Articles | Volume 9, issue 2
https://doi.org/10.5194/amt-9-841-2016
https://doi.org/10.5194/amt-9-841-2016
Research article
 | 
03 Mar 2016
Research article |  | 03 Mar 2016

Modeling the Zeeman effect in high-altitude SSMIS channels for numerical weather prediction profiles: comparing a fast model and a line-by-line model

Richard Larsson, Mathias Milz, Peter Rayer, Roger Saunders, William Bell, Anna Booton, Stefan A. Buehler, Patrick Eriksson, and Viju O. John

Related authors

Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
Potential for the measurement of mesosphere and lower thermosphere (MLT) wind, temperature, density and geomagnetic field with Superconducting Submillimeter-Wave Limb-Emission Sounder 2 (SMILES-2)
Philippe Baron, Satoshi Ochiai, Eric Dupuy, Richard Larsson, Huixin Liu, Naohiro Manago, Donal Murtagh, Shin-ichiro Oyama, Hideo Sagawa, Akinori Saito, Takatoshi Sakazaki, Masato Shiotani, and Makoto Suzuki
Atmos. Meas. Tech., 13, 219–237, https://doi.org/10.5194/amt-13-219-2020,https://doi.org/10.5194/amt-13-219-2020, 2020
Short summary
Mars submillimeter sensor on microsatellite: sensor feasibility study
Richard Larsson, Yasuko Kasai, Takeshi Kuroda, Shigeru Sato, Takayoshi Yamada, Hiroyuki Maezawa, Yutaka Hasegawa, Toshiyuki Nishibori, Shinichi Nakasuka, and Paul Hartogh
Geosci. Instrum. Method. Data Syst., 7, 331–341, https://doi.org/10.5194/gi-7-331-2018,https://doi.org/10.5194/gi-7-331-2018, 2018
Short summary
ARTS, the Atmospheric Radiative Transfer Simulator – version 2.2, the planetary toolbox edition
Stefan A. Buehler, Jana Mendrok, Patrick Eriksson, Agnès Perrin, Richard Larsson, and Oliver Lemke
Geosci. Model Dev., 11, 1537–1556, https://doi.org/10.5194/gmd-11-1537-2018,https://doi.org/10.5194/gmd-11-1537-2018, 2018
Short summary
Strato-mesospheric carbon monoxide profiles above Kiruna, Sweden (67.8 ° N, 20.4 ° E), since 2008
Niall J. Ryan, Mathias Palm, Uwe Raffalski, Richard Larsson, Gloria Manney, Luis Millán, and Justus Notholt
Earth Syst. Sci. Data, 9, 77–89, https://doi.org/10.5194/essd-9-77-2017,https://doi.org/10.5194/essd-9-77-2017, 2017
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Improving the estimate of higher-order moments from lidar observations near the top of the convective boundary layer
Tessa E. Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
Atmos. Meas. Tech., 17, 6595–6602, https://doi.org/10.5194/amt-17-6595-2024,https://doi.org/10.5194/amt-17-6595-2024, 2024
Short summary
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Enhanced Quantitative Precipitation Estimation (QPE) through the opportunistic use of Ku TV-sat links via a Dual-Channel Procedure
Louise Gelbart, Laurent Barthès, François Mercier-Tigrine, Aymeric Chazottes, and Cecile Mallet
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-88,https://doi.org/10.5194/amt-2024-88, 2024
Revised manuscript accepted for AMT
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary

Cited articles

Anderson, G. P., Clough, S. A., Kneizys, F. X.., Chetwynd, J. H., and Shettle, E. P.: AFGL atmospheric constituent profiles (0–120 km), Air Force Geophysics Laboratory, Hanscom Air Force Base, MA, USA, TR-86-0110, 1986.
Buehler, S. A., Eriksson, P., Kuhn, T., von Engeln, A., and Verdes, C.: ARTS, the atmospheric radiative transfer simulator, J. Quant. Spectrosc. Ra., 91, 65–93, https://doi.org/10.1016/j.jqsrt.2004.05.051, 2005.
Buehler, S. A., Courcoux, N., and John, V. O.: Radiative transfer calculations for a passive microwave satellite sensor: Comparing a fast model and a line-by-line mode, J. Geophys. Res., 11, D20304, https://doi.org/10.1029/2005JD006552, 2006.
Eriksson, P., Buehler, S. A., Davis, C. P., Emde, C., and Lemke, O.: ARTS, the atmospheric radiative transfer simulator, Version 2, J. Quant. Spectrosc. Ra., 112, 1551–1558, https://doi.org/10.1016/j.jqsrt.2011.03.001, 2011.
Download
Short summary
By modeling the Special Sensor Microwave Imager/Sounder's mesospheric measurements, inversions methods can be applied to retreive mesospheric temperatures. We compare the fast forward model used by Met Office with reference simulations and find that there is a reasonable agreement between both models and measurements. Thus we recommend that the fast model is used in data assimilation to improve mesospheric temperature retrievals.