Articles | Volume 15, issue 13
https://doi.org/10.5194/amt-15-3925-2022
https://doi.org/10.5194/amt-15-3925-2022
Research article
 | 
05 Jul 2022
Research article |  | 05 Jul 2022

A statistically optimal analysis of systematic differences between Aeolus horizontal line-of-sight winds and NOAA's Global Forecast System

Hui Liu, Kevin Garrett, Kayo Ide, Ross N. Hoffman, and Katherine E. Lukens

Related authors

Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022,https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024,https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary

Cited articles

Cress, A.: Validation and impact assessment of Aeolus observations in the DWD modeling system, Status report, Aeolus NWP Impacts Working Meeting, June 2020, https://www.aeolus.esa.int/confluence/display/CALVAL/Aeolus+NWP+impact+working+meeting+2?preview=/12354328/12354463/5_DWD_acress_aeolus_20200617.pdf. (last access: 2 January 2022), 2020. 
Daley, R.: Atmospheric data analysis, Cambridge Atmospheric and Space Science series, Cambridge University Press, Cambridge, 457 pp., ISBN-13: 978-0521458252, 1991. 
de Kloe, J., Rennie, M., Stoffelen, A., Tan, D., Anderson, E., Dabas, A., Poli, P., and Huber, D.: Aeolus Data Innovation Science Cluster DISC ADM-Aeolus Level-2B/2C Processor Input/Output Data Definitions Interface Control Document, KNMI, Aeolus, DISC, Tech. rep., REF: AED-SD-ECMWF-L2B-037, https://earth.esa.int/eogateway/documents/20142/37627/Aeolus-L2B-2C-Input-Output-DD-ICD.pdf (last access: 2 January 2022), 2020. 
Deming, W. E.: Statistical adjustment of data, Wiley, NY, 288 pp., ISBN: 0-486-64685-8, 1943. 
European Space Agency (ESA): Aeolus L2B Earth Explorer data set, ESA [data set], https://aeolus-ds.eo.esa.int/oads/access/ (last access: 25 February 2021), 2020. 
Download
Short summary
A total least squares (TLS) regression is used to optimally estimate linear speed-dependent biases between Aeolus Level-2B winds and short-term (6 h) forecasts of NOAA’s FV3GFS. The winds for 1–7 September 2019 are examined. Clear speed-dependent biases for both Mie and Rayleigh winds are found, particularly in the tropics and Southern Hemisphere. Use of the TLS correction improves the forecast of the 26–28 November 2019 winter storm over the USA.