atmos. Meas. Tech., 13, 6593–6611, 2020

Research article 07 Dec 2020

Research article | 07 Dec 2020

Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study

Pauline Martinet et al.

Related authors

W-band Radar Observations for Fog Forecast Improvement: an Analysis of Model and Forward Operator Errors
Alistair Bell, Pauline Martinet, Olivier Caumont, Benoît Vié, Julien Delanoë, Jean-Charles Dupont, and Mary Borderies
Atmos. Meas. Tech. Discuss.,,, 2021
Revised manuscript under review for AMT
RTTOV-gb v1.0 – updates on sensors, absorption models, uncertainty, and availability
Domenico Cimini, James Hocking, Francesco De Angelis, Angela Cersosimo, Francesco Di Paola, Donatello Gallucci, Sabrina Gentile, Edoardo Geraldi, Salvatore Larosa, Saverio Nilo, Filomena Romano, Elisabetta Ricciardelli, Ermann Ripepi, Mariassunta Viggiano, Lorenzo Luini, Carlo Riva, Frank S. Marzano, Pauline Martinet, Yun Young Song, Myoung Hwan Ahn, and Philip W. Rosenkranz
Geosci. Model Dev., 12, 1833–1845,,, 2019
Short summary
Long-term observations minus background monitoring of ground-based brightness temperatures from a microwave radiometer network
Francesco De Angelis, Domenico Cimini, Ulrich Löhnert, Olivier Caumont, Alexander Haefele, Bernhard Pospichal, Pauline Martinet, Francisco Navas-Guzmán, Henk Klein-Baltink, Jean-Charles Dupont, and James Hocking
Atmos. Meas. Tech., 10, 3947–3961,,, 2017
Short summary
Combining ground-based microwave radiometer and the AROME convective scale model through 1DVAR retrievals in complex terrain: an Alpine valley case study
Pauline Martinet, Domenico Cimini, Francesco De Angelis, Guylaine Canut, Vinciane Unger, Remi Guillot, Diane Tzanos, and Alexandre Paci
Atmos. Meas. Tech., 10, 3385–3402,,, 2017
Short summary
RTTOV-gb – adapting the fast radiative transfer model RTTOV for the assimilation of ground-based microwave radiometer observations
Francesco De Angelis, Domenico Cimini, James Hocking, Pauline Martinet, and Stefan Kneifel
Geosci. Model Dev., 9, 2721–2739,,, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia
Gizachew Kabite Wedajo, Misgana Kebede Muleta, and Berhan Gessesse Awoke
Atmos. Meas. Tech., 14, 2299–2316,,, 2021
Short summary
A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw
Steven Knoop, Fred C. Bosveld, Marijn J. de Haij, and Arnoud Apituley
Atmos. Meas. Tech., 14, 2219–2235,,, 2021
Short summary
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957,,, 2021
Short summary
Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353,,, 2021
Short summary
Flywheel calibration of a continuous-wave coherent Doppler wind lidar
Anders Tegtmeier Pedersen and Michael Courtney
Atmos. Meas. Tech., 14, 889–903,,, 2021
Short summary

Cited articles

Barker, D. M., Huang, W., Guo, Y.-R., Bourgeois, A., and Xiao, Q.: A three-dimensional variational data assimilation system for MM5: Implementation and initial results, Mon. Weather Rev., 132, 897–914, 2004. a
Bergot, T. and Guedalia, D.: Numerical forecasting of radiation fog. Part I: Numerical model and sensitivity tests, Mon. Weather Rev., 122, 1218–1230, 1994. a
Bergot, T., Carrer, D., Noilhan, J., and Bougeault, P.: Improved site-specific numerical prediction of fog and low clouds: A feasibility study, Weather Forecast., 20, 627–646, 2005. a
Brousseau, P., Berre, L., Bouttier, F., and Desroziers, G.: Background-error covariances for a convective-scale data-assimilation system: AROME–France 3D-Var, Q. J. Roy. Meteor. Soc., 137, 409–422, 2011. a
Brousseau, P., Seity, Y., Ricard, D., and Léger, J.: Improvement of the forecast of convective activity from the AROME-France system, Q. J. Roy. Meteor. Soc., 142, 2231–2243,, 2016. a, b
Short summary
Each year large human and economical losses are due to fog episodes. However, fog forecasts remain quite inaccurate, partly due to a lack of observations in the atmospheric boundary layer. The benefit of ground-based microwave radiometers has been investigated and has demonstrated their capability of significantly improving the initial state of temperature and liquid water content profiles in current numerical weather prediction models, paving the way for improved fog forecasts in the future.