Articles | Volume 12, issue 3
Atmos. Meas. Tech., 12, 1717–1737, 2019
https://doi.org/10.5194/amt-12-1717-2019
Atmos. Meas. Tech., 12, 1717–1737, 2019
https://doi.org/10.5194/amt-12-1717-2019

Research article 18 Mar 2019

Research article | 18 Mar 2019

Marine liquid cloud geometric thickness retrieved from OCO-2's oxygen A-band spectrometer

Mark Richardson et al.

Related authors

Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021,https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary
New sampling strategy removes imaging spectroscopy solar-smearing bias in sub-km vapour scaling statistics
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-163,https://doi.org/10.5194/amt-2021-163, 2021
Revised manuscript under review for AMT
Short summary
Spectroscopic imaging of sub-kilometer spatial structure in lower-tropospheric water vapor
David R. Thompson, Brian H. Kahn, Philip G. Brodrick, Matthew D. Lebsock, Mark Richardson, and Robert O. Green
Atmos. Meas. Tech., 14, 2827–2840, https://doi.org/10.5194/amt-14-2827-2021,https://doi.org/10.5194/amt-14-2827-2021, 2021
Short summary
A new Orbiting Carbon Observatory 2 cloud flagging method and rapid retrieval of marine boundary layer cloud properties
Mark Richardson, Matthew D. Lebsock, James McDuffie, and Graeme L. Stephens
Atmos. Meas. Tech., 13, 4947–4961, https://doi.org/10.5194/amt-13-4947-2020,https://doi.org/10.5194/amt-13-4947-2020, 2020
Short summary
Potential faster Arctic sea ice retreat triggered by snowflakes' greenhouse effect
Jui-Lin Frank Li, Mark Richardson, Wei-Liang Lee, Eric Fetzer, Graeme Stephens, Jonathan Jiang, Yulan Hong, Yi-Hui Wang, Jia-Yuh Yu, and Yinghui Liu
The Cryosphere, 13, 969–980, https://doi.org/10.5194/tc-13-969-2019,https://doi.org/10.5194/tc-13-969-2019, 2019
Short summary

Related subject area

Subject: Clouds | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Triple frequency radar retrieval of microphysical properties of snow
Kamil Mroz, Alessandro Battaglia, Cuong Nguyen, Andrew Heymsfield, Alain Protat, and Mengistu Wolde
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-227,https://doi.org/10.5194/amt-2021-227, 2021
Revised manuscript accepted for AMT
Short summary
Physical characteristics of frozen hydrometeors inferred with parameter estimation
Alan J. Geer
Atmos. Meas. Tech., 14, 5369–5395, https://doi.org/10.5194/amt-14-5369-2021,https://doi.org/10.5194/amt-14-5369-2021, 2021
Short summary
Cloud height measurement by a network of all-sky imagers
Niklas Benedikt Blum, Bijan Nouri, Stefan Wilbert, Thomas Schmidt, Ontje Lünsdorf, Jonas Stührenberg, Detlev Heinemann, Andreas Kazantzidis, and Robert Pitz-Paal
Atmos. Meas. Tech., 14, 5199–5224, https://doi.org/10.5194/amt-14-5199-2021,https://doi.org/10.5194/amt-14-5199-2021, 2021
Short summary
Increasing the spatial resolution of cloud property retrievals from Meteosat SEVIRI by use of its high-resolution visible channel: implementation and examples
Hartwig Deneke, Carola Barrientos-Velasco, Sebastian Bley, Anja Hünerbein, Stephan Lenk, Andreas Macke, Jan Fokke Meirink, Marion Schroedter-Homscheidt, Fabian Senf, Ping Wang, Frank Werner, and Jonas Witthuhn
Atmos. Meas. Tech., 14, 5107–5126, https://doi.org/10.5194/amt-14-5107-2021,https://doi.org/10.5194/amt-14-5107-2021, 2021
Short summary
Why we need radar, lidar, and solar radiance observations to constrain ice cloud microphysics
Florian Ewald, Silke Groß, Martin Wirth, Julien Delanoë, Stuart Fox, and Bernhard Mayer
Atmos. Meas. Tech., 14, 5029–5047, https://doi.org/10.5194/amt-14-5029-2021,https://doi.org/10.5194/amt-14-5029-2021, 2021
Short summary

Cited articles

Bennartz, R.: Global assessment of marine boundary layer cloud droplet number concentration from satellite, J. Geophys. Res., 112, D02201, https://doi.org/10.1029/2006JD007547, 2007. 
Betts, A. K.: Mixing Line Analysis of Clouds and Cloudy Boundary Layers, J. Atmos. Sci., 42, 2751–2763, https://doi.org/10.1175/1520-0469(1985)042<2751:MLAOCA>2.0.CO;2, 1985. 
Boers, R. and Mitchell, R. M.: Absorption feedback in stratocumulus clouds Influence on cloud top albedo, Tellus A, 46, 229–241, https://doi.org/10.3402/tellusa.v46i3.15476, 1994. 
Bony, S. and Dufresne, J.-L.: Marine boundary layer clouds at the heart of tropical cloud feedback uncertainties in climate models, Geophys. Res. Lett., 32, L20806, https://doi.org/10.1029/2005GL023851, 2005. 
Download
Short summary
We retrieve cloud properties, including geometric thickness, by combining hyperspectral Orbiting Carbon Observatory-2 (OCO-2) A-band measurements with CALIPSO lidar. This uses cloudy scene data that are not used in OCO-2's main mission, which is aimed at clear-sky atmospheric CO2 abundance. This is the first retrieval using such hyperspectral information and promises to provide a unique constraint on the properties of low liquid clouds over the ocean.