Articles | Volume 8, issue 10
https://doi.org/10.5194/amt-8-4013-2015
https://doi.org/10.5194/amt-8-4013-2015
Research article
 | 
02 Oct 2015
Research article |  | 02 Oct 2015

Predicting ambient aerosol thermal–optical reflectance measurements from infrared spectra: elemental carbon

A. M. Dillner and S. Takahama

Related authors

A novel methodology for assessing the hygroscopicity of aerosol filter samples
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 18, 603–618, https://doi.org/10.5194/amt-18-603-2025,https://doi.org/10.5194/amt-18-603-2025, 2025
Short summary
Quantifying functional group compositions of household fuel-burning emissions
Emily Y. Li, Amir Yazdani, Ann M. Dillner, Guofeng Shen, Wyatt M. Champion, James J. Jetter, William T. Preston, Lynn M. Russell, Michael D. Hays, and Satoshi Takahama
Atmos. Meas. Tech., 17, 2401–2413, https://doi.org/10.5194/amt-17-2401-2024,https://doi.org/10.5194/amt-17-2401-2024, 2024
Short summary
Stability assessment of organic sulfur and organosulfate compounds in filter samples for quantification by Fourier- transform infrared spectroscopy
Marife B. Anunciado, Miranda De Boskey, Laura Haines, Katarina Lindskog, Tracy Dombek, Satoshi Takahama, and Ann M. Dillner
Atmos. Meas. Tech., 16, 3515–3529, https://doi.org/10.5194/amt-16-3515-2023,https://doi.org/10.5194/amt-16-3515-2023, 2023
Short summary
Fragment ion–functional group relationships in organic aerosols using aerosol mass spectrometry and mid-infrared spectroscopy
Amir Yazdani, Nikunj Dudani, Satoshi Takahama, Amelie Bertrand, André S. H. Prévôt, Imad El Haddad, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2857–2874, https://doi.org/10.5194/amt-15-2857-2022,https://doi.org/10.5194/amt-15-2857-2022, 2022
Short summary
Quantification of major particulate matter species from a single filter type using infrared spectroscopy – application to a large-scale monitoring network
Bruno Debus, Andrew T. Weakley, Satoshi Takahama, Kathryn M. George, Anahita Amiri-Farahani, Bret Schichtel, Scott Copeland, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 15, 2685–2702, https://doi.org/10.5194/amt-15-2685-2022,https://doi.org/10.5194/amt-15-2685-2022, 2022
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
A novel methodology for assessing the hygroscopicity of aerosol filter samples
Nagendra Raparthi, Anthony S. Wexler, and Ann M. Dillner
Atmos. Meas. Tech., 18, 603–618, https://doi.org/10.5194/amt-18-603-2025,https://doi.org/10.5194/amt-18-603-2025, 2025
Short summary
Direct calibration using atmospheric particles and performance evaluation of Particle Size Magnifier (PSM) 2.0 for sub-10 nm particle measurements
Yiliang Liu, Arttu Yli-Kujala, Fabian Schmidt-Ott, Sebastian Holm, Lauri Ahonen, Tommy Chan, Joonas Enroth, Joonas Vanhanen, Runlong Cai, Tuukka Petäjä, Markku Kulmala, Yang Chen, and Juha Kangasluoma
Atmos. Meas. Tech., 18, 431–442, https://doi.org/10.5194/amt-18-431-2025,https://doi.org/10.5194/amt-18-431-2025, 2025
Short summary
Merging holography, fluorescence, and machine learning for in situ continuous characterization and classification of airborne microplastics
Nicholas D. Beres, Julia Burkart, Elias Graf, Yanick Zeder, Lea Ann Dailey, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 6945–6964, https://doi.org/10.5194/amt-17-6945-2024,https://doi.org/10.5194/amt-17-6945-2024, 2024
Short summary
Rapid quantitative analysis of semi-volatile organic compounds in indoor surface film using direct analysis in real time mass spectrometry: a case study on phthalates
Ying Zhou, Longkun He, Jiang Tan, Jiang Zhou, and Yingjun Liu
Atmos. Meas. Tech., 17, 6415–6423, https://doi.org/10.5194/amt-17-6415-2024,https://doi.org/10.5194/amt-17-6415-2024, 2024
Short summary
Determining optimal sampling conditions in the TSI Nanometer Aerosol Sampler 3089
Behnaz Alinaghipour, Sadegh Niazi, Robert Groth, Branka Miljevic, and Zoran Ristovski
EGUsphere, https://doi.org/10.5194/egusphere-2024-2161,https://doi.org/10.5194/egusphere-2024-2161, 2024
Short summary

Cited articles

Andreae, M. O. and Gelencsér, A.: Black carbon or brown carbon? The nature of light-absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131–3148, https://doi.org/10.5194/acp-6-3131-2006, 2006.
Birch, M. E. and Cary, R. A.: Elemental carbon-based method for occupational monitoring of particulate diesel exhaust: Methodology and exposure issues, Analyst, 121, 1183–1190, https://doi.org/10.1039/an9962101183, 1996.
Bishop, C.: Pattern recognition and machine learning, Springer-Verlag, New York, 2006.
Bond, T. C. and Bergstrom, R. W.: Light absorption by carbonaceous particles: An investigative review, Aerosol Sci. Tech., 40, 27–67, https://doi.org/10.1080/02786820500421521, 2006.
Bond, T. C., Anderson, T. L., and Campbell, D.: Calibration and intercomparison of filter-based measurements of visible light absorption by aerosols, Aerosol Sci. Tech., 30, 582–600, https://doi.org/10.1080/027868299304435, 1999.
Download
Short summary
Elemental carbon (EC), a constituent of atmospheric particulate matter (PM), adversely affects climate, visibility and human health. EC is measured in PM monitoring networks world-wide but the method is expensive and destructive to the samples. Here, methods are presented to accurately predict EC using Fourier transform infrared (FT-IR) analysis which is inexpensive and non-destructive. This method complements measurements of organic carbon and organic functional groups made using FT-IR.