Journal cover Journal topic
Atmospheric Measurement Techniques An interactive open-access journal of the European Geosciences Union
Journal topic

Journal metrics

IF value: 3.668
IF3.668
IF 5-year value: 3.707
IF 5-year
3.707
CiteScore value: 6.3
CiteScore
6.3
SNIP value: 1.383
SNIP1.383
IPP value: 3.75
IPP3.75
SJR value: 1.525
SJR1.525
Scimago H <br class='widget-line-break'>index value: 77
Scimago H
index
77
h5-index value: 49
h5-index49
Volume 8, issue 3
Atmos. Meas. Tech., 8, 1097–1109, 2015
https://doi.org/10.5194/amt-8-1097-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.
Atmos. Meas. Tech., 8, 1097–1109, 2015
https://doi.org/10.5194/amt-8-1097-2015
© Author(s) 2015. This work is distributed under
the Creative Commons Attribution 3.0 License.

Research article 05 Mar 2015

Research article | 05 Mar 2015

Predicting ambient aerosol thermal-optical reflectance (TOR) measurements from infrared spectra: organic carbon

A. M. Dillner and S. Takahama

Related authors

Characterization of primary and aged wood burning and coal combustion organic aerosols in environmental chamber and its implications for atmospheric aerosols
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-924,https://doi.org/10.5194/acp-2020-924, 2020
Preprint under review for ACP
Short summary
Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: method development for probabilistic modeling of organic carbon and organic matter concentrations
Charlotte Bürki, Matteo Reggente, Ann M. Dillner, Jenny L. Hand, Stephanie L. Shaw, and Satoshi Takahama
Atmos. Meas. Tech., 13, 1517–1538, https://doi.org/10.5194/amt-13-1517-2020,https://doi.org/10.5194/amt-13-1517-2020, 2020
Short summary
Estimating mean molecular weight, carbon number, and OM/OC with mid-infrared spectroscopy in organic particulate matter samples from a monitoring network
Amir Yazdani, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-79,https://doi.org/10.5194/amt-2020-79, 2020
Revised manuscript accepted for AMT
Short summary
Quantifying organic matter and functional groups in particulate matter filter samples from the southeastern United States – Part 1: Methods
Alexandra J. Boris, Satoshi Takahama, Andrew T. Weakley, Bruno M. Debus, Carley D. Fredrickson, Martin Esparza-Sanchez, Charlotte Burki, Matteo Reggente, Stephanie L. Shaw, Eric S. Edgerton, and Ann M. Dillner
Atmos. Meas. Tech., 12, 5391–5415, https://doi.org/10.5194/amt-12-5391-2019,https://doi.org/10.5194/amt-12-5391-2019, 2019
Short summary
Analysis of functional groups in atmospheric aerosols by infrared spectroscopy: systematic intercomparison of calibration methods for US measurement network samples
Matteo Reggente, Ann M. Dillner, and Satoshi Takahama
Atmos. Meas. Tech., 12, 2287–2312, https://doi.org/10.5194/amt-12-2287-2019,https://doi.org/10.5194/amt-12-2287-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
Quantification of toxic metals using machine learning techniques and spark emission spectroscopy
Seyyed Ali Davari and Anthony S. Wexler
Atmos. Meas. Tech., 13, 5369–5377, https://doi.org/10.5194/amt-13-5369-2020,https://doi.org/10.5194/amt-13-5369-2020, 2020
Short summary
A new approach for measuring the carbon and oxygen content of atmospherically relevant compounds and mixtures
James F. Hurley, Nathan M. Kreisberg, Braden Stump, Chenyang Bi, Purushottam Kumar, Susanne V. Hering, Pat Keady, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 13, 4911–4925, https://doi.org/10.5194/amt-13-4911-2020,https://doi.org/10.5194/amt-13-4911-2020, 2020
Short summary
An experimental study on light scattering matrices for Chinese loess dust with different particle size distributions
Jia Liu, Qixing Zhang, Yinuo Huo, Jinjun Wang, and Yongming Zhang
Atmos. Meas. Tech., 13, 4097–4109, https://doi.org/10.5194/amt-13-4097-2020,https://doi.org/10.5194/amt-13-4097-2020, 2020
Short summary
Counting on chemistry: laboratory evaluation of seed-material-dependent detection efficiencies of ultrafine condensation particle counters
Peter Josef Wlasits, Dominik Stolzenburg, Christian Tauber, Sophia Brilke, Sebastian Harald Schmitt, Paul Martin Winkler, and Daniela Wimmer
Atmos. Meas. Tech., 13, 3787–3798, https://doi.org/10.5194/amt-13-3787-2020,https://doi.org/10.5194/amt-13-3787-2020, 2020
Short summary
Photophoretic spectroscopy in atmospheric chemistry – high-sensitivity measurements of light absorption by a single particle
Nir Bluvshtein, Ulrich K. Krieger, and Thomas Peter
Atmos. Meas. Tech., 13, 3191–3203, https://doi.org/10.5194/amt-13-3191-2020,https://doi.org/10.5194/amt-13-3191-2020, 2020
Short summary

Cited articles

Allen, D. T., Palen, E. J., Haimov, M. I., Hering, S. V., and Young, J. R.: Fourier-transform infrared-spectroscopy of aerosol collected in a low-pressure impactor (LPI/FTIR) – method development and field calibration, Aerosol Sci. Technol., 21, 325–342, https://doi.org/10.1080/02786829408959719, 1994.
Anderson, J. O., Thundiyil, J. G., and Stolbach, A.: Clearing the Air: A Review of the Effects of Particulate Matter Air Pollution on Human Health, Journal of Medical Toxicology, 8, 166–175, https://doi.org/10.1007/s13181-011-0203-1, 2012.
Arlot, S. and Celisse, A.: A survey of cross-validation procedures for model selection, Statistics Surveys, 4, 40–79, 2010.
Bahadur, R., Uplinger, T., Russell, L. M., Sive, B. C., Cliff, S. S., Millet, D. B., Goldstein, A., and Bates, T. S.: Phenol Groups in Northeastern US Submicrometer Aerosol Particles Produced from Seawater Sources, Environ. Sci. Technol., 44, 2542–2548, https://doi.org/10.1021/es9032277, 2010.
Birch, M. E. and Cary, R. A.: Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: Methodology and exposure issues, Analyst, 121, 1183–1190, https://doi.org/10.1039/an9962101183, 1996.
Publications Copernicus
Download
Short summary
We demonstrate the feasibility of using FT-IR spectra of aerosols and a multivariate calibration to estimate organic carbon (OC) from thermal-optical reflectance analysis. Using 800 IMPROVE samples, we establish that prediction error can be explained by differences in distributions of OC and aerosol composition between calibration and test set. This work is an initial step in proposing a non-destructive analysis method that can reduce the operating costs of large air quality monitoring networks.
We demonstrate the feasibility of using FT-IR spectra of aerosols and a multivariate calibration...
Citation