Articles | Volume 12, issue 9
https://doi.org/10.5194/amt-12-4983-2019
https://doi.org/10.5194/amt-12-4983-2019
Research article
 | 
16 Sep 2019
Research article |  | 16 Sep 2019

A study of a two-dimensional scanned lunar image for Advanced Technology Microwave Sounder (ATMS) geometric calibration

Jun Zhou and Hu Yang

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022,https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022,https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022,https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Evaluation of tropospheric water vapour and temperature profiles retrieved from Metop-A by the Infrared and Microwave Sounding scheme
Tim Trent, Richard Siddens, Brian Kerridge, Marc Schroeder, Noëlle A. Scott, and John Remedios
EGUsphere, https://doi.org/10.5194/egusphere-2022-757,https://doi.org/10.5194/egusphere-2022-757, 2022
Short summary
Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022,https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary

Cited articles

Baker, N.: Joint Polar Satellite System (JPPS) VIIRS Geolocation Algorithm Theoretical Basis Document (ATBD), document, Goddard Space Flight Center, Greenbelt, MD, USA, July, 2011. a
Bennartz, R.: On the use of SSM/I measurements in coastal regions, J. Atmos. Ocean. Tech., 16, 417–432, 1999. a
Bonsignori, R.: In-orbit verification of microwave humidity sounder spectral channels coregistration using the moon, Applied Remote Sensing, 12, 025013, https://doi.org/10.1117/1.JRS.12.025013, 2018. a, b
Burgdorf, M., Buehler, S. A., Lang, T., Michel, S., and Hans, I.: The Moon as a photometric calibration standard for microwave sensors, Atmos. Meas. Tech., 9, 3467–3475, https://doi.org/10.5194/amt-9-3467-2016, 2016. a
Currey, J. C.: Geolocation assessment algorithm for CALIPSO using coastline detection, Nat. Aeronaut. Space Admin. (NASA) Langley Res. Center, Hampton, VA, USA, Tech. Rep. NASA/TP-2002-211956, 1–27, 2002. a
Download
Short summary
Evaluating the on-orbit geolocation accuracy of the ATMS is of great importance. The widely used Earth-target-dependent methods are crippled by the strong atmospheric absorption at sounding channels and cloud contamination at window channels. To solve these issues, this study developed a geolocation evaluation algorithm based on a unique 2-D lunar scan dataset captured by the ATMS during a NOAA-20 pitch-over maneuver operation. The results are validated by the coastline inflection point method.