Articles | Volume 11, issue 7
https://doi.org/10.5194/amt-11-4389-2018
https://doi.org/10.5194/amt-11-4389-2018
Research article
 | 
25 Jul 2018
Research article |  | 25 Jul 2018

Towards variational retrieval of warm rain from passive microwave observations

David Ian Duncan, Christian D. Kummerow, Brenda Dolan, and Veljko Petković

Related authors

Synergistic radar and sub-millimeter radiometer retrievals of ice hydrometeors in mid-latitude frontal cloud systems
Simon Pfreundschuh, Stuart Fox, Patrick Eriksson, David Duncan, Stefan A. Buehler, Manfred Brath, Richard Cotton, and Florian Ewald
Atmos. Meas. Tech., 15, 677–699, https://doi.org/10.5194/amt-15-677-2022,https://doi.org/10.5194/amt-15-677-2022, 2022
Short summary
Can machine learning correct microwave humidity radiances for the influence of clouds?
Inderpreet Kaur, Patrick Eriksson, Simon Pfreundschuh, and David Ian Duncan
Atmos. Meas. Tech., 14, 2957–2979, https://doi.org/10.5194/amt-14-2957-2021,https://doi.org/10.5194/amt-14-2957-2021, 2021
Short summary
Synergistic radar and radiometer retrievals of ice hydrometeors
Simon Pfreundschuh, Patrick Eriksson, Stefan A. Buehler, Manfred Brath, David Duncan, Richard Larsson, and Robin Ekelund
Atmos. Meas. Tech., 13, 4219–4245, https://doi.org/10.5194/amt-13-4219-2020,https://doi.org/10.5194/amt-13-4219-2020, 2020
Short summary
An experimental 2D-Var retrieval using AMSR2
David Ian Duncan, Patrick Eriksson, and Simon Pfreundschuh
Atmos. Meas. Tech., 12, 6341–6359, https://doi.org/10.5194/amt-12-6341-2019,https://doi.org/10.5194/amt-12-6341-2019, 2019
Short summary
On the distinctiveness of observed oceanic raindrop distributions
David Ian Duncan, Patrick Eriksson, Simon Pfreundschuh, Christian Klepp, and Daniel C. Jones
Atmos. Chem. Phys., 19, 6969–6984, https://doi.org/10.5194/acp-19-6969-2019,https://doi.org/10.5194/acp-19-6969-2019, 2019
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Global sensitivity analysis of simulated remote sensing polarimetric observations over snow
Matteo Ottaviani, Gabriel Harris Myers, and Nan Chen
Atmos. Meas. Tech., 17, 4737–4756, https://doi.org/10.5194/amt-17-4737-2024,https://doi.org/10.5194/amt-17-4737-2024, 2024
Short summary
Improving the Gaussianity of radar reflectivity departures between observations and simulations using symmetric rain rates
Yudong Gao, Lidou Huyan, Zheng Wu, and Bojun Liu
Atmos. Meas. Tech., 17, 4675–4686, https://doi.org/10.5194/amt-17-4675-2024,https://doi.org/10.5194/amt-17-4675-2024, 2024
Short summary
On the temperature stability requirements of free-running Nd:YAG lasers for atmospheric temperature profiling through the rotational Raman technique
José Alex Zenteno-Hernández, Adolfo Comerón, Federico Dios, Alejandro Rodríguez-Gómez, Constantino Muñoz-Porcar, Michaël Sicard, Noemi Franco, Andreas Behrendt, and Paolo Di Girolamo
Atmos. Meas. Tech., 17, 4687–4694, https://doi.org/10.5194/amt-17-4687-2024,https://doi.org/10.5194/amt-17-4687-2024, 2024
Short summary
Limitations in wavelet analysis of non-stationary atmospheric gravity wave signatures in temperature profiles
Robert Reichert, Natalie Kaifler, and Bernd Kaifler
Atmos. Meas. Tech., 17, 4659–4673, https://doi.org/10.5194/amt-17-4659-2024,https://doi.org/10.5194/amt-17-4659-2024, 2024
Short summary
A new non-linearity correction method for the spectrum from the Geostationary Inferometric Infrared Sounder on board Fengyun-4 satellites and its preliminary assessments
Qiang Guo, Yuning Liu, Xin Wang, and Wen Hui
Atmos. Meas. Tech., 17, 4613–4627, https://doi.org/10.5194/amt-17-4613-2024,https://doi.org/10.5194/amt-17-4613-2024, 2024
Short summary

Cited articles

Bauer, P. and Schlüssel, P.: Rainfall, total water, ice water, and water vapor over sea from polarized microwave simulations and Special Sensor Microwave/Imager data, J. Geophys. Res.-Atmos., 98, 20737–20759, https://doi.org/10.1029/93JD01577, 1993. a
Behrangi, A., Lebsock, M., Wong, S., and Lambrigtsen, B.: On the quantification of oceanic rainfall using spaceborne sensors, J. Geophys. Res.-Atmos., 117, D20105, https://doi.org/10.1029/2012JD017979, 2012. a, b
Behrangi, A., Christensen, M., Richardson, M., Lebsock, M., Stephens, G., Huffman, G. J., Bolvin, D., Adler, R. F., Gardner, A., Lambrigtsen, B., and Fetzer, E.: Status of high-latitude precipitation estimates from observations and reanalyses, J. Geophys. Res., 121, 4468–4486, https://doi.org/10.1002/2015JD024546, 2016. a, b
Birman, C., Mahfouf, J. F., Milz, M., Mendrok, J., Buehler, S. A., and Brath, M.: Information content on hydrometeors from millimeter and sub-millimeter wavelengths, Tellus A, 69, 1271562, https://doi.org/10.1080/16000870.2016.1271562, 2017. a, b
Bormann, N., Geer, A. J., and Bauer, P.: Estimates of observation-error characteristics in clear and cloudy regions for microwave imager radiances from numerical weather prediction, Q. J. Roy. Meteor. Soc., 137, 2014–2023, https://doi.org/10.1002/qj.833, 2011. a
Download
Short summary
Satellites are fairly good at detecting and quantifying rainfall over oceans, but the light rainfall characteristic of high latitudes and stratocumulus areas is harder to sense for passive sensors. The method presented extends the sensitivity of passive measurements to light rain by leveraging radar data and measurements of raindrop distributions. This method may help to close the gap between global precipitation estimates at high latitudes and maximize the utility of passive sensors.