Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-747-2020
https://doi.org/10.5194/amt-13-747-2020
Research article
 | Highlight paper
 | 
17 Feb 2020
Research article | Highlight paper |  | 17 Feb 2020

Quantifying hail size distributions from the sky – application of drone aerial photogrammetry

Joshua S. Soderholm, Matthew R. Kumjian, Nicholas McCarthy, Paula Maldonado, and Minzheng Wang

Related authors

Radar and environment-based hail damage estimates using machine learning
Luis Ackermann, Joshua Soderholm, Alain Protat, Rhys Whitley, Lisa Ye, and Nina Ridder
Atmos. Meas. Tech., 17, 407–422, https://doi.org/10.5194/amt-17-407-2024,https://doi.org/10.5194/amt-17-407-2024, 2024
Short summary
Segmentation of polarimetric radar imagery using statistical texture
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
Atmos. Meas. Tech., 16, 4571–4588, https://doi.org/10.5194/amt-16-4571-2023,https://doi.org/10.5194/amt-16-4571-2023, 2023
Short summary
Automating the analysis of hailstone layers
Joshua S. Soderholm and Matthew R. Kumjian
Atmos. Meas. Tech., 16, 695–706, https://doi.org/10.5194/amt-16-695-2023,https://doi.org/10.5194/amt-16-695-2023, 2023
Short summary
Three-way calibration checks using ground-based, ship-based, and spaceborne radars
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022,https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024,https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024,https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024,https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024,https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024,https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary

Cited articles

Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology, J. Struct. Geol., 69, 163–178, https://doi.org/10.1016/j.jsg.2014.10.007, 2014. a
Brown, T. M., Giammanco, I. M., and Kumjian, M. R.: IBHS Hail Field Research Program: 2012–2014, in: 27th Conference on Severe Local Storms, November, 2012–2014, American Meteorological Society, Madison, WI, 2014. a
Changnon, S. A., Changnon, D., Ray Fosse, E., Hoganson, D. C., Roth, R. J., and Totsch, J. M.: Effects of Recent Weather Extremes on the Insurance Industry: Major Implications for the Atmospheric Sciences, B. Am. Meteorol. Soc., 78, 425–435, https://doi.org/10.1175/1520-0477(1997)078<0425:EORWEO>2.0.CO;2, 1997. a
Cheng, H., Jiang, X., Sun, Y., and Wang, J.: Color image segmentation: advances and prospects, Pattern Recogn., 34, 2259–2281, https://doi.org/10.3346/jkms.2018.33.e6, 2001. a
Cheng, L. and English, M.: A Relationship Between Hailstone Concentration and Size, J. Atmos. Sci., 40, 204–213, https://doi.org/10.1175/1520-0469(1983)040<0204:arbhca>2.0.co;2, 1983. a
Download
Short summary
Collecting measurements of hail size and shape is difficult due to the infrequent and dangerous nature of hailstorms. To improve upon this, a new technique called HailPixel is introduced for measuring hail using aerial imagery collected by a drone. A combination of machine learning and computer vision methods is used to extract the shape of thousands of hailstones from the aerial imagery. The improved statistics from the much larger HailPixel dataset show significant benefits.