Articles | Volume 10, issue 10
Atmos. Meas. Tech., 10, 3919–3929, 2017
https://doi.org/10.5194/amt-10-3919-2017
Atmos. Meas. Tech., 10, 3919–3929, 2017
https://doi.org/10.5194/amt-10-3919-2017

Research article 24 Oct 2017

Research article | 24 Oct 2017

The importance of atmospheric correction for airborne hyperspectral remote sensing of shallow waters: application to depth estimation

Elena Castillo-López et al.

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020,https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary
Improvement of numerical weather prediction model analysis during fog conditions through the assimilation of ground-based microwave radiometer observations: a 1D-Var study
Pauline Martinet, Domenico Cimini, Frédéric Burnet, Benjamin Ménétrier, Yann Michel, and Vinciane Unger
Atmos. Meas. Tech., 13, 6593–6611, https://doi.org/10.5194/amt-13-6593-2020,https://doi.org/10.5194/amt-13-6593-2020, 2020
Short summary
Validation of Aeolus wind products above the Atlantic Ocean
Holger Baars, Alina Herzog, Birgit Heese, Kevin Ohneiser, Karsten Hanbuch, Julian Hofer, Zhenping Yin, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020,https://doi.org/10.5194/amt-13-6007-2020, 2020
Short summary
Commercial microwave links as a tool for operational rainfall monitoring in Northern Italy
Giacomo Roversi, Pier Paolo Alberoni, Anna Fornasiero, and Federico Porcù
Atmos. Meas. Tech., 13, 5779–5797, https://doi.org/10.5194/amt-13-5779-2020,https://doi.org/10.5194/amt-13-5779-2020, 2020
Short summary
Inter-calibration of nine UV sensing instruments over Antarctica and Greenland since 1980
Clark J. Weaver, Pawan K. Bhartia, Dong L. Wu, Gordon J. Labow, and David E. Haffner
Atmos. Meas. Tech., 13, 5715–5723, https://doi.org/10.5194/amt-13-5715-2020,https://doi.org/10.5194/amt-13-5715-2020, 2020
Short summary

Cited articles

Adler-Golden, S. M., Acharya, P. K., Berk, A., Matthew, M. W., and Gorodetzky, D.: Remote Bathymetry of the Littoral Zone From AVIRIS, LASH, and QUIckBIRD Imagery, IEEE T. Geosci. Remote, 43, 337–347, 2005.
Austin, R. W.: The remote sensing of spectral radiance from below the ocean surface, in: Optical Aspects of Oceanography, edited by: Jerlov, N. G. and Steemann-Nielsen, E., Academic Press, London, 317–344, 1974.
Bayarri, V. and Castillo, E.: Application of robust techniques for estimating depths in the Port of Santoña with high-resolution airborne sensors, 6th Geomatic Week, 8–11 February, Barcelona, 2005.
Benny, A. H. and Dawson, G. J.: Satellite imagery as an aid to bathymetric charting in the Red Sea, Cartogr. J., 20, 5–16, 1983.
Castillo, E., Pereda, R., Manuel de Luis, J., Medina, R., and Viguri, J.: Sediment grain size estimation using airborne remote sensing, field sampling, and robust statistic, Environ. Monit. Assess., 181, 431–444, 2011.
Download
Short summary
This work is part of a project funded by the government of Spain, whose objective was to develop a methodology that would allow the grain size and heavy metals estimation in the sediments of the intertidal zone (Bay of Santander) and depth estimation in the subtidal area, using information (VNIR) captured by the hyperspectral sensor, CASI-2, a spectroradiometer ASD-FR (350–2500 nm) in field and laboratory and classical and robust statistic algorithms.