Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-747-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-13-747-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Quantifying hail size distributions from the sky – application of drone aerial photogrammetry
Joshua S. Soderholm
CORRESPONDING AUTHOR
Meteorological Institute, University of Bonn, Bonn, Germany
Matthew R. Kumjian
Department of Meteorology and Atmospheric Science, The Pennsylvania State University, State College, USA
Nicholas McCarthy
School of Earth and Environmental Science, The University of Queensland, St Lucia, Australia
Paula Maldonado
Centro de Investigaciones del Mar y la Atmósfera, University of Buenos Aires, Buenos Aires, Argentina
Minzheng Wang
Northraine Pty. Ltd., Melbourne, Australia
Related authors
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
EGUsphere, https://doi.org/10.5194/egusphere-2023-181, https://doi.org/10.5194/egusphere-2023-181, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Joshua S. Soderholm and Matthew R. Kumjian
Atmos. Meas. Tech., 16, 695–706, https://doi.org/10.5194/amt-16-695-2023, https://doi.org/10.5194/amt-16-695-2023, 2023
Short summary
Short summary
Hailstones often exhibit opaque and clear ice layers that have an onion-like appearance. These layers are record of the conditions during growth and can be simulated by hail growth models. A new technique for automating the measurement of these layers from hail cross sections is demonstrated. This technique is applied to a collection of hailstones from Melbourne, Australia, to understand their growth evolution, and a first look at evaluating a hail growth model is demonstrated.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
EGUsphere, https://doi.org/10.5194/egusphere-2023-181, https://doi.org/10.5194/egusphere-2023-181, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We propose a new method that should facilitate the use of weather radars to study wildfires. It is important to be able to identify the particles emitted by wildfires on radar, but it is difficult because there are many other echoes on radar like clear air, the ground, sea clutter, and precipitation. We came up with a two-step process to classify these echoes. Our method is accurate and can be used by fire departments in emergencies or by scientists for research.
Joshua S. Soderholm and Matthew R. Kumjian
Atmos. Meas. Tech., 16, 695–706, https://doi.org/10.5194/amt-16-695-2023, https://doi.org/10.5194/amt-16-695-2023, 2023
Short summary
Short summary
Hailstones often exhibit opaque and clear ice layers that have an onion-like appearance. These layers are record of the conditions during growth and can be simulated by hail growth models. A new technique for automating the measurement of these layers from hail cross sections is demonstrated. This technique is applied to a collection of hailstones from Melbourne, Australia, to understand their growth evolution, and a first look at evaluating a hail growth model is demonstrated.
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022, https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary
Short summary
This study uses collocated ship-based, ground-based, and spaceborne radar observations to validate the concept of using the GPM spaceborne radar observations to calibrate national weather radar networks to the accuracy required for operational severe weather applications such as rainfall and hail nowcasting.
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-Infrared Radiation Mobile Observation System (FIRMOS) for spectral characterization of the atmospheric emission
Calibrating radar wind profiler reflectivity factor using surface disdrometer observations
Pseudorandom modulation continuous-wave narrowband sodium temperature and wind lidar
Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Evaluation of the New York State Mesonet Profiler Network data
Quantification of motion-induced measurement error on floating lidar systems
Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations
Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign
Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations
Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Moderate spectral resolution solar irradiance measurements, aerosol optical depth, and solar transmission, from 360 to 1070 nm, using the refurbished rotating shadow band spectroradiometer (RSS)
Mitigation of bias sources for atmospheric temperature and humidity in the mobile Raman Weather and Aerosol Lidar (WALI)
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
ALADIN laser frequency stability and its impact on the Aeolus wind error
A compact static birefringent interferometer for the measurement of upper atmospheric winds: concept, design and lab performance
The COTUR project: remote sensing of offshore turbulence for wind energy application
Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite
Relationship between wind observation accuracy and the ascending node of the sun-synchronous orbit for the Aeolus-type spaceborne Doppler wind lidar
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Measurement characteristics of an airborne microwave temperature profiler (MTP)
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
Atmospheric observations with E-band microwave links – challenges and opportunities
Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers
Wuhan MST radar: technical features and validation of wind observations
Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX)
First observations of the McMurdo–South Pole oblique ionospheric HF channel
Vertical wind profiling from the troposphere to the lower mesosphere based on high-resolution heterodyne near-infrared spectroradiometry
Effect of OH emission on the temperature and wind measurements derived from limb-viewing observations of the 1.27 µm O2 dayglow
Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations
Wind sensing with drone-mounted wind lidars: proof of concept
SAETTA: high-resolution 3-D mapping of the total lightning activity in the Mediterranean Basin over Corsica, with a focus on a mesoscale convective system event
Application of parametric speakers to radio acoustic sounding system
Simulating precipitation radar observations from a geostationary satellite
Novel specular meteor radar systems using coherent MIMO techniques to study the mesosphere and lower thermosphere
Dual-wavelength radar technique development for snow rate estimation: a case study from GCPEx
A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance
Automated compact mobile Raman lidar for water vapor measurement: instrument description and validation by comparison with radiosonde, GNSS, and high-resolution objective analysis
Implementation of polarization diversity pulse-pair technique using airborne W-band radar
Metrology of solar spectral irradiance at the top of the atmosphere in the near infrared measured at Mauna Loa Observatory: the PYR-ILIOS campaign
Doppler W-band polarization diversity space-borne radar simulator for wind studies
The FengYun-3C radio occultation sounder GNOS: a review of the mission and its early results and science applications
WIRA-C: a compact 142-GHz-radiometer for continuous middle-atmospheric wind measurements
A large-area blackbody for in-flight calibration of an infrared interferometer deployed on board a long-duration balloon for stratospheric research
A measurement campaign to assess sources of error in microwave link rainfall estimation
Simulation study for the Stratospheric Inferred Winds (SIW) sub-millimeter limb sounder
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023, https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023, https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Short summary
We successfully developed the first pseudorandom modulation continuous-wave narrowband sodium lidar (PMCW-NSL) system for simultaneous measurements of the mesopause region's temperature and wind. Based on the innovative decoded technique and algorithm for CW lidar, both the main and residual lights modulated by M-code are used and directed to the atmosphere in the vertical and eastward directions, tilted 20° from the zenith. The PMCW-NSL system can applied to airborne and space-borne purposes.
Dana L. McGuffin, Philip J. Cameron-Smith, Matthew A. Horsley, Brian J. Bauman, Wim De Vries, Denis Healy, Alex Pertica, Chris Shaffer, and Lance M. Simms
Atmos. Meas. Tech., 16, 2129–2144, https://doi.org/10.5194/amt-16-2129-2023, https://doi.org/10.5194/amt-16-2129-2023, 2023
Short summary
Short summary
This work demonstrates the viability of a remote sensing technique using nanosatellites to measure stratospheric temperature. This measurement technique can probe the stratosphere and mesosphere at a fine vertical scale around the globe unlike other high-altitude measurement techniques, which would provide an opportunity to observe atmospheric gravity waves and turbulence. We analyze observations from two satellite platforms to provide a proof of concept and characterize measurement uncertainty.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023, https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Short summary
Global Navigation Satellite System (GNSS) radio occultation (RO) remote sensing is effective for atmospheric profiling. The capability of a low-cost and scalable commercial off-the-shelf (COTS) GNSS receiver on board high-altitude balloons is tested in two campaigns. Preliminary results demonstrate high-quality refractivity observations from the COTS RO receiver, which is worth further improvement for dense atmospheric observations over a targeted region.
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Short summary
Doppler lidars and weather radars provide accurate wind measurements, with Doppler lidar usually performing better in dry weather conditions and weather radar performing better when there is precipitation. Operating both instruments together should therefore improve the overall performance. We investigate how well a co-located Doppler lidar and X-band radar perform with respect to various weather conditions, including changes in horizontal visibility, cloud altitude, and precipitation.
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022, https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Short summary
The NYS Mesonet Profiler Network is comprised of 17 profiler sites, each equipped with a Doppler lidar, microwave radiometer, and sun photometer. This study presents a multi-year, multi-station evaluation based on well-defined reference measurements. Results demonstrate robust technologies that can aid real-time weather operations and a network test bed that can be used for further expansion, evaluation, and integration of such technologies at a large scale.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Alessandro Battaglia, Paolo Martire, Eric Caubet, Laurent Phalippou, Fabrizio Stesina, Pavlos Kollias, and Anthony Illingworth
Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022, https://doi.org/10.5194/amt-15-3011-2022, 2022
Short summary
Short summary
We present an instrument simulator for a new sensor, WIVERN (WInd VElocity Radar Nephoscope), a conically scanning radar payload with Doppler capabilities, recently down-selected as one of the four candidates for the European Space Agency Earth Explorer 11 program. The mission aims at measuring horizontal winds in cloudy areas. The simulator is instrumental in the definition and consolidation of the mission requirements and the evaluation of mission performances.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Vicki Kelsey, Spencer Riley, and Kenneth Minschwaner
Atmos. Meas. Tech., 15, 1563–1576, https://doi.org/10.5194/amt-15-1563-2022, https://doi.org/10.5194/amt-15-1563-2022, 2022
Short summary
Short summary
In the interior western USA there are distances of hundreds of kilometers between weather balloon launch sites for weather forecasting. Satellite coverage can also be sparse or with poor resolution. Using infrared thermometers, clear-sky temperatures were collected and compared with data from weather balloons. A correlation between clear-sky temperatures and precipitable water measurements from weather balloons was found. This means that citizen scientists can collect data.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Joseph J. Michalsky and Peter W. Kiedron
Atmos. Meas. Tech., 15, 353–364, https://doi.org/10.5194/amt-15-353-2022, https://doi.org/10.5194/amt-15-353-2022, 2022
Short summary
Short summary
This paper describes an instrument that measures spectrally from 360 nm (ultraviolet) to 1070 nm (near-infrared) at 1002 separate wavelengths. The measurements were made every minute from the late summer of 2009 to the winter of 2014 at a site in northern Oklahoma (USA; 36.605° N, 97.486° W). Methods are described that enable the normalized transmission across the spectrum to be measured and, subsequently, used to calculate the aerosol optical depth and spectra irradiance.
Julien Totems, Patrick Chazette, and Alexandre Baron
Atmos. Meas. Tech., 14, 7525–7544, https://doi.org/10.5194/amt-14-7525-2021, https://doi.org/10.5194/amt-14-7525-2021, 2021
Short summary
Short summary
We describe in detail the design and calibration of the new Raman channels for the WALI system, going over the important sources of bias and uncertainty on retrieved temperature profiles. For the first time, their impact is investigated using horizontal shots in a homogenous atmosphere: the magnitude of the highlighted biases can be much larger than the targeted absolute accuracy of 1° C. Actual measurement errors are quantified using radiosoundings launched close to the lidar site.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Tingyu Yan, Jeffery A. Langille, William E. Ward, William A. Gault, Alan Scott, Andrew Bell, Driss Touahiri, Sheng-Hai Zheng, and Chunmin Zhang
Atmos. Meas. Tech., 14, 6213–6232, https://doi.org/10.5194/amt-14-6213-2021, https://doi.org/10.5194/amt-14-6213-2021, 2021
Short summary
Short summary
High-resolution interferometers are routinely used to measure upper atmospheric motions by measuring small Doppler shifts in spectrally isolated airglow emissions. The birefringent interferometer presented in this paper has similar capabilities as several existing state-of-the-art instruments but is smaller and less complex to construct and operate. This paper presents the measurement technique and characterization of a lab prototype and examines the performance of the instrument.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
Chuanliang Zhang, Xuejin Sun, Wen Lu, Yingni Shi, Naiying Dou, and Shaohui Li
Atmos. Meas. Tech., 14, 4787–4803, https://doi.org/10.5194/amt-14-4787-2021, https://doi.org/10.5194/amt-14-4787-2021, 2021
Short summary
Short summary
The first spaceborne doppler wind lidar (DWL) Aeolus operates on sun-synchronous dawn–dusk orbit to lower the impact of solar background radiation (SBR) on wind observation accuracy. Increased SBR leads to an increment of averaged wind observation uncertainties from 0.19 to 0.27 m s-1 comparing Aeolus and two added spaceborne DWLs operating on orbits with local ascending times of 15:00 and 12:00 LT. A quantitative design of laser pulse energy according to accuracy requirements is also proposed.
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021, https://doi.org/10.5194/amt-14-1689-2021, 2021
William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm
Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021, https://doi.org/10.5194/amt-14-1303-2021, 2021
Short summary
Short summary
We developed a wind-measuring drone with exceptional measuring accuracy and a very long flight time. Measurements are extensively validated at different levels. A comparison with a bistatic lidar reveals very small bias and RMSEs. We also present a demonstration measurement in the wake of a wind turbine. We think that our solution is a significant enhancement to existing designs, and other researchers can benefit from the details that we are giving in the paper.
Martin Fencl, Michal Dohnal, Pavel Valtr, Martin Grabner, and Vojtěch Bareš
Atmos. Meas. Tech., 13, 6559–6578, https://doi.org/10.5194/amt-13-6559-2020, https://doi.org/10.5194/amt-13-6559-2020, 2020
Short summary
Short summary
Commercial microwave links operating at E-band frequencies are increasingly being updated and are frequently replacing older infrastructure. We show that E-band microwave links are able to observe even light rainfalls, a feat practically impossible to achieve by older 15–40 GHz devices. Furthermore, water vapor retrieval may be possible from long E-band microwave links, although the efficient separation of gaseous attenuation from other signal losses will be challenging in practice.
Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang
Atmos. Meas. Tech., 13, 6521–6542, https://doi.org/10.5194/amt-13-6521-2020, https://doi.org/10.5194/amt-13-6521-2020, 2020
Short summary
Short summary
The hydroxyl radical (OH) plays a significant role in atmospheric chemical and physical reactions. The superiority and feasibility of a new satellite sensor, which consists of two spatial heterodyne spectrometers in the orthogonal layout to monitor OH in the middle and upper atmosphere, is proved by the forward model. An inversion algorithm to obtain OH concentrations based on the simulated observation data of sensors and the errors in results are also given.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020, https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
Short summary
The mechanisms linking convection and air motion are major factors in much of the uncertainty in weather prediction, but complementary measurements of these quantities are rarely taken in close proximity. These quantities are shown from the 2017 Convective Processes Experiment (CPEX), wherein cloud and vertical air motion winds derived from the APR-2 airborne Doppler radar are combined with joint Doppler wind lidar (DAWN) measurements in the aerosol-rich regions surrounding the convection.
Alex T. Chartier, Juha Vierinen, and Geonhwa Jee
Atmos. Meas. Tech., 13, 3023–3031, https://doi.org/10.5194/amt-13-3023-2020, https://doi.org/10.5194/amt-13-3023-2020, 2020
Short summary
Short summary
A novel oblique ionospheric radio sounder has been developed and demonstrated in Antarctica. The transmitter was located at McMurdo and the receiver at the South Pole (1356 km great-circle path). The system cycled through 12 frequencies each minute and recorded signal time of flight, intensity, and Doppler. This allowed for the estimation of peak ionospheric electron density, which validated well against independent data from the nearby Jang Bogo ionosonde and GPS TEC.
Alexander V. Rodin, Dmitry V. Churbanov, Sergei G. Zenevich, Artem Y. Klimchuk, Vladimir M. Semenov, Maxim V. Spiridonov, and Iskander S. Gazizov
Atmos. Meas. Tech., 13, 2299–2308, https://doi.org/10.5194/amt-13-2299-2020, https://doi.org/10.5194/amt-13-2299-2020, 2020
Short summary
Short summary
The paper presents a new technique in remote wind measurements that may potentially complement conventional aerological observations and eventually greatly improve our knowledge about our climate system, especially concerning processes related to troposphere–stratosphere coupling. The technique may be implemented at relatively low cost in various applications from meteorological observation posts to remote sensing spacecraft.
Kuijun Wu, Weiwei He, Yutao Feng, Yuanhui Xiong, and Faquan Li
Atmos. Meas. Tech., 13, 1817–1824, https://doi.org/10.5194/amt-13-1817-2020, https://doi.org/10.5194/amt-13-1817-2020, 2020
Short summary
Short summary
The 1.27 μm O2 dayglow is well-suited for remote sensing in near-space. The main goal of this paper is to discuss the effect of OH radiance on the wind and temperature measurements derived from limb-viewing observations of the O2 dayglow. It is apparent from the simulations that the presence of OH radiance as an interfering species decreases the wind and temperature accuracy at all altitudes, but this effect can be reduced considerably by improving OH radiance knowledge.
Sergey M. Khaykin, Alain Hauchecorne, Robin Wing, Philippe Keckhut, Sophie Godin-Beekmann, Jacques Porteneuve, Jean-Francois Mariscal, and Jerome Schmitt
Atmos. Meas. Tech., 13, 1501–1516, https://doi.org/10.5194/amt-13-1501-2020, https://doi.org/10.5194/amt-13-1501-2020, 2020
Short summary
Short summary
The article presents a powerful atmospheric instrument based on a laser radar (lidar), capable of measuring horizontal wind velocity at a wide range of altitudes. In this study, we evaluate the performance of the wind lidar at Observatoire de Haute-Provence and demonstrate the application of its measurements for studies of atmospheric dynamical processes. Finally, we present an example of early validation of the ESA Aeolus space-borne wind lidar using its ground-based predecessor.
Nikola Vasiljević, Michael Harris, Anders Tegtmeier Pedersen, Gunhild Rolighed Thorsen, Mark Pitter, Jane Harris, Kieran Bajpai, and Michael Courtney
Atmos. Meas. Tech., 13, 521–536, https://doi.org/10.5194/amt-13-521-2020, https://doi.org/10.5194/amt-13-521-2020, 2020
Short summary
Short summary
In this paper we present the preliminary results of the proof-of-concept (POC) stage of a drone-based wind lidar system development process. To test the POC drone–lidar system we hovered the drone next to mast-mounted sonic anemometers at the Risø test center. The preliminary results of the intercomparison between the measurements derived from the POC system and those of the sonic anemometers show good agreement.
Sylvain Coquillat, Eric Defer, Pierre de Guibert, Dominique Lambert, Jean-Pierre Pinty, Véronique Pont, Serge Prieur, Ronald J. Thomas, Paul R. Krehbiel, and William Rison
Atmos. Meas. Tech., 12, 5765–5790, https://doi.org/10.5194/amt-12-5765-2019, https://doi.org/10.5194/amt-12-5765-2019, 2019
Short summary
Short summary
Characteristics of SAETTA lightning imager installed in Corsica are presented, with original observations of lightning activity at regional and lightning scales. SAETTA monitors thunderstorms in a maritime and mountainous region, complex for weather forecasting and sensitive to global warming. A 3-year lightning climatology highlights frequent activity over a specific region due to relief. Uncommonly high discharge in stratiform thundercloud may support a recent model of charging processes.
Ahoro Adachi and Hiroyuki Hashiguchi
Atmos. Meas. Tech., 12, 5699–5715, https://doi.org/10.5194/amt-12-5699-2019, https://doi.org/10.5194/amt-12-5699-2019, 2019
Short summary
Short summary
The radio acoustic sounding system is a remote sensing technique that provides vertical profiles of temperature in the air. Since RASS is accompanied with loud noise around the site, acoustic sources having low side lobe levels are desired. Thus, the application of parametric acoustic array as a high-directivity acoustic source was exploited in this study. The results show that the PAA–RASS has accuracy and precision comparable with conventional RASS despite its high directivity of sound.
Atsushi Okazaki, Takumi Honda, Shunji Kotsuki, Moeka Yamaji, Takuji Kubota, Riko Oki, Toshio Iguchi, and Takemasa Miyoshi
Atmos. Meas. Tech., 12, 3985–3996, https://doi.org/10.5194/amt-12-3985-2019, https://doi.org/10.5194/amt-12-3985-2019, 2019
Short summary
Short summary
The JAXA is surveying the feasibility of a potential satellite mission equipped with a precipitation radar on a geostationary orbit, as a successor of the GPM Core Observatory. We investigate what kind of observation data will be available from the radar using simulation techniques. Although the quality of the observation depends on the radar specifications and the position of precipitation systems, the results demonstrate that it would be possible to obtain three-dimensional precipitation data.
Jorge Luis Chau, Juan Miguel Urco, Juha Pekka Vierinen, Ryan Andrew Volz, Matthias Clahsen, Nico Pfeffer, and Jörg Trautner
Atmos. Meas. Tech., 12, 2113–2127, https://doi.org/10.5194/amt-12-2113-2019, https://doi.org/10.5194/amt-12-2113-2019, 2019
Short summary
Short summary
New systems to study the mesosphere are introduced. They result from the reengineering of previous systems, by making use of MIMO, spread-spectrum and compressed-sensing techniques that are widely used in telecommunications. The interferometer configuration is now implemented in transmission, making the location of meteor echoes possible with just one antenna on reception. Our novel concept makes the study of a mesosphere volume from different viewing points on the ground feasible and easy.
Gwo-Jong Huang, Viswanathan N. Bringi, Andrew J. Newman, Gyuwon Lee, Dmitri Moisseev, and Branislav M. Notaroš
Atmos. Meas. Tech., 12, 1409–1427, https://doi.org/10.5194/amt-12-1409-2019, https://doi.org/10.5194/amt-12-1409-2019, 2019
Short summary
Short summary
This paper proposes a method for snow rate (SR) estimation using observations collected by NASA dual-frequency dual-polarized (D3R) radar during the GPM Cold-season Precipitation Experiment (GCPEx). The new method utilizes dual-wavelength radar reflectivity ratio (DWR) and 2-D-video disdrometer (2DVD) measurements to improve SR estimation accuracy. It is validated by comparing the D3R radar-retrieved SR with accumulated SR directly measured by a Pluvio gauge for an entire GCPEx synoptic event.
Giovanni Bianchini, Francesco Castagnoli, Gianluca Di Natale, and Luca Palchetti
Atmos. Meas. Tech., 12, 619–635, https://doi.org/10.5194/amt-12-619-2019, https://doi.org/10.5194/amt-12-619-2019, 2019
Short summary
Short summary
The characterization of infrared radiation emitted by the atmosphere is a crucial task in the study of the Earth's climate. The Radiation Explorer in the Far Infrared (REFIR) spectroradiometer allows us to perform this task adding the capability of resolving, through spectroscopy, the atmospheric components responsible for the measured radiative effects. The analysis of the measurements also allows us to retrieve the atmospheric structure, making REFIR a complete tool for atmospheric studies.
Tetsu Sakai, Tomohiro Nagai, Toshiharu Izumi, Satoru Yoshida, and Yoshinori Shoji
Atmos. Meas. Tech., 12, 313–326, https://doi.org/10.5194/amt-12-313-2019, https://doi.org/10.5194/amt-12-313-2019, 2019
Short summary
Short summary
We developed an automated compact mobile Raman lidar (MRL) system for measuring the vertical distribution of the water vapor mixing ratio in the lower troposphere, which has an affordable cost and is easy to operate. The MRL was installed in a small trailer for easy deployment and can start measurement in a few hours, and it is capable of unattended operation for several months. We describe the MRL system and present validation results obtained by comparing with the other humidity sensors.
Mengistu Wolde, Alessandro Battaglia, Cuong Nguyen, Andrew L. Pazmany, and Anthony Illingworth
Atmos. Meas. Tech., 12, 253–269, https://doi.org/10.5194/amt-12-253-2019, https://doi.org/10.5194/amt-12-253-2019, 2019
Short summary
Short summary
This paper presents an implementation of polarization diversity pulse-pair processing (PDPP) on the National Research Council of Canada airborne W-band radar (NAW) system. A description of the NAW PDPP pulsing schemes and an analysis of comprehensive airborne data collected in diverse weather conditions in Canada is presented. The analysis shows a successful airborne measurement of Doppler velocity exceeding 100 m s−1 using PDPP approach, the first such measurement from a moving platform.
Nuno Pereira, David Bolsée, Peter Sperfeld, Sven Pape, Dominique Sluse, and Gaël Cessateur
Atmos. Meas. Tech., 11, 6605–6615, https://doi.org/10.5194/amt-11-6605-2018, https://doi.org/10.5194/amt-11-6605-2018, 2018
Short summary
Short summary
The knowledge of the solar spectrum at the top of Earth's atmosphere is of great importance for climatic studies. Satellite instruments allow direct measurements; however, their calibration presents issues. It is possible to determine this spectrum precisely from Earth-based measurements as well, using the Langley plot technique and accurate calibration techniques. We present an infrared spectrum using these techniques for measurements made at the reference Mauna Loa Observatory.
Alessandro Battaglia, Ranvir Dhillon, and Anthony Illingworth
Atmos. Meas. Tech., 11, 5965–5979, https://doi.org/10.5194/amt-11-5965-2018, https://doi.org/10.5194/amt-11-5965-2018, 2018
Short summary
Short summary
A new technique is proposed to simulated winds in clouds as they could be observed by a space-borne Doppler 3 mm wavelength radar. Results show that, in the presence of cloud inhomogeneity and of vertical wind shear, measured winds can be corrected and produce unbiased estimates of line-of-sight winds that can then be assimilated in numerical models to improve weather forecasts.
Yueqiang Sun, Weihua Bai, Congliang Liu, Yan Liu, Qifei Du, Xianyi Wang, Guanglin Yang, Mi Liao, Zhongdong Yang, Xiaoxin Zhang, Xiangguang Meng, Danyang Zhao, Junming Xia, Yuerong Cai, and Gottfried Kirchengast
Atmos. Meas. Tech., 11, 5797–5811, https://doi.org/10.5194/amt-11-5797-2018, https://doi.org/10.5194/amt-11-5797-2018, 2018
Short summary
Short summary
The GNSS Occultation Sounder (GNOS) is one of the new-generation payloads on board the Chinese FengYun 3 (FY-3) series of operational meteorological satellites for sounding the Earth’s neutral atmosphere and ionosphere. FY-3C GNOS, on board the FY-3 series C satellite launched in September 2013, was designed to acquire setting and rising radio occultation (RO) data by using GNSS signals from both the Chinese BDS and the US GPS. This paper reviews the FY-3C GNOS mission.
Jonas Hagen, Axel Murk, Rolf Rüfenacht, Sergey Khaykin, Alain Hauchecorne, and Niklaus Kämpfer
Atmos. Meas. Tech., 11, 5007–5024, https://doi.org/10.5194/amt-11-5007-2018, https://doi.org/10.5194/amt-11-5007-2018, 2018
Friedhelm Olschewski, Christian Monte, Albert Adibekyan, Max Reiniger, Berndt Gutschwager, Joerg Hollandt, and Ralf Koppmann
Atmos. Meas. Tech., 11, 4757–4762, https://doi.org/10.5194/amt-11-4757-2018, https://doi.org/10.5194/amt-11-4757-2018, 2018
Short summary
Short summary
The Institute for Atmospheric and Environmental Research at the University of Wuppertal designed and manufactured a prototype of the large-area blackbody for in-flight calibration of an infrared interferometer deployed onboard a long-duration balloon for stratospheric research.
Thomas C. van Leth, Aart Overeem, Hidde Leijnse, and Remko Uijlenhoet
Atmos. Meas. Tech., 11, 4645–4669, https://doi.org/10.5194/amt-11-4645-2018, https://doi.org/10.5194/amt-11-4645-2018, 2018
Short summary
Short summary
We present a campaign to address several error sources associated with rainfall estimates from microwave links in cellular communication networks. The set-up consists of three co-located links, complemented with reference instruments. We investigate events covering different attenuating phenomena: Rainfall, solid precipitation, temperature, fog, antenna wetting due to rain or dew, and clutter.
Philippe Baron, Donal Murtagh, Patrick Eriksson, Jana Mendrok, Satoshi Ochiai, Kristell Pérot, Hideo Sagawa, and Makoto Suzuki
Atmos. Meas. Tech., 11, 4545–4566, https://doi.org/10.5194/amt-11-4545-2018, https://doi.org/10.5194/amt-11-4545-2018, 2018
Short summary
Short summary
This paper investigates with computer simulations the measurement performances of the satellite Stratospheric Inferred Winds (SIW) in the altitude range 10–90 km. SIW is a Swedish mission that will be launched close to 2022. It is intended to fill the current altitude gap between 30 and 70 km in wind measurements and to pursue the monitoring of temperature and key stratospheric constituents for better understanding climate change effects.
Cited articles
Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele,
S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A
multi-scale, high-resolution mapping tool for structural geology and
paleoseismology, J. Struct. Geol., 69, 163–178,
https://doi.org/10.1016/j.jsg.2014.10.007, 2014. a
Brown, T. M., Giammanco, I. M., and Kumjian, M. R.: IBHS Hail Field Research
Program: 2012–2014, in: 27th Conference on Severe Local Storms, November,
2012–2014, American Meteorological Society, Madison, WI, 2014. a
Changnon, S. A., Changnon, D., Ray Fosse, E., Hoganson, D. C., Roth, R. J., and
Totsch, J. M.: Effects of Recent Weather Extremes on the Insurance Industry:
Major Implications for the Atmospheric Sciences, B. Am.
Meteorol. Soc., 78, 425–435,
https://doi.org/10.1175/1520-0477(1997)078<0425:EORWEO>2.0.CO;2, 1997. a
Cheng, H., Jiang, X., Sun, Y., and Wang, J.: Color image segmentation:
advances and prospects, Pattern Recogn., 34, 2259–2281,
https://doi.org/10.3346/jkms.2018.33.e6, 2001. a
Cheng, L. and English, M.: A Relationship Between Hailstone Concentration and
Size, J. Atmos. Sci., 40, 204–213,
https://doi.org/10.1175/1520-0469(1983)040<0204:arbhca>2.0.co;2, 1983. a
Cifelli, R., Doesken, N., Kennedy, P., Carey, L. D., Rutledge, S. A.,
Gimmestad, C., and Depue, T.: The Community Collaborative rain, hail, and
snow network, B. Am. Meteorol. Soc., 86,
1069–1077, https://doi.org/10.1175/BAMS-86-8-1069, 2005. a
Dutta, A. and Zisserman, A.: The {VIA} Annotation Software for Images,
Audio and Video, arXiv preprint arXiv:1904.10699,
https://doi.org/10.1145/3343031.3350535, 2019. a
Federer, B. and Waldvogel, A.: Hail and Raindrop Size Distributions from a
Swiss Multicell Storm, J. Appl. Meteorol., 14, 91–97,
https://doi.org/10.1175/1520-0450(1975)014<0091:harsdf>2.0.co;2, 1975. a, b
Fraile, R., Castro, A., and Sánchez, J. L.: Analysis of hailstone size
distributions from a hailpad network, Atmos. Res., 28, 311–326,
https://doi.org/10.1016/0169-8095(92)90015-3, 1992. a, b
Gagne, D. J., Haupt, S. E., Nychka, D. W., and Thompson, G.: Interpretable
Deep Learning for Spatial Analysis of Severe Hailstorms, Mon. Weather
Rev., 147, 2827–2845, https://doi.org/10.1175/MWR-D-18-0316.1,
2019. a
He, K., Gkioxari, G., Dollar, P., and Girshick, R.: Mask R-CNN, Proceedings
of the IEEE International Conference on Computer Vision, October, 2980–2988,
https://doi.org/10.1109/ICCV.2017.322, 2017. a, b, c
Hohl, R., Schiesser, H. H., and Aller, D.: Hailfall: The relationship between
radar-derived hail kinetic energy and hail damage to buildings, Atmos.
Res., 63, 177–207, https://doi.org/10.1016/S0169-8095(02)00059-5, 2002. a
Hubel, D. H. and Wiesel, T. N.: Receptive Fields and Functional Architecture
of Monkey Striate Cortex, J. Physiol., 195, 215–243,
https://doi.org/10.1113/jphysiol.1968.sp008455, 1968. a
Kalina, E. A., Friedrich, K., Ellis, S. M., and Burgess, D. W.: Comparison of
Disdrometer and X-Band Mobile Radar Observations in Convective
Precipitation, Mon. Weather Rev., 142, 2414–2435,
https://doi.org/10.1175/mwr-d-14-00039.1, 2014. a
Knight, N. C.: Hailstone Shape Factor and Its Relation to Radar Interpretation
of Hail, J. Clim. Appl. Meteorol., 25, 1956–1958,
https://doi.org/10.1175/1520-0450(1986)025<1956:hsfair>2.0.co;2, 1986. a, b
Krizhevsky, A., Sutskever, I., and Hinton, G. E.: ImageNet Classification with
Deep Convolutional Neural Networks, Commun. ACM, 60, 84–90,
https://doi.org/10.1201/9781420010749, 2012. a
Küng, O., Strecha, C., Beyeler, A., Zufferey, J.-C., Floreano, D., Fua, P., and Gervaix, F.: THE ACCURACY OF AUTOMATIC PHOTOGRAMMETRIC TECHNIQUES ON ULTRA-LIGHT UAV IMAGERY, Int. Arch. Photogramm. Remote Sens. Spatial Inf. Sci., XXXVIII-1/C22, 125–130, https://doi.org/10.5194/isprsarchives-XXXVIII-1-C22-125-2011, 2011. a, b
Lin, T. Y., Maire, M., Belongie, S., Hays, J., Perona, P., Ramanan, D.,
Dollár, P., and Zitnick, C. L.: Microsoft COCO: Common objects in
context, Lecture Notes in Computer Science, 8693 LNCS, 740–755,
https://doi.org/10.1007/978-3-319-10602-1_48, 2014. a
Löffler-Mang, M., Schön, D., and Landry, M.: Characteristics of a
new automatic hail recorder, Atmos. Res., 100, 439–446,
https://doi.org/10.1016/j.atmosres.2010.10.026, 2011. a
Long, A. B., Matson, R. J., and Crow, E. L.: The Hailpad: Materials, Data
Reduction and Calibration, J. Appl. Meteorol., 19, 1300–1313,
https://doi.org/10.1175/1520-0450(1980)019<1300:thmdra>2.0.co;2, 1979. a
McGovern, A., Elmore, K. L., Gagne, D. J., Haupt, S. E., Karstens, C. D.,
Lagerquist, R., Smith, T., and Williams, J. K.: Using Artificial
Intelligence to Improve Real-Time Decision-Making for High-Impact Weather,
B. Am. Meteorol. Soc., 98, 2073–2090,
https://doi.org/10.1175/BAMS-D-16-0123.1,
2017. a
Nesbitt S. W., Salio P., Trapp R. J., Roberts R. D., Varble A. C., Dominguez F., Machado L. A. T., and Saulo C.: Understanding Processes and Improving Predictions of Hydrometeorological Extremes in Subtropical South America: Proyecto RELAMPAGO-CACTI, 32nd Conference on Hydrology, Austin, Texas, 9 January 2018, 6.3, 2018. a
Palencia, C., Castro, A., Giaiotti, D., Stel, F., and Fraile, R.: Dent overlap
in hailpads: Error estimation and measurement correction, J. Appl.
Meteorol. Clim., 50, 1073–1087, https://doi.org/10.1175/2010JAMC2457.1,
2011. a
Razavian, A. S., Hossein, A., Josephine, S., and Stefan, C.: CNN features
off-the-Shelf: An astounding baseline for recognition, CoRR, 806–813,
https://doi.org/10.1109/cvprw.2014.131, 2014. a
Sánchez, J. L., Fraile R., de la Madrid J. L., de la Fuente M. T., Rodríguez P., and Castro A.: Crop Damage: The Hail Size Factor, J. Appl. Meteorol., 35, 1535–1541, https://doi.org/10.1175/1520-0450(1996)035<1535:CDTHSF>2.0.CO;2, 1996. a
Soderholm, J. S.: HailPixel Survey Data and Analysis from 26 November 2018, San Rafael, Argentina [Data set], Zenodo, https://doi.org/10.5281/zenodo.3383227, 2019.
a
Towery, N. G., Changnon, S. A., and Morgan, G. M.: A Review of Hail-Measuring
Instruments, B. Am. Meteorol. Soc., 57,
1132–1140, https://doi.org/10.1175/1520-0477(1976)057<1132:AROHMI>2.0.CO;2, 1976. a
Witt, A., Burgess, D. W., Seimon, A., Allen, J. T., Snyder, J. C., and
Bluestein, H. B.: Rapid-Scan Radar Observations of an Oklahoma Tornadic
Hailstorm Producing Giant Hail, Weather Forecast., 33, 1263–1282,
https://doi.org/10.1175/WAF-D-18-0003.1, 2018. a
Wong, R. K. W., Chidambaram, N., Lawrence, C., and English, M.: The Sampling
Variations of Hailstone Size Distributions, J. Appl. Meteorol.,
27, 254–260, https://doi.org/10.1175/1520-0450(1988)027<0254:TSVOHS>2.0.CO;2, 1988. a
Ziegler, C. L., Ray, P. S., and Knight, N. C.: Hail Growth in an Oklahoma
Multicell Storm, J. Atmos. Sci., 40, 1768–1791,
https://doi.org/10.1175/1520-0469(1983)040<1768:hgiaom>2.0.co;2, 1983. a, b
Short summary
Collecting measurements of hail size and shape is difficult due to the infrequent and dangerous nature of hailstorms. To improve upon this, a new technique called
HailPixelis introduced for measuring hail using aerial imagery collected by a drone. A combination of machine learning and computer vision methods is used to extract the shape of thousands of hailstones from the aerial imagery. The improved statistics from the much larger HailPixel dataset show significant benefits.
Collecting measurements of hail size and shape is difficult due to the infrequent and dangerous...