Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-747-2020
https://doi.org/10.5194/amt-13-747-2020
Research article
 | Highlight paper
 | 
17 Feb 2020
Research article | Highlight paper |  | 17 Feb 2020

Quantifying hail size distributions from the sky – application of drone aerial photogrammetry

Joshua S. Soderholm, Matthew R. Kumjian, Nicholas McCarthy, Paula Maldonado, and Minzheng Wang

Related authors

Segmentation of polarimetric radar imagery using statistical texture
Adrien Guyot, Jordan P. Brook, Alain Protat, Kathryn Turner, Joshua Soderholm, Nicholas F. McCarthy, and Hamish McGowan
EGUsphere, https://doi.org/10.5194/egusphere-2023-181,https://doi.org/10.5194/egusphere-2023-181, 2023
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Automating the analysis of hailstone layers
Joshua S. Soderholm and Matthew R. Kumjian
Atmos. Meas. Tech., 16, 695–706, https://doi.org/10.5194/amt-16-695-2023,https://doi.org/10.5194/amt-16-695-2023, 2023
Short summary
Three-way calibration checks using ground-based, ship-based, and spaceborne radars
Alain Protat, Valentin Louf, Joshua Soderholm, Jordan Brook, and William Ponsonby
Atmos. Meas. Tech., 15, 915–926, https://doi.org/10.5194/amt-15-915-2022,https://doi.org/10.5194/amt-15-915-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
The Far-Infrared Radiation Mobile Observation System (FIRMOS) for spectral characterization of the atmospheric emission
Claudio Belotti, Flavio Barbara, Marco Barucci, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Alessio Montori, Filippo Pratesi, Markus Rettinger, Christian Rolf, Ralf Sussmann, Thomas Trickl, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 16, 2511–2529, https://doi.org/10.5194/amt-16-2511-2023,https://doi.org/10.5194/amt-16-2511-2023, 2023
Short summary
Calibrating radar wind profiler reflectivity factor using surface disdrometer observations
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023,https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Pseudorandom modulation continuous-wave narrowband sodium temperature and wind lidar
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023,https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Dana L. McGuffin, Philip J. Cameron-Smith, Matthew A. Horsley, Brian J. Bauman, Wim De Vries, Denis Healy, Alex Pertica, Chris Shaffer, and Lance M. Simms
Atmos. Meas. Tech., 16, 2129–2144, https://doi.org/10.5194/amt-16-2129-2023,https://doi.org/10.5194/amt-16-2129-2023, 2023
Short summary
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023,https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary

Cited articles

Bemis, S. P., Micklethwaite, S., Turner, D., James, M. R., Akciz, S., Thiele, S. T., and Bangash, H. A.: Ground-based and UAV-Based photogrammetry: A multi-scale, high-resolution mapping tool for structural geology and paleoseismology, J. Struct. Geol., 69, 163–178, https://doi.org/10.1016/j.jsg.2014.10.007, 2014. a
Brown, T. M., Giammanco, I. M., and Kumjian, M. R.: IBHS Hail Field Research Program: 2012–2014, in: 27th Conference on Severe Local Storms, November, 2012–2014, American Meteorological Society, Madison, WI, 2014. a
Changnon, S. A., Changnon, D., Ray Fosse, E., Hoganson, D. C., Roth, R. J., and Totsch, J. M.: Effects of Recent Weather Extremes on the Insurance Industry: Major Implications for the Atmospheric Sciences, B. Am. Meteorol. Soc., 78, 425–435, https://doi.org/10.1175/1520-0477(1997)078<0425:EORWEO>2.0.CO;2, 1997. a
Cheng, H., Jiang, X., Sun, Y., and Wang, J.: Color image segmentation: advances and prospects, Pattern Recogn., 34, 2259–2281, https://doi.org/10.3346/jkms.2018.33.e6, 2001. a
Cheng, L. and English, M.: A Relationship Between Hailstone Concentration and Size, J. Atmos. Sci., 40, 204–213, https://doi.org/10.1175/1520-0469(1983)040<0204:arbhca>2.0.co;2, 1983. a
Download
Short summary
Collecting measurements of hail size and shape is difficult due to the infrequent and dangerous nature of hailstorms. To improve upon this, a new technique called HailPixel is introduced for measuring hail using aerial imagery collected by a drone. A combination of machine learning and computer vision methods is used to extract the shape of thousands of hailstones from the aerial imagery. The improved statistics from the much larger HailPixel dataset show significant benefits.