Articles | Volume 13, issue 7
https://doi.org/10.5194/amt-13-3799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Special issue:
https://doi.org/10.5194/amt-13-3799-2020
© Author(s) 2020. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
A new optical-based technique for real-time measurements of mineral dust concentration in PM10 using a virtual impactor
Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
Jean Sciare
Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
Iasonas Stavroulas
Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
Spiros Bezantakos
Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
Michael Pikridas
Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
Florin Unga
Climate and Atmosphere Research Center, The Cyprus Institute, Nicosia, Cyprus
Chrysanthos Savvides
Ministry of Labour, Welfare and Social Insurance, Department of Labour Inspection, Nicosia, Cyprus
Bojana Višić
Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
Institute of Physics Belgrade, University of Belgrade, Belgrade, Serbia
Maja Remškar
Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
Griša Močnik
Department of Condensed Matter Physics, Jožef Stefan Institute, Ljubljana, Slovenia
Center for Atmospheric Research, University of Nova Gorica, Ajdovščina, Slovenia
Related authors
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Bradley Visser, Jannis Röhrbein, Peter Steigmeier, Luka Drinovec, Griša Močnik, and Ernest Weingartner
Atmos. Meas. Tech., 13, 7097–7111, https://doi.org/10.5194/amt-13-7097-2020, https://doi.org/10.5194/amt-13-7097-2020, 2020
Short summary
Short summary
Here we report on the development of a novel single-beam photothermal interferometer and its use in the measurement of aerosol light absorption. We demonstrate how light-absorbing gases can be used to calibrate the instrument and how this absorption is automatically subtracted during normal operation. The performance of the instrument is compared to a standard filter-based instrument using a black carbon test aerosol. The 60 s detection limit is found to be less than 10 Mm-1.
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Matevž Lenarčič, Domen Grauf, Longlong Wang, Maruška Mole, Samo Stanič, and Griša Močnik
Atmos. Chem. Phys., 20, 14139–14162, https://doi.org/10.5194/acp-20-14139-2020, https://doi.org/10.5194/acp-20-14139-2020, 2020
Short summary
Short summary
We present a new method for the determination of highly time-resolved and source-separated black carbon emission rates. The atmospheric dynamics is quantified using the atmospheric radon concentration. Different intensity and daily dynamics of black carbon emission rates for two different environments are presented: urban and rural area. The method can be used to assess the efficiency of pollution mitigation measures, thereby avoiding the influence of variable meteorology.
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Michael Pikridas, Spiros Bezantakos, Griša Močnik, Christos Keleshis, Fred Brechtel, Iasonas Stavroulas, Gregoris Demetriades, Panayiota Antoniou, Panagiotis Vouterakos, Marios Argyrides, Eleni Liakakou, Luka Drinovec, Eleni Marinou, Vassilis Amiridis, Mihalis Vrekoussis, Nikolaos Mihalopoulos, and Jean Sciare
Atmos. Meas. Tech., 12, 6425–6447, https://doi.org/10.5194/amt-12-6425-2019, https://doi.org/10.5194/amt-12-6425-2019, 2019
Short summary
Short summary
This work evaluates the performance of three sensors that monitor black carbon (soot). These sensors exhibit similar behavior to their rack-mounted counterparts and are therefore promising for more extended use. A reconstruction of the black carbon mass vertical distribution above Athens, Greece, is shown using drones, similar to those acquired by remote-sensing techniques. The potential of combining miniature sensors with drones for at least the lower part of the atmosphere is exhibited.
Nivedita K. Kumar, Joel C. Corbin, Emily A. Bruns, Dario Massabó, Jay G. Slowik, Luka Drinovec, Griša Močnik, Paolo Prati, Athanasia Vlachou, Urs Baltensperger, Martin Gysel, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, https://doi.org/10.5194/acp-18-17843-2018, 2018
Short summary
Short summary
It is clear that considerable uncertainties still exist in understanding the magnitude of aerosol absorption on a global scale and its contribution to global warming. This manuscript provides a comprehensive assessment of the optical absorption by organic aerosols (brown carbon) from residential wood combustion as a function of atmospheric aging.
Luka Drinovec, Asta Gregorič, Peter Zotter, Robert Wolf, Emily Anne Bruns, André S. H. Prévôt, Jean-Eudes Petit, Olivier Favez, Jean Sciare, Ian J. Arnold, Rajan K. Chakrabarty, Hans Moosmüller, Agnes Filep, and Griša Močnik
Atmos. Meas. Tech., 10, 1043–1059, https://doi.org/10.5194/amt-10-1043-2017, https://doi.org/10.5194/amt-10-1043-2017, 2017
Short summary
Short summary
Black carbon measurements are usually conducted with absorption filter photometers, which are prone to the filter-loading effect – a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we conducted several field campaigns to investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the coating of black carbon particles.
L. Drinovec, G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, and A. D. A. Hansen
Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, https://doi.org/10.5194/amt-8-1965-2015, 2015
Short summary
Short summary
We present a new real-time algorithm for compensation of the filter-loading effect in filter photometers, based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier aethalometer models and other filter-based absorption photometers.
E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Močnik, I. El-Haddad, J. G. Slowik, J. Dommen, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2825–2841, https://doi.org/10.5194/acp-15-2825-2015, https://doi.org/10.5194/acp-15-2825-2015, 2015
Short summary
Short summary
Residential wood combustion contributes significantly to the total atmospheric particulate burden; however, uncertainties remain in the magnitude and characteristics of wood burning products. The effects of wood loading on freshly emitted and aged emissions were investigated. Polycyclic aromatic hydrocarbons, which negatively impact health, contributed more to the total organic aerosol under highly loaded burner conditions, which has significant implications for burner operation protocols.
I. Ježek, L. Drinovec, L. Ferrero, M. Carriero, and G. Močnik
Atmos. Meas. Tech., 8, 43–55, https://doi.org/10.5194/amt-8-43-2015, https://doi.org/10.5194/amt-8-43-2015, 2015
Short summary
Short summary
We used two methods - the stationary method and the chasing method - for measuring emission factors (EF) of black carbon and particle number concentration in real driving conditions in a controlled environment. We further developed the data processing for both methods. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions.
S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, https://doi.org/10.5194/acp-13-9141-2013, 2013
Ludovico Di Antonio, Claudia Di Biagio, Paola Formenti, Aline Gratien, Vincent Michoud, Christopher Cantrell, Astrid Bauville, Antonin Bergé, Mathieu Cazaunau, Servanne Chevaillier, Manuela Cirtog, Patrice Coll, Barbara D'Anna, Joel F. de Brito, David O. De Haan, Juliette R. Dignum, Shravan Deshmukh, Olivier Favez, Pierre-Marie Flaud, Cecile Gaimoz, Lelia N. Hawkins, Julien Kammer, Brigitte Language, Franck Maisonneuve, Griša Močnik, Emilie Perraudin, Jean-Eudes Petit, Prodip Acharja, Laurent Poulain, Pauline Pouyes, Eva Drew Pronovost, Véronique Riffault, Kanuri I. Roundtree, Marwa Shahin, Guillaume Siour, Eric Villenave, Pascal Zapf, Gilles Foret, Jean-François Doussin, and Matthias Beekmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2299, https://doi.org/10.5194/egusphere-2024-2299, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
The spectral complex refractive index (CRI) and single scattering albedo were retrieved from submicron aerosol measurements at three sites within the greater Paris area during the ACROSS field campaign (June–July 2022). Measurements revealed the urban emission impact on the surrounding areas. The CRI full period averages at 520 nm were 1.41–0.037i (urban), 1.52–0.038i (peri-urban), 1.50−0.025i (rural). Organic aerosols dominated the aerosol mass and contributed up to 22% of absorption at 370 nm.
Stelios Myriokefalitakis, Matthias Karl, Kim A. Weiss, Dimitris Karagiannis, Eleni Athanasopoulou, Anastasia Kakouri, Aikaterini Bougiatioti, Eleni Liakakou, Iasonas Stavroulas, Georgios Papangelis, Georgios Grivas, Despina Paraskevopoulou, Orestis Speyer, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 24, 7815–7835, https://doi.org/10.5194/acp-24-7815-2024, https://doi.org/10.5194/acp-24-7815-2024, 2024
Short summary
Short summary
A state-of-the-art thermodynamic model has been coupled with the city-scale chemistry transport model EPISODE–CityChem to investigate the equilibrium between the inorganic gas and aerosol phases over the greater Athens area, Greece. The simulations indicate that the formation of nitrates in an urban environment is significantly affected by local nitrogen oxide emissions, as well as ambient temperature, relative humidity, photochemical activity, and the presence of non-volatile cations.
Valeria Mardoñez-Balderrama, Griša Močnik, Marco Pandolfi, Robin Modini, Fernando Velarde, Laura Renzi, Angela Marinoni, Jean-Luc Jaffrezo, Isabel Moreno R., Diego Aliaga, Federico Bianchi, Claudia Mohr, Martin Gysel-Beer, Patrick Ginot, Radovan Krejci, Alfred Widensohler, Gaëlle Uzu, Marcos Andrade, and Paolo Laj
EGUsphere, https://doi.org/10.5194/egusphere-2024-770, https://doi.org/10.5194/egusphere-2024-770, 2024
Short summary
Short summary
Levels of black carbon (BC) are scarcely reported in the southern hemisphere, especially in high-altitude conditions. This study provides insight on the concentration level, variability, and optical properties of BC in the cities of La Paz and El Alto, and at the station GAW Chacaltaya Mountain station. Two methods of source apportionment of absorption were tested and compared showing traffic as the main contributor to absorption in the urban area, additionally to biomass and open waste burning.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Yunsong Liu, Jean-Daniel Paris, Gregoire Broquet, Violeta Bescós Roy, Tania Meixus Fernandez, Rasmus Andersen, Andrés Russu Berlanga, Emil Christensen, Yann Courtois, Sebastian Dominok, Corentin Dussenne, Travis Eckert, Andrew Finlayson, Aurora Fernández de la Fuente, Catlin Gunn, Ram Hashmonay, Juliano Grigoleto Hayashi, Jonathan Helmore, Soeren Honsel, Fabrizio Innocenti, Matti Irjala, Torgrim Log, Cristina Lopez, Francisco Cortés Martínez, Jonathan Martinez, Adrien Massardier, Helle Gottschalk Nygaard, Paula Agregan Reboredo, Elodie Rousset, Axel Scherello, Matthias Ulbricht, Damien Weidmann, Oliver Williams, Nigel Yarrow, Murès Zarea, Robert Ziegler, Jean Sciare, Mihalis Vrekoussis, and Philippe Bousquet
Atmos. Meas. Tech., 17, 1633–1649, https://doi.org/10.5194/amt-17-1633-2024, https://doi.org/10.5194/amt-17-1633-2024, 2024
Short summary
Short summary
We investigated the performance of 10 methane emission quantification techniques in a blind controlled-release experiment at an inerted natural gas compressor station. We reported their respective strengths, weaknesses, and potential complementarity depending on the emission rates and atmospheric conditions. Additionally, we assess the dependence of emission quantification performance on key parameters such as wind speed, deployment constraints, and measurement duration.
Andrea Cuesta-Mosquera, Kristina Glojek, Griša Močnik, Luka Drinovec, Asta Gregorič, Martin Rigler, Matej Ogrin, Baseerat Romshoo, Kay Weinhold, Maik Merkel, Dominik van Pinxteren, Hartmut Herrmann, Alfred Wiedensohler, Mira Pöhlker, and Thomas Müller
Atmos. Chem. Phys., 24, 2583–2605, https://doi.org/10.5194/acp-24-2583-2024, https://doi.org/10.5194/acp-24-2583-2024, 2024
Short summary
Short summary
This study evaluated the air pollution and climate impacts of residential-wood-burning particle emissions from a rural European site. The authors investigate the optical and physical properties that connect the aerosol emissions with climate by evaluating atmospheric radiative impacts via simple-forcing calculations. The study contributes to reducing the lack of information on the understanding of the optical properties of air pollution from anthropogenic sources.
Nansi Fakhri, Robin Stevens, Arnold Downey, Konstantina Oikonomou, Jean Sciare, Charbel Afif, and Patrick L. Hayes
Atmos. Chem. Phys., 24, 1193–1212, https://doi.org/10.5194/acp-24-1193-2024, https://doi.org/10.5194/acp-24-1193-2024, 2024
Short summary
Short summary
We investigated the chemical composition of atmospheric fine particles, their emission sources, and the potential human health risk associated with trace elements in particles for an urban site in Montréal over a 3-month period (August–November). This study represents the first time that such extensive composition measurements were included in an urban source apportionment study in Canada, and it provides greater resolution of fine-particle sources than has been previously achieved in Canada.
Valeria Mardoñez, Marco Pandolfi, Lucille Joanna S. Borlaza, Jean-Luc Jaffrezo, Andrés Alastuey, Jean-Luc Besombes, Isabel Moreno R., Noemi Perez, Griša Močnik, Patrick Ginot, Radovan Krejci, Vladislav Chrastny, Alfred Wiedensohler, Paolo Laj, Marcos Andrade, and Gaëlle Uzu
Atmos. Chem. Phys., 23, 10325–10347, https://doi.org/10.5194/acp-23-10325-2023, https://doi.org/10.5194/acp-23-10325-2023, 2023
Short summary
Short summary
La Paz and El Alto are two fast-growing, high-altitude Bolivian cities forming the second-largest metropolitan area in the country. The sources of particulate matter (PM) in this conurbation were not previously investigated. This study identified 11 main sources of PM, of which dust and vehicular emissions stand out as the main ones. The influence of regional biomass combustion and local waste combustion was also observed, with the latter being a major source of hazardous compounds.
Jean-Philippe Putaud, Enrico Pisoni, Alexander Mangold, Christoph Hueglin, Jean Sciare, Michael Pikridas, Chrysanthos Savvides, Jakub Ondracek, Saliou Mbengue, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Laurent Poulain, Dominik van Pinxteren, Hartmut Herrmann, Andreas Massling, Claus Nordstroem, Andrés Alastuey, Cristina Reche, Noemí Pérez, Sonia Castillo, Mar Sorribas, Jose Antonio Adame, Tuukka Petaja, Katrianne Lehtipalo, Jarkko Niemi, Véronique Riffault, Joel F. de Brito, Augustin Colette, Olivier Favez, Jean-Eudes Petit, Valérie Gros, Maria I. Gini, Stergios Vratolis, Konstantinos Eleftheriadis, Evangelia Diapouli, Hugo Denier van der Gon, Karl Espen Yttri, and Wenche Aas
Atmos. Chem. Phys., 23, 10145–10161, https://doi.org/10.5194/acp-23-10145-2023, https://doi.org/10.5194/acp-23-10145-2023, 2023
Short summary
Short summary
Many European people are still exposed to levels of air pollution that can affect their health. COVID-19 lockdowns in 2020 were used to assess the impact of the reduction in human mobility on air pollution across Europe by comparing measurement data with values that would be expected if no lockdown had occurred. We show that lockdown measures did not lead to consistent decreases in the concentrations of fine particulate matter suspended in the air, and we investigate why.
Roubina Papaconstantinou, Marios Demosthenous, Spyros Bezantakos, Neoclis Hadjigeorgiou, Marinos Costi, Melina Stylianou, Elli Symeou, Chrysanthos Savvides, and George Biskos
Atmos. Meas. Tech., 16, 3313–3329, https://doi.org/10.5194/amt-16-3313-2023, https://doi.org/10.5194/amt-16-3313-2023, 2023
Short summary
Short summary
In this paper, we investigate the performance of low-cost electrochemical gas sensors. We carried out yearlong measurements at a traffic air quality monitoring station, where the low-cost sensors were collocated with reference instruments and exposed to highly variable environmental conditions with extremely high temperatures and low relative humidity (RH). Sensors provide measurements that exhibit increasing errors and decreasing correlations as temperature increases and RH decreases.
Aliki Christodoulou, Iasonas Stavroulas, Mihalis Vrekoussis, Maximillien Desservettaz, Michael Pikridas, Elie Bimenyimana, Jonilda Kushta, Matic Ivančič, Martin Rigler, Philippe Goloub, Konstantina Oikonomou, Roland Sarda-Estève, Chrysanthos Savvides, Charbel Afif, Nikos Mihalopoulos, Stéphane Sauvage, and Jean Sciare
Atmos. Chem. Phys., 23, 6431–6456, https://doi.org/10.5194/acp-23-6431-2023, https://doi.org/10.5194/acp-23-6431-2023, 2023
Short summary
Short summary
Our study presents, for the first time, a detailed source identification of aerosols at an urban background site in Cyprus (eastern Mediterranean), a region strongly impacted by climate change and air pollution. Here, we identify an unexpected high contribution of long-range transported pollution from fossil fuel sources in the Middle East, highlighting an urgent need to further characterize these fast-growing emissions and their impacts on regional atmospheric composition, climate, and health.
Christina N. Vasilakopoulou, Kalliopi Florou, Christos Kaltsonoudis, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 16, 2837–2850, https://doi.org/10.5194/amt-16-2837-2023, https://doi.org/10.5194/amt-16-2837-2023, 2023
Short summary
Short summary
The offline aerosol mass spectrometry technique is a useful tool for the source apportionment of organic aerosol in areas and periods during which an aerosol mass spectrometer is not available. In this work, an improved offline technique was developed and evaluated in an effort to capture most of the partially soluble and insoluble organic aerosol material, reducing the uncertainty of the corresponding source apportionment significantly.
Pantelis Kiriakidis, Antonis Gkikas, Georgios Papangelis, Theodoros Christoudias, Jonilda Kushta, Emmanouil Proestakis, Anna Kampouri, Eleni Marinou, Eleni Drakaki, Angela Benedetti, Michael Rennie, Christian Retscher, Anne Grete Straume, Alexandru Dandocsi, Jean Sciare, and Vasilis Amiridis
Atmos. Chem. Phys., 23, 4391–4417, https://doi.org/10.5194/acp-23-4391-2023, https://doi.org/10.5194/acp-23-4391-2023, 2023
Short summary
Short summary
With the launch of the Aeolus satellite, higher-accuracy wind products became available. This research was carried out to validate the assimilated wind products by testing their effect on the WRF-Chem model predictive ability of dust processes. This was carried out for the eastern Mediterranean and Middle East region for two 2-month periods in autumn and spring 2020. The use of the assimilated products improved the dust forecasts of the autumn season (both quantitatively and qualitatively).
Christina Vasilakopoulou, Iasonas Stavroulas, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Meas. Tech., 15, 6419–6431, https://doi.org/10.5194/amt-15-6419-2022, https://doi.org/10.5194/amt-15-6419-2022, 2022
Short summary
Short summary
Offline aerosol mass spectrometer (AMS) measurements can provide valuable information about ambient organic aerosols when online AMS measurements are not available. In this study, we examine whether and how the low time resolution (usually 24 h) of the offline technique affects source apportionment results. We concluded that use of the daily averages resulted in estimated average contributions that were within 8 % of the total OA compared with the high-resolution analysis.
Charlotte M. Beall, Thomas C. J. Hill, Paul J. DeMott, Tobias Köneman, Michael Pikridas, Frank Drewnick, Hartwig Harder, Christopher Pöhlker, Jos Lelieveld, Bettina Weber, Minas Iakovides, Roman Prokeš, Jean Sciare, Meinrat O. Andreae, M. Dale Stokes, and Kimberly A. Prather
Atmos. Chem. Phys., 22, 12607–12627, https://doi.org/10.5194/acp-22-12607-2022, https://doi.org/10.5194/acp-22-12607-2022, 2022
Short summary
Short summary
Ice-nucleating particles (INPs) are rare aerosols that can trigger ice formation in clouds and affect climate-relevant cloud properties such as phase, reflectivity and lifetime. Dust is the dominant INP source, yet few measurements have been reported near major dust sources. We report INP observations within hundreds of kilometers of the biggest dust source regions globally: the Sahara and the Arabian Peninsula. Results show that at temperatures > −15 °C, INPs are dominated by organics.
Marta Via, Gang Chen, Francesco Canonaco, Kaspar R. Daellenbach, Benjamin Chazeau, Hasna Chebaicheb, Jianhui Jiang, Hannes Keernik, Chunshui Lin, Nicolas Marchand, Cristina Marin, Colin O'Dowd, Jurgita Ovadnevaite, Jean-Eudes Petit, Michael Pikridas, Véronique Riffault, Jean Sciare, Jay G. Slowik, Leïla Simon, Jeni Vasilescu, Yunjiang Zhang, Olivier Favez, André S. H. Prévôt, Andrés Alastuey, and María Cruz Minguillón
Atmos. Meas. Tech., 15, 5479–5495, https://doi.org/10.5194/amt-15-5479-2022, https://doi.org/10.5194/amt-15-5479-2022, 2022
Short summary
Short summary
This work presents the differences resulting from two techniques (rolling and seasonal) of the positive matrix factorisation model that can be run for organic aerosol source apportionment. The current state of the art suggests that the rolling technique is more accurate, but no proof of its effectiveness has been provided yet. This paper tackles this issue in the context of a synthetic dataset and a multi-site real-world comparison.
Anthony Rey-Pommier, Frédéric Chevallier, Philippe Ciais, Grégoire Broquet, Theodoros Christoudias, Jonilda Kushta, Didier Hauglustaine, and Jean Sciare
Atmos. Chem. Phys., 22, 11505–11527, https://doi.org/10.5194/acp-22-11505-2022, https://doi.org/10.5194/acp-22-11505-2022, 2022
Short summary
Short summary
Emission inventories for air pollutants can be uncertain in developing countries. In order to overcome these uncertainties, we model nitrogen oxide emissions in Egypt using satellite retrievals. We detect a weekly cycle reflecting Egyptian social norms, an annual cycle consistent with electricity consumption and an activity drop due to the COVID-19 pandemic. However, discrepancies with inventories remain high, illustrating the needs for additional data to improve the potential of our method.
Yunsong Liu, Jean-Daniel Paris, Mihalis Vrekoussis, Panayiota Antoniou, Christos Constantinides, Maximilien Desservettaz, Christos Keleshis, Olivier Laurent, Andreas Leonidou, Carole Philippon, Panagiotis Vouterakos, Pierre-Yves Quéhé, Philippe Bousquet, and Jean Sciare
Atmos. Meas. Tech., 15, 4431–4442, https://doi.org/10.5194/amt-15-4431-2022, https://doi.org/10.5194/amt-15-4431-2022, 2022
Short summary
Short summary
This paper details laboratory-based and field developments of a cost-effective and compacted UAV CO2 sensor system to address the challenge of measuring CO2 with sufficient precision and acquisition frequency. We assess its performance extensively through laboratory and field tests and provide a case study in an urban area (Nicosia, Cyprus). We therefore expect that this portable system will be widely used for measuring CO2 emission and distribution in natural or urban environments.
Karine Sartelet, Youngseob Kim, Florian Couvidat, Maik Merkel, Tuukka Petäjä, Jean Sciare, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 8579–8596, https://doi.org/10.5194/acp-22-8579-2022, https://doi.org/10.5194/acp-22-8579-2022, 2022
Short summary
Short summary
A methodology is defined to estimate number emissions from an inventory providing mass emissions. Number concentrations are simulated over Greater Paris using different nucleation parameterisations (binary, ternary involving sulfuric acid and ammonia, and heteromolecular involving sulfuric acid and extremely low-volatility organics, ELVOCs). The comparisons show that ternary nucleation may not be a dominant process for new particle formation in cities, but they stress the role of ELVOCs.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
George K. Georgiou, Theodoros Christoudias, Yiannis Proestos, Jonilda Kushta, Michael Pikridas, Jean Sciare, Chrysanthos Savvides, and Jos Lelieveld
Geosci. Model Dev., 15, 4129–4146, https://doi.org/10.5194/gmd-15-4129-2022, https://doi.org/10.5194/gmd-15-4129-2022, 2022
Short summary
Short summary
We evaluate the skill of the WRF-Chem model to perform high-resolution air quality forecasts (including ozone, nitrogen dioxide, and fine particulate matter) over the Eastern Mediterranean, during winter and summer. We compare the forecast output to observational data from background and urban locations and the forecast output from CAMS. WRF-Chem was found to forecast the concentrations and diurnal profiles of gas-phase pollutants in urban areas with higher accuracy.
Kristina Glojek, Griša Močnik, Honey Dawn C. Alas, Andrea Cuesta-Mosquera, Luka Drinovec, Asta Gregorič, Matej Ogrin, Kay Weinhold, Irena Ježek, Thomas Müller, Martin Rigler, Maja Remškar, Dominik van Pinxteren, Hartmut Herrmann, Martina Ristorini, Maik Merkel, Miha Markelj, and Alfred Wiedensohler
Atmos. Chem. Phys., 22, 5577–5601, https://doi.org/10.5194/acp-22-5577-2022, https://doi.org/10.5194/acp-22-5577-2022, 2022
Short summary
Short summary
A pilot study to determine the emissions of wood burning under
real-world laboratoryconditions was conducted. We found that measured black carbon (eBC) and particulate matter (PM) in rural shallow terrain depressions with residential wood burning could be much greater than predicted by models. The exceeding levels are a cause for concern since similar conditions can be expected in numerous hilly and mountainous regions across Europe, where approximately 20 % of the total population lives.
Daniel M. Kalbermatter, Griša Močnik, Luka Drinovec, Bradley Visser, Jannis Röhrbein, Matthias Oscity, Ernest Weingartner, Antti-Pekka Hyvärinen, and Konstantina Vasilatou
Atmos. Meas. Tech., 15, 561–572, https://doi.org/10.5194/amt-15-561-2022, https://doi.org/10.5194/amt-15-561-2022, 2022
Short summary
Short summary
Soot particles with varying amounts of secondary organic matter coating were generated and used to compare a series of aerosol-absorption-measuring instruments: filter-based and photoacoustic instruments as well as photo-thermal interferometers. Significant deviations in the response of the instruments were observed depending on the amount of secondary organic coating. The system can be used for the inter-comparison and characterisation of instruments.
Kai Tang, Beatriz Sánchez-Parra, Petya Yordanova, Jörn Wehking, Anna T. Backes, Daniel A. Pickersgill, Stefanie Maier, Jean Sciare, Ulrich Pöschl, Bettina Weber, and Janine Fröhlich-Nowoisky
Biogeosciences, 19, 71–91, https://doi.org/10.5194/bg-19-71-2022, https://doi.org/10.5194/bg-19-71-2022, 2022
Short summary
Short summary
Metagenomic sequencing and freezing experiments of aerosol samples collected on Cyprus revealed rain-related short-term changes of bioaerosol and ice nuclei composition. Filtration experiments showed a rain-related enhancement of biological ice nuclei > 5 µm and < 0.1 µm. The observed effects of rainfall on the composition of atmospheric bioaerosols and ice nuclei may influence the hydrological cycle as well as the health effects of air particulate matter (pathogens, allergens).
Jean-Eudes Petit, Jean-Charles Dupont, Olivier Favez, Valérie Gros, Yunjiang Zhang, Jean Sciare, Leila Simon, François Truong, Nicolas Bonnaire, Tanguy Amodeo, Robert Vautard, and Martial Haeffelin
Atmos. Chem. Phys., 21, 17167–17183, https://doi.org/10.5194/acp-21-17167-2021, https://doi.org/10.5194/acp-21-17167-2021, 2021
Short summary
Short summary
The COVID-19 outbreak led to lockdowns at national scales in spring 2020. Large cuts in emissions occurred, but the quantitative assessment of their role from observations is hindered by weather and interannual variability. That is why we developed an innovative methodology in order to best characterize the impact of lockdown on atmospheric chemistry. We find that a local decrease in traffic-related pollutants triggered a decrease of secondary aerosols and an increase in ozone.
Anna K. Tobler, Alicja Skiba, Francesco Canonaco, Griša Močnik, Pragati Rai, Gang Chen, Jakub Bartyzel, Miroslaw Zimnoch, Katarzyna Styszko, Jaroslaw Nęcki, Markus Furger, Kazimierz Różański, Urs Baltensperger, Jay G. Slowik, and Andre S. H. Prevot
Atmos. Chem. Phys., 21, 14893–14906, https://doi.org/10.5194/acp-21-14893-2021, https://doi.org/10.5194/acp-21-14893-2021, 2021
Short summary
Short summary
Kraków is among the cities with the highest particulate matter levels within Europe. We conducted long-term and highly time-resolved measurements of the chemical composition of submicron particlulate matter (PM1). Combined with advanced source apportionment techniques, which allow for time-dependent factor profiles, our results elucidate that traffic and residential heating (biomass burning and coal combustion) as well as oxygenated organic aerosol are the key PM sources in Kraków.
Jesús Yus-Díez, Vera Bernardoni, Griša Močnik, Andrés Alastuey, Davide Ciniglia, Matic Ivančič, Xavier Querol, Noemí Perez, Cristina Reche, Martin Rigler, Roberta Vecchi, Sara Valentini, and Marco Pandolfi
Atmos. Meas. Tech., 14, 6335–6355, https://doi.org/10.5194/amt-14-6335-2021, https://doi.org/10.5194/amt-14-6335-2021, 2021
Short summary
Short summary
Here we characterize the multiple-scattering factor, C, of the dual-spot Aethalometer AE33 and its cross-sensitivity to scattering and wavelength dependence for three background stations: urban, regional and mountaintop. C was obtained for two sets of filter tapes: M8020 and M8060. The cross-sensitivity to scattering and wavelength dependence of C were determined by inter-comparing with other absorption and scattering measurements including multi-angle off-line absorption measurements.
Rima Baalbaki, Michael Pikridas, Tuija Jokinen, Tiia Laurila, Lubna Dada, Spyros Bezantakos, Lauri Ahonen, Kimmo Neitola, Anne Maisser, Elie Bimenyimana, Aliki Christodoulou, Florin Unga, Chrysanthos Savvides, Katrianne Lehtipalo, Juha Kangasluoma, George Biskos, Tuukka Petäjä, Veli-Matti Kerminen, Jean Sciare, and Markku Kulmala
Atmos. Chem. Phys., 21, 9223–9251, https://doi.org/10.5194/acp-21-9223-2021, https://doi.org/10.5194/acp-21-9223-2021, 2021
Short summary
Short summary
This study investigates new particle formation (NPF) in the less represented region of the Mediterranean basin using 1-year measurements of aerosol particles down to ~ 1 nm in diameter. We report a high frequency of NPF and give examples of interesting NPF features. We quantify the strength of NPF events by calculating formation rates and growth rates. We further unveil the atmospheric conditions and variables considered important for the intra-monthly and inter-monthly occurrence of NPF.
Vincent Michoud, Elise Hallemans, Laura Chiappini, Eva Leoz-Garziandia, Aurélie Colomb, Sébastien Dusanter, Isabelle Fronval, François Gheusi, Jean-Luc Jaffrezo, Thierry Léonardis, Nadine Locoge, Nicolas Marchand, Stéphane Sauvage, Jean Sciare, and Jean-François Doussin
Atmos. Chem. Phys., 21, 8067–8088, https://doi.org/10.5194/acp-21-8067-2021, https://doi.org/10.5194/acp-21-8067-2021, 2021
Short summary
Short summary
A multiphasic molecular characterization of oxygenated compounds has been carried out during the ChArMEx field campaign using offline analysis. It leads to the identification of 97 different compounds in the gas and aerosol phases and reveals the important contribution of organic acids to organic aerosol. In addition, comparison between experimental and theoretical partitioning coefficients revealed in most cases a large underestimation by the theory reaching 1 to 7 orders of magnitude.
Andrea Cuesta-Mosquera, Griša Močnik, Luka Drinovec, Thomas Müller, Sascha Pfeifer, María Cruz Minguillón, Björn Briel, Paul Buckley, Vadimas Dudoitis, Javier Fernández-García, María Fernández-Amado, Joel Ferreira De Brito, Veronique Riffault, Harald Flentje, Eimear Heffernan, Nikolaos Kalivitis, Athina-Cerise Kalogridis, Hannes Keernik, Luminita Marmureanu, Krista Luoma, Angela Marinoni, Michael Pikridas, Gerhard Schauer, Norbert Serfozo, Henri Servomaa, Gloria Titos, Jesús Yus-Díez, Natalia Zioła, and Alfred Wiedensohler
Atmos. Meas. Tech., 14, 3195–3216, https://doi.org/10.5194/amt-14-3195-2021, https://doi.org/10.5194/amt-14-3195-2021, 2021
Short summary
Short summary
Measurements of black carbon must be conducted with instruments operating in quality-checked and assured conditions to generate reliable and comparable data. Here, 23 Aethalometers monitoring black carbon mass concentrations in European networks were characterized and intercompared. The influence of different aerosol sources, maintenance activities, and the filter material on the instrumental variabilities were investigated. Good agreement and in general low deviations were seen.
Vera Bernardoni, Luca Ferrero, Ezio Bolzacchini, Alice Corina Forello, Asta Gregorič, Dario Massabò, Griša Močnik, Paolo Prati, Martin Rigler, Luca Santagostini, Francesca Soldan, Sara Valentini, Gianluigi Valli, and Roberta Vecchi
Atmos. Meas. Tech., 14, 2919–2940, https://doi.org/10.5194/amt-14-2919-2021, https://doi.org/10.5194/amt-14-2919-2021, 2021
Short summary
Short summary
An instrument-dependent wavelength-independent parameter (C) is often used to face multiple-scattering issues affecting aerosol light absorption measurements by Aethalometers. Instead, we determined multi-wavelength C by comparison with absorption measurements of samples collected in parallel performed by an instrument developed in-house. Considering C wavelength dependence, harmonized results were obtained applying source and component apportionment models to data from different Aethalometers.
Luca Ferrero, Asta Gregorič, Griša Močnik, Martin Rigler, Sergio Cogliati, Francesca Barnaba, Luca Di Liberto, Gian Paolo Gobbi, Niccolò Losi, and Ezio Bolzacchini
Atmos. Chem. Phys., 21, 4869–4897, https://doi.org/10.5194/acp-21-4869-2021, https://doi.org/10.5194/acp-21-4869-2021, 2021
Short summary
Short summary
The work experimentally quantifies the impact of cloudiness and cloud type on the atmospheric heating rate of black and brown carbon. The most impacting clouds were stratocumulus, altostratus and stratus. Clouds caused a decrease of the heating rate of about 12 % per okta. The black carbon decease was slightly higher with respect to that of brown carbon. This study highlights the need to take into account the role of cloudiness when modelling light-absorbing aerosol climate forcing.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Thérèse Salameh, Jean Sciare, François Dulac, and Nadine Locoge
Atmos. Chem. Phys., 21, 1449–1484, https://doi.org/10.5194/acp-21-1449-2021, https://doi.org/10.5194/acp-21-1449-2021, 2021
Short summary
Short summary
This study provides a better characterization of the seasonal variations in VOC sources impacting the western Mediterranean region, based on a comprehensive chemical composition measured over 25 months at a representative receptor site (Ersa) and by determining factors controlling their temporal variations. Some insights into dominant drivers for VOC concentration variations in Europe are also provided, built on comparisons of Ersa observations with the concomitant ones of 17 European sites.
Jesús Yus-Díez, Marina Ealo, Marco Pandolfi, Noemí Perez, Gloria Titos, Griša Močnik, Xavier Querol, and Andrés Alastuey
Atmos. Chem. Phys., 21, 431–455, https://doi.org/10.5194/acp-21-431-2021, https://doi.org/10.5194/acp-21-431-2021, 2021
Short summary
Short summary
Here we describe the vertical profiles of extensive (scattering and absorption) and intensive (e.g. albedo and asymmetry parameter) aerosol optical properties from coupling ground-based measurements from two sites in north-eastern Spain and airborne measurements performed with an aircraft. We analyse different aerosol layers along the vertical profile for a regional pollution episode and a Saharan dust intrusion. The results show a change with height depending on the different measured layers.
Bradley Visser, Jannis Röhrbein, Peter Steigmeier, Luka Drinovec, Griša Močnik, and Ernest Weingartner
Atmos. Meas. Tech., 13, 7097–7111, https://doi.org/10.5194/amt-13-7097-2020, https://doi.org/10.5194/amt-13-7097-2020, 2020
Short summary
Short summary
Here we report on the development of a novel single-beam photothermal interferometer and its use in the measurement of aerosol light absorption. We demonstrate how light-absorbing gases can be used to calibrate the instrument and how this absorption is automatically subtracted during normal operation. The performance of the instrument is compared to a standard filter-based instrument using a black carbon test aerosol. The 60 s detection limit is found to be less than 10 Mm-1.
Asta Gregorič, Luka Drinovec, Irena Ježek, Janja Vaupotič, Matevž Lenarčič, Domen Grauf, Longlong Wang, Maruška Mole, Samo Stanič, and Griša Močnik
Atmos. Chem. Phys., 20, 14139–14162, https://doi.org/10.5194/acp-20-14139-2020, https://doi.org/10.5194/acp-20-14139-2020, 2020
Short summary
Short summary
We present a new method for the determination of highly time-resolved and source-separated black carbon emission rates. The atmospheric dynamics is quantified using the atmospheric radon concentration. Different intensity and daily dynamics of black carbon emission rates for two different environments are presented: urban and rural area. The method can be used to assess the efficiency of pollution mitigation measures, thereby avoiding the influence of variable meteorology.
Lubna Dada, Ilona Ylivinkka, Rima Baalbaki, Chang Li, Yishuo Guo, Chao Yan, Lei Yao, Nina Sarnela, Tuija Jokinen, Kaspar R. Daellenbach, Rujing Yin, Chenjuan Deng, Biwu Chu, Tuomo Nieminen, Yonghong Wang, Zhuohui Lin, Roseline C. Thakur, Jenni Kontkanen, Dominik Stolzenburg, Mikko Sipilä, Tareq Hussein, Pauli Paasonen, Federico Bianchi, Imre Salma, Tamás Weidinger, Michael Pikridas, Jean Sciare, Jingkun Jiang, Yongchun Liu, Tuukka Petäjä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 20, 11747–11766, https://doi.org/10.5194/acp-20-11747-2020, https://doi.org/10.5194/acp-20-11747-2020, 2020
Short summary
Short summary
We rely on sulfuric acid measurements in four contrasting environments, Hyytiälä, Finland; Agia Marina, Cyprus; Budapest, Hungary; and Beijing, China, representing semi-pristine boreal forest, rural environment in the Mediterranean area, urban environment, and heavily polluted megacity, respectively, in order to define the sources and sinks of sulfuric acid in these environments and to derive a new sulfuric acid proxy to be utilized in locations and during periods when it is not measured.
Martin Rigler, Luka Drinovec, Gašper Lavrič, Athanasia Vlachou, André S. H. Prévôt, Jean Luc Jaffrezo, Iasonas Stavroulas, Jean Sciare, Judita Burger, Irena Kranjc, Janja Turšič, Anthony D. A. Hansen, and Griša Močnik
Atmos. Meas. Tech., 13, 4333–4351, https://doi.org/10.5194/amt-13-4333-2020, https://doi.org/10.5194/amt-13-4333-2020, 2020
Short summary
Short summary
Carbonaceous aerosols are a large fraction of fine particulate matter. They are extremely diverse, and they directly impact air quality, visibility, cloud formation and public health. In this paper we present a new instrument and new method to measure carbon content in particulate matter in real time and at a high time resolution. The new method was validated in a 1-month winter field campaign in Ljubljana, Slovenia.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Johannes Bühl, Patric Seifert, Ronny Engelmann, Julian Hofer, Argyro Nisantzi, James D. Atkinson, Zamin A. Kanji, Berko Sierau, Mihalis Vrekoussis, and Jean Sciare
Atmos. Chem. Phys., 19, 15087–15115, https://doi.org/10.5194/acp-19-15087-2019, https://doi.org/10.5194/acp-19-15087-2019, 2019
Short summary
Short summary
For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. The closure studies were conducted in Cyprus. A focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers. The closure studies show that heterogeneous ice nucleation can play a dominant role in ice formation.
Aurélien Chauvigné, Diego Aliaga, Karine Sellegri, Nadège Montoux, Radovan Krejci, Griša Močnik, Isabel Moreno, Thomas Müller, Marco Pandolfi, Fernando Velarde, Kay Weinhold, Patrick Ginot, Alfred Wiedensohler, Marcos Andrade, and Paolo Laj
Atmos. Chem. Phys., 19, 14805–14824, https://doi.org/10.5194/acp-19-14805-2019, https://doi.org/10.5194/acp-19-14805-2019, 2019
Short summary
Short summary
The study presents for the first time the analysis of aerosol optical properties at the unique high-altitude station of Chacaltaya, Bolivia. Ideally located, the station allows us to better understand influences of urban areas and the Amazon Forest on tropospheric properties. An emerging method is applied to characterize aerosol origins and permits us to illustrate evidence of natural and anthropogenic influences.
Michael Pikridas, Spiros Bezantakos, Griša Močnik, Christos Keleshis, Fred Brechtel, Iasonas Stavroulas, Gregoris Demetriades, Panayiota Antoniou, Panagiotis Vouterakos, Marios Argyrides, Eleni Liakakou, Luka Drinovec, Eleni Marinou, Vassilis Amiridis, Mihalis Vrekoussis, Nikolaos Mihalopoulos, and Jean Sciare
Atmos. Meas. Tech., 12, 6425–6447, https://doi.org/10.5194/amt-12-6425-2019, https://doi.org/10.5194/amt-12-6425-2019, 2019
Short summary
Short summary
This work evaluates the performance of three sensors that monitor black carbon (soot). These sensors exhibit similar behavior to their rack-mounted counterparts and are therefore promising for more extended use. A reconstruction of the black carbon mass vertical distribution above Athens, Greece, is shown using drones, similar to those acquired by remote-sensing techniques. The potential of combining miniature sensors with drones for at least the lower part of the atmosphere is exhibited.
Yunjiang Zhang, Olivier Favez, Jean-Eudes Petit, Francesco Canonaco, Francois Truong, Nicolas Bonnaire, Vincent Crenn, Tanguy Amodeo, Andre S. H. Prévôt, Jean Sciare, Valerie Gros, and Alexandre Albinet
Atmos. Chem. Phys., 19, 14755–14776, https://doi.org/10.5194/acp-19-14755-2019, https://doi.org/10.5194/acp-19-14755-2019, 2019
Short summary
Short summary
We present 6-year source apportionment of organic aerosol (OA) achieved with near-continuous online measurements and subsequent receptor model analysis in the Paris region, France. The OA factors presented distinct seasonal patterns, associated with different atmospheric formation processes and roles in air pollution. Limited year-round trends for two primary anthropogenic factors and a biogenic-like secondary factor were observed, while a more oxidized secondary OA showed a decreasing feature.
Marie Boichu, Olivier Favez, Véronique Riffault, Jean-Eudes Petit, Yunjiang Zhang, Colette Brogniez, Jean Sciare, Isabelle Chiapello, Lieven Clarisse, Shouwen Zhang, Nathalie Pujol-Söhne, Emmanuel Tison, Hervé Delbarre, and Philippe Goloub
Atmos. Chem. Phys., 19, 14253–14287, https://doi.org/10.5194/acp-19-14253-2019, https://doi.org/10.5194/acp-19-14253-2019, 2019
Short summary
Short summary
This study, benefiting especially from recently developed mass spectrometry observations of aerosols, highlights unknown properties of volcanic sulfates in the troposphere. It shows their specific chemical fingerprint, distinct from those of freshly emitted industrial sulfates and background aerosols. We also demonstrate the large-scale persistence of the volcanic sulfate pollution over weeks. Hence, these results cast light on the impact of tropospheric eruptions on air quality and climate.
Radiance Calmer, Gregory C. Roberts, Kevin J. Sanchez, Jean Sciare, Karine Sellegri, David Picard, Mihalis Vrekoussis, and Michael Pikridas
Atmos. Chem. Phys., 19, 13989–14007, https://doi.org/10.5194/acp-19-13989-2019, https://doi.org/10.5194/acp-19-13989-2019, 2019
Short summary
Short summary
Unmanned aerial vehicles (UAVs) bring new opportunities to study clouds and better represent these in models. This analysis presents a comparison between direct observations in clouds from a UAV flight and results of a one-dimension model. The experiment is part of the European BACCHUS project, and took place in Cyprus, considered as a polluted environment. The study shows the importance of taking into account mixing air at cloud top to better match the model results with the UAV observations.
Philipp G. Eger, Nils Friedrich, Jan Schuladen, Justin Shenolikar, Horst Fischer, Ivan Tadic, Hartwig Harder, Monica Martinez, Roland Rohloff, Sebastian Tauer, Frank Drewnick, Friederike Fachinger, James Brooks, Eoghan Darbyshire, Jean Sciare, Michael Pikridas, Jos Lelieveld, and John N. Crowley
Atmos. Chem. Phys., 19, 12121–12140, https://doi.org/10.5194/acp-19-12121-2019, https://doi.org/10.5194/acp-19-12121-2019, 2019
Short summary
Short summary
Shipborne measurements of nitryl chloride (ClNO2) were made during the AQABA (Air Quality and climate change in the Arabian BAsin) ship campaign in summer 2017. The dataset includes measurements over the Mediterranean Sea and around the Arabian Peninsula with observed mixing ratios ranging from the limit of detection to 600 pptv. We examined the regional variability in the generation of ClNO2 and its importance for Cl atom generation in a marine boundary layer influenced by ships and industry.
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Marc D. Mallet, Barbara D'Anna, Aurélie Même, Maria Chiara Bove, Federico Cassola, Giandomenico Pace, Karine Desboeufs, Claudia Di Biagio, Jean-Francois Doussin, Michel Maille, Dario Massabò, Jean Sciare, Pascal Zapf, Alcide Giorgio di Sarra, and Paola Formenti
Atmos. Chem. Phys., 19, 11123–11142, https://doi.org/10.5194/acp-19-11123-2019, https://doi.org/10.5194/acp-19-11123-2019, 2019
Short summary
Short summary
We present findings from a summertime field campaign at the remote island of Lampedusa in the central Mediterranean Sea. We show that the aerosol loading is similar to coastal sites around the Mediterranean. We observe higher loadings of sulfate and aged organic aerosol from air masses transported over the central and eastern Mediterranean in comparison to those from the western Mediterranean. These results highlight the rarity of pristine air masses, even in remote marine environments.
Jenny P. S. Wong, Maria Tsagkaraki, Irini Tsiodra, Nikolaos Mihalopoulos, Kalliopi Violaki, Maria Kanakidou, Jean Sciare, Athanasios Nenes, and Rodney J. Weber
Atmos. Chem. Phys., 19, 7319–7334, https://doi.org/10.5194/acp-19-7319-2019, https://doi.org/10.5194/acp-19-7319-2019, 2019
Short summary
Short summary
Biomass burning is a major source of light-absorbing organic species in atmospheric aerosols, and it can play an important role in climate and atmospheric chemistry. Through a combination of laboratory experiments and field observations, this work demonstrated that the light absorption properties of aged biomass burning organic aerosols are dominated by high-molecular-weight compounds. In addition, we found that total hydrated sugars may be a robust tracer for aged biomass burning aerosols.
Panayiotis Kalkavouras, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Maria Tombrou, Athanasios Nenes, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 6185–6203, https://doi.org/10.5194/acp-19-6185-2019, https://doi.org/10.5194/acp-19-6185-2019, 2019
Short summary
Short summary
We study how new particle formation (NPF) events affect clouds throughout the year at a ground site in the E Mediterranean. Using a new tools and evaluation metrics, NPF is found to affect only evening and nocturnal clouds by modestly increasing droplet number by 7 to 12 %. A conventional analysis based on CCN concentration at prescribed supersaturation levels or aerosol size can considerably bias the perceived influence of NPF events on regional clouds, the hydrological cycle, and climate.
Nikos Kalivitis, Veli-Matti Kerminen, Giorgos Kouvarakis, Iasonas Stavroulas, Evaggelia Tzitzikalaki, Panayiotis Kalkavouras, Nikos Daskalakis, Stelios Myriokefalitakis, Aikaterini Bougiatioti, Hanna E. Manninen, Pontus Roldin, Tuukka Petäjä, Michael Boy, Markku Kulmala, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 2671–2686, https://doi.org/10.5194/acp-19-2671-2019, https://doi.org/10.5194/acp-19-2671-2019, 2019
Short summary
Short summary
New particle formation (NPF) is an important source of atmospheric aerosols. For the Mediterranean atmosphere, only few studies exist. In this study we present one of the longest series of NPF by analyzing 10 years of data from Crete, Greece. NPF took place on 27 % of the available days; it was more frequent in spring and less so in late summer. Model simulations showed that NPF in the subtropical environment may differ greatly from that in the boreal environment.
Iasonas Stavroulas, Aikaterini Bougiatioti, Georgios Grivas, Despina Paraskevopoulou, Maria Tsagkaraki, Pavlos Zarmpas, Eleni Liakakou, Evangelos Gerasopoulos, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 19, 901–919, https://doi.org/10.5194/acp-19-901-2019, https://doi.org/10.5194/acp-19-901-2019, 2019
Short summary
Short summary
Over the last few years, many cities in Greece have suffered from significant air quality deterioration events during wintertime. Driven by such observations, we studied the variability and main sources of submicron particulate matter in Athens, Greece, as a large part of the population in this region is exposed to high levels, which sometimes exceed legislative limit values. It was found that such events are mostly associated with combustion sources used for domestic heating during winter.
Mounir Chrit, Karine Sartelet, Jean Sciare, Marwa Majdi, José Nicolas, Jean-Eudes Petit, and François Dulac
Atmos. Chem. Phys., 18, 18079–18100, https://doi.org/10.5194/acp-18-18079-2018, https://doi.org/10.5194/acp-18-18079-2018, 2018
Nivedita K. Kumar, Joel C. Corbin, Emily A. Bruns, Dario Massabó, Jay G. Slowik, Luka Drinovec, Griša Močnik, Paolo Prati, Athanasia Vlachou, Urs Baltensperger, Martin Gysel, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 17843–17861, https://doi.org/10.5194/acp-18-17843-2018, https://doi.org/10.5194/acp-18-17843-2018, 2018
Short summary
Short summary
It is clear that considerable uncertainties still exist in understanding the magnitude of aerosol absorption on a global scale and its contribution to global warming. This manuscript provides a comprehensive assessment of the optical absorption by organic aerosols (brown carbon) from residential wood combustion as a function of atmospheric aging.
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Karine Sellegri, Jean Sciare, Michael Pikridas, Iasonas Stavroulas, Thierry Leonardis, Vincent Gaudion, Laurence Depelchin, Isabelle Fronval, Roland Sarda-Esteve, Dominique Baisnée, Bernard Bonsang, Chrysanthos Savvides, Mihalis Vrekoussis, and Nadine Locoge
Atmos. Chem. Phys., 18, 14297–14325, https://doi.org/10.5194/acp-18-14297-2018, https://doi.org/10.5194/acp-18-14297-2018, 2018
Short summary
Short summary
This work focuses on the study of the sources and fates of BVOCs and new particle formation (NPF) events in the eastern Mediterranean. NPF events were found on 14 out of 20 days of the campaign. NPF occurred at various condensational sinks and both under polluted and clean atmospheric conditions. Analysis of specific NPF periods of the mixed influence type highlighted that BVOC interactions with anthropogenic compounds enhanced nucleation formation and growth of new particles.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, José B. Nicolas, Nicolas Marchand, Evelyn Freney, Karine Sellegri, Matthias Beekmann, and François Dulac
Atmos. Chem. Phys., 18, 9631–9659, https://doi.org/10.5194/acp-18-9631-2018, https://doi.org/10.5194/acp-18-9631-2018, 2018
Short summary
Short summary
Fine particulate matter (PM) in the atmosphere is of concern due to its effects on health, climate, ecosystems and biological cycles, and visibility.
These effects are especially important in the Mediterranean region. In this study, the air quality model Polyphemus is used to understand the
sources of inorganic and organic particles in the western Mediterranean and evaluate the uncertainties linked to the model parameters and hypotheses related to condensation/evaporation in the model.
Samuël Weber, Gaëlle Uzu, Aude Calas, Florie Chevrier, Jean-Luc Besombes, Aurélie Charron, Dalia Salameh, Irena Ježek, Griša Močnik, and Jean-Luc Jaffrezo
Atmos. Chem. Phys., 18, 9617–9629, https://doi.org/10.5194/acp-18-9617-2018, https://doi.org/10.5194/acp-18-9617-2018, 2018
Short summary
Short summary
The oxidative potential (OP) of the PM appears to be a relevant proxy of health outcomes from PM exposure. We developed a new statistical model using a coupled approach with positive matrix factorization (PMF) and multiple linear regressions to attribute a redox activity per PM sources. Our results highlight the importance of biomass burning and vehicular sources to explain the observed OP of PM. A different contribution of the sources is observed when considering OP or the mass of the PM10.
Marco Pandolfi, Lucas Alados-Arboledas, Andrés Alastuey, Marcos Andrade, Christo Angelov, Begoña Artiñano, John Backman, Urs Baltensperger, Paolo Bonasoni, Nicolas Bukowiecki, Martine Collaud Coen, Sébastien Conil, Esther Coz, Vincent Crenn, Vadimas Dudoitis, Marina Ealo, Kostas Eleftheriadis, Olivier Favez, Prodromos Fetfatzis, Markus Fiebig, Harald Flentje, Patrick Ginot, Martin Gysel, Bas Henzing, Andras Hoffer, Adela Holubova Smejkalova, Ivo Kalapov, Nikos Kalivitis, Giorgos Kouvarakis, Adam Kristensson, Markku Kulmala, Heikki Lihavainen, Chris Lunder, Krista Luoma, Hassan Lyamani, Angela Marinoni, Nikos Mihalopoulos, Marcel Moerman, José Nicolas, Colin O'Dowd, Tuukka Petäjä, Jean-Eudes Petit, Jean Marc Pichon, Nina Prokopciuk, Jean-Philippe Putaud, Sergio Rodríguez, Jean Sciare, Karine Sellegri, Erik Swietlicki, Gloria Titos, Thomas Tuch, Peter Tunved, Vidmantas Ulevicius, Aditya Vaishya, Milan Vana, Aki Virkkula, Stergios Vratolis, Ernest Weingartner, Alfred Wiedensohler, and Paolo Laj
Atmos. Chem. Phys., 18, 7877–7911, https://doi.org/10.5194/acp-18-7877-2018, https://doi.org/10.5194/acp-18-7877-2018, 2018
Short summary
Short summary
This investigation presents the variability in near-surface in situ aerosol particle light-scattering measurements obtained over the past decade at 28 measuring atmospheric observatories which are part of the ACTRIS Research Infrastructure, and most of them belong to the GAW network. This paper provides a comprehensive picture of the spatial and temporal variability of aerosol particles optical properties in Europe.
Dimitra Mamali, Eleni Marinou, Jean Sciare, Michael Pikridas, Panagiotis Kokkalis, Michael Kottas, Ioannis Binietoglou, Alexandra Tsekeri, Christos Keleshis, Ronny Engelmann, Holger Baars, Albert Ansmann, Vassilis Amiridis, Herman Russchenberg, and George Biskos
Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, https://doi.org/10.5194/amt-11-2897-2018, 2018
Short summary
Short summary
The paper's scope is to evaluate the performance of in situ atmospheric aerosol instrumentation on board unmanned aerial vehicles (UAVs) and the performance of algorithms used to calculate the aerosol mass from remote sensing instruments by comparing the two independent techniques to each other. Our results indicate that UAV-based aerosol measurements (using specific in situ and remote sensing instrumentation) can provide reliable ways to determine the aerosol mass throughout the atmosphere.
Julia Schmale, Silvia Henning, Stefano Decesari, Bas Henzing, Helmi Keskinen, Karine Sellegri, Jurgita Ovadnevaite, Mira L. Pöhlker, Joel Brito, Aikaterini Bougiatioti, Adam Kristensson, Nikos Kalivitis, Iasonas Stavroulas, Samara Carbone, Anne Jefferson, Minsu Park, Patrick Schlag, Yoko Iwamoto, Pasi Aalto, Mikko Äijälä, Nicolas Bukowiecki, Mikael Ehn, Göran Frank, Roman Fröhlich, Arnoud Frumau, Erik Herrmann, Hartmut Herrmann, Rupert Holzinger, Gerard Kos, Markku Kulmala, Nikolaos Mihalopoulos, Athanasios Nenes, Colin O'Dowd, Tuukka Petäjä, David Picard, Christopher Pöhlker, Ulrich Pöschl, Laurent Poulain, André Stephan Henry Prévôt, Erik Swietlicki, Meinrat O. Andreae, Paulo Artaxo, Alfred Wiedensohler, John Ogren, Atsushi Matsuki, Seong Soo Yum, Frank Stratmann, Urs Baltensperger, and Martin Gysel
Atmos. Chem. Phys., 18, 2853–2881, https://doi.org/10.5194/acp-18-2853-2018, https://doi.org/10.5194/acp-18-2853-2018, 2018
Short summary
Short summary
Collocated long-term observations of cloud condensation nuclei (CCN) number concentrations, particle number size distributions and chemical composition from 12 sites are synthesized. Observations cover coastal environments, the Arctic, the Mediterranean, the boreal and rain forest, high alpine and continental background sites, and Monsoon-influenced areas. We interpret regional and seasonal variability. CCN concentrations are predicted with the κ–Köhler model and compared to the measurements.
Yunjiang Zhang, Lili Tang, Philip L. Croteau, Olivier Favez, Yele Sun, Manjula R. Canagaratna, Zhuang Wang, Florian Couvidat, Alexandre Albinet, Hongliang Zhang, Jean Sciare, André S. H. Prévôt, John T. Jayne, and Douglas R. Worsnop
Atmos. Chem. Phys., 17, 14501–14517, https://doi.org/10.5194/acp-17-14501-2017, https://doi.org/10.5194/acp-17-14501-2017, 2017
Short summary
Short summary
We conducted the first field measurements of non-refractory fine aerosols (NR-PM2.5) in a megacity of eastern China using a PM2.5-ACSM along with a PM1-ACSM measurement. Inter-comparisons demonstrated that the NR-PM2.5 components can be characterized. Substantial mass fractions of aerosol species were observed in the size range of 1–2.5 μm, with sulfate and SOA being the two largest contributors. The impacts of aerosol water driven by secondary inorganic aerosols on SOA formation were explored.
Mounir Chrit, Karine Sartelet, Jean Sciare, Jorge Pey, Nicolas Marchand, Florian Couvidat, Karine Sellegri, and Matthias Beekmann
Atmos. Chem. Phys., 17, 12509–12531, https://doi.org/10.5194/acp-17-12509-2017, https://doi.org/10.5194/acp-17-12509-2017, 2017
Cécile Debevec, Stéphane Sauvage, Valérie Gros, Jean Sciare, Michael Pikridas, Iasonas Stavroulas, Thérèse Salameh, Thierry Leonardis, Vincent Gaudion, Laurence Depelchin, Isabelle Fronval, Roland Sarda-Esteve, Dominique Baisnée, Bernard Bonsang, Chrysanthos Savvides, Mihalis Vrekoussis, and Nadine Locoge
Atmos. Chem. Phys., 17, 11355–11388, https://doi.org/10.5194/acp-17-11355-2017, https://doi.org/10.5194/acp-17-11355-2017, 2017
Short summary
Short summary
An intensive field campaign was conducted in March 2015 in the Eastern Mediterranean region, at a background site of Cyprus. We performed a detailed analysis of the chemical composition of air masses in gas and aerosol phase, and we applied a source apportionment analysis in order to identify the various origins of VOCs. The results suggest that VOCs are mainly of biogenic and regional background origins.
Vincent Michoud, Jean Sciare, Stéphane Sauvage, Sébastien Dusanter, Thierry Léonardis, Valérie Gros, Cerise Kalogridis, Nora Zannoni, Anaïs Féron, Jean-Eudes Petit, Vincent Crenn, Dominique Baisnée, Roland Sarda-Estève, Nicolas Bonnaire, Nicolas Marchand, H. Langley DeWitt, Jorge Pey, Aurélie Colomb, François Gheusi, Sonke Szidat, Iasonas Stavroulas, Agnès Borbon, and Nadine Locoge
Atmos. Chem. Phys., 17, 8837–8865, https://doi.org/10.5194/acp-17-8837-2017, https://doi.org/10.5194/acp-17-8837-2017, 2017
Short summary
Short summary
The ChArMEx SOP2 field campaign took place from 15 July to 5 August 2013 in the western Mediterranean Basin at Ersa, a remote site in Cape Corse. Exhaustive descriptions of the chemical composition of air masses in gas and aerosol phase were performed. An analysis of these measurements was performed using various source-receptor approaches. This led to the identification of several factors linked to primary sources but also to secondary processes of both biogenic and anthropogenic origin.
Pierre Tulet, Andréa Di Muro, Aurélie Colomb, Cyrielle Denjean, Valentin Duflot, Santiago Arellano, Brice Foucart, Jérome Brioude, Karine Sellegri, Aline Peltier, Alessandro Aiuppa, Christelle Barthe, Chatrapatty Bhugwant, Soline Bielli, Patrice Boissier, Guillaume Boudoire, Thierry Bourrianne, Christophe Brunet, Fréderic Burnet, Jean-Pierre Cammas, Franck Gabarrot, Bo Galle, Gaetano Giudice, Christian Guadagno, Fréderic Jeamblu, Philippe Kowalski, Jimmy Leclair de Bellevue, Nicolas Marquestaut, Dominique Mékies, Jean-Marc Metzger, Joris Pianezze, Thierry Portafaix, Jean Sciare, Arnaud Tournigand, and Nicolas Villeneuve
Atmos. Chem. Phys., 17, 5355–5378, https://doi.org/10.5194/acp-17-5355-2017, https://doi.org/10.5194/acp-17-5355-2017, 2017
Short summary
Short summary
The STRAP campaign was conducted in 2015 to investigate the volcanic plumes of Piton de La Fournaise (La Réunion, France). For the first time, measurements were conducted at the local (near the vent) and regional scales around the island. The STRAP 2015 campaign gave a unique set of multi-disciplinary data that can now be used by modellers to improve the numerical parameterisations of the physical and chemical evolution of the volcanic plumes.
Jann Schrod, Daniel Weber, Jaqueline Drücke, Christos Keleshis, Michael Pikridas, Martin Ebert, Bojan Cvetković, Slobodan Nickovic, Eleni Marinou, Holger Baars, Albert Ansmann, Mihalis Vrekoussis, Nikos Mihalopoulos, Jean Sciare, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 17, 4817–4835, https://doi.org/10.5194/acp-17-4817-2017, https://doi.org/10.5194/acp-17-4817-2017, 2017
Short summary
Short summary
In this paper we present data of ice-nucleating particles (INPs) from a 1-month campaign in the Eastern Mediterranean using unmanned aircraft systems (UASs, drones) and offline sampling with subsequent laboratory analysis. To our knowledge, this is the first time INPs were measured onboard a UAS. We find that INP concentrations were 1 magnitude higher aloft than at the ground, highlighting that surface-based measurement of INP may only be of limited significance for the situation at cloud level.
Peter Zotter, Hanna Herich, Martin Gysel, Imad El-Haddad, Yanlin Zhang, Griša Močnik, Christoph Hüglin, Urs Baltensperger, Sönke Szidat, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, https://doi.org/10.5194/acp-17-4229-2017, 2017
Short summary
Short summary
Most studies use a single Ångström exponent for wood burning (αWB) and traffic (αTR) emissions in the Aethalometer model, used for source apportionment of black carbon, derived from previous work. However, accurate determination of the α values is currently lacking. Comparing radiocarbon measurements (14C) with the Aehtalometer model, good agreement was found, indicating that the Aethalometer model reproduces reasonably well the 14C results using our best estimate of a single αWB and αTR.
Luka Drinovec, Asta Gregorič, Peter Zotter, Robert Wolf, Emily Anne Bruns, André S. H. Prévôt, Jean-Eudes Petit, Olivier Favez, Jean Sciare, Ian J. Arnold, Rajan K. Chakrabarty, Hans Moosmüller, Agnes Filep, and Griša Močnik
Atmos. Meas. Tech., 10, 1043–1059, https://doi.org/10.5194/amt-10-1043-2017, https://doi.org/10.5194/amt-10-1043-2017, 2017
Short summary
Short summary
Black carbon measurements are usually conducted with absorption filter photometers, which are prone to the filter-loading effect – a saturation of the instrumental response due to the accumulation of the sample in the filter matrix. In this paper, we conducted several field campaigns to investigate the hypothesis that this filter-loading effect depends on the optical properties of particles present in the filter matrix, especially on the coating of black carbon particles.
Kalliopi Florou, Dimitrios K. Papanastasiou, Michael Pikridas, Christos Kaltsonoudis, Evangelos Louvaris, Georgios I. Gkatzelis, David Patoulias, Nikolaos Mihalopoulos, and Spyros N. Pandis
Atmos. Chem. Phys., 17, 3145–3163, https://doi.org/10.5194/acp-17-3145-2017, https://doi.org/10.5194/acp-17-3145-2017, 2017
Short summary
Short summary
The composition of fine particulate matter (PM) in two major Greek cities (Athens and Patras) was measured during two wintertime campaigns in 2012 and 2013. Residential wood burning has dramatically increased due to the Greek financial crisis, contributing around 50 % of the fine PM on average and more than 80 % during nighttime. Cooking is also an important source during both midday and evening, while transportation dominates only during the morning rush hour.
Monique Teich, Dominik van Pinxteren, Michael Wang, Simonas Kecorius, Zhibin Wang, Thomas Müller, Griša Močnik, and Hartmut Herrmann
Atmos. Chem. Phys., 17, 1653–1672, https://doi.org/10.5194/acp-17-1653-2017, https://doi.org/10.5194/acp-17-1653-2017, 2017
Short summary
Short summary
This study provides a large data set on concentrations of individual brown carbon constituents, i.e., nitrated aromatic compounds, in diverse atmospheric environments and their relative contribution to water-soluble and particulate light absorption. It extends the existing knowledge on the abundance of brown carbon and its molecular composition and provides scientific motivation for further studies on ambient brown carbon constituents.
Panayiotis Kalkavouras, Elissavet Bossioli, Spiros Bezantakos, Aikaterini Bougiatioti, Nikos Kalivitis, Iasonas Stavroulas, Giorgos Kouvarakis, Anna P. Protonotariou, Aggeliki Dandou, George Biskos, Nikolaos Mihalopoulos, Athanasios Nenes, and Maria Tombrou
Atmos. Chem. Phys., 17, 175–192, https://doi.org/10.5194/acp-17-175-2017, https://doi.org/10.5194/acp-17-175-2017, 2017
Short summary
Short summary
Concentrations of chemically and size-resolved submicron aerosol particles along with concentrations of gases and meteorological variables were measured at Santorini and Finokalia (central and southern Aegean Sea) during the Etesians. Particle nucleation bursts were recorded. The NPF can double CCN number (at 0.1 % supersaturation), but the resulting strong competition for water vapor in cloudy updrafts decreases maximum supersaturation by 14 % and augments the potential droplet number by 12 %.
Hannah Meusel, Uwe Kuhn, Andreas Reiffs, Chinmay Mallik, Hartwig Harder, Monica Martinez, Jan Schuladen, Birger Bohn, Uwe Parchatka, John N. Crowley, Horst Fischer, Laura Tomsche, Anna Novelli, Thorsten Hoffmann, Ruud H. H. Janssen, Oscar Hartogensis, Michael Pikridas, Mihalis Vrekoussis, Efstratios Bourtsoukidis, Bettina Weber, Jos Lelieveld, Jonathan Williams, Ulrich Pöschl, Yafang Cheng, and Hang Su
Atmos. Chem. Phys., 16, 14475–14493, https://doi.org/10.5194/acp-16-14475-2016, https://doi.org/10.5194/acp-16-14475-2016, 2016
Short summary
Short summary
There are many studies which show discrepancies between modeled and measured nitrous acid (HONO, precursor of OH radical) in the troposphere but with no satisfactory explanation. Ideal conditions to study the unknown sources of HONO were found on Cyprus, a remote Mediterranean island. Budget analysis of trace gas measurements indicates a common source of NO and HONO, which is not related to anthropogenic activity and is most likely derived from biologic activity in soils and subsequent emission.
Luca Ferrero, David Cappelletti, Maurizio Busetto, Mauro Mazzola, Angelo Lupi, Christian Lanconelli, Silvia Becagli, Rita Traversi, Laura Caiazzo, Fabio Giardi, Beatrice Moroni, Stefano Crocchianti, Martin Fierz, Griša Močnik, Giorgia Sangiorgi, Maria G. Perrone, Marion Maturilli, Vito Vitale, Roberto Udisti, and Ezio Bolzacchini
Atmos. Chem. Phys., 16, 12601–12629, https://doi.org/10.5194/acp-16-12601-2016, https://doi.org/10.5194/acp-16-12601-2016, 2016
Short summary
Short summary
This study reports results from systematic vertical aerosol profiles measured in the Arctic using a tethered balloon platform. The collected data allowed for finding common rules of aerosol behavior along height and seasons. Transport events, secondary aerosol formation and ship impact are examples of the issues investigated along height. The importance of these issues is related to their climatic implications in reference to the aerosol direct and indirect effects in the Arctic atmosphere.
Aikaterini Bougiatioti, Spiros Bezantakos, Iasonas Stavroulas, Nikos Kalivitis, Panagiotis Kokkalis, George Biskos, Nikolaos Mihalopoulos, Alexandros Papayannis, and Athanasios Nenes
Atmos. Chem. Phys., 16, 7389–7409, https://doi.org/10.5194/acp-16-7389-2016, https://doi.org/10.5194/acp-16-7389-2016, 2016
Short summary
Short summary
BBOA from long-range transport exhibits increased CCN concentrations for particles larger than 100 nm. At the same time the hygroscopicity parameter decreased for all particle sizes, as sub-100 nm particles appear to be richer in less hygroscopic organic material, while larger particles become less hygroscopic due to condensation of less hygroscopic gaseous compounds. Finally, atmospheric processing of freshly emitted BBOA to more oxidized organic aerosol can result in a 2-fold increase of κ.
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Joonas Enroth, Sanna Saarikoski, Jarkko Niemi, Anu Kousa, Irena Ježek, Griša Močnik, Samara Carbone, Heino Kuuluvainen, Topi Rönkkö, Risto Hillamo, and Liisa Pirjola
Atmos. Chem. Phys., 16, 5497–5512, https://doi.org/10.5194/acp-16-5497-2016, https://doi.org/10.5194/acp-16-5497-2016, 2016
Short summary
Short summary
This paper presents a comprehensive summary of roadside measurements using a mobile laboratory, equipped with state-of-the-art instrumentation. Pollution gradients were observed for particle number, black carbon, organics, some metals, and gases at four different highway environments. Flow dynamics appeared to be an important factor, however, at the most open site, condensation of semi-volatile organics was observed. The fleet average NO2 emission factor increased over the last decade.
Aikaterini Bougiatioti, Panayiota Nikolaou, Iasonas Stavroulas, Giorgos Kouvarakis, Rodney Weber, Athanasios Nenes, Maria Kanakidou, and Nikolaos Mihalopoulos
Atmos. Chem. Phys., 16, 4579–4591, https://doi.org/10.5194/acp-16-4579-2016, https://doi.org/10.5194/acp-16-4579-2016, 2016
Short summary
Short summary
Atmospheric aerosols and relevant parameters were measured in the eastern Mediterranean during summer and fall 2012. Submicron aerosol water can contribute up to 33 % of total mass, and 27.5 % of this can be associated with organics. Using these data, the pH of the submicron aerosols was calculated to be highly acidic, varying from 0.5 to 2.8 and independently of air masses origin. Such pH values could increase nutrient availability and thus sea water productivity of the Mediterranean Sea.
V. Crenn, J. Sciare, P. L. Croteau, S. Verlhac, R. Fröhlich, C. A. Belis, W. Aas, M. Äijälä, A. Alastuey, B. Artiñano, D. Baisnée, N. Bonnaire, M. Bressi, M. Canagaratna, F. Canonaco, C. Carbone, F. Cavalli, E. Coz, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, C. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, J.-E. Petit, E. Petralia, L. Poulain, M. Priestman, V. Riffault, A. Ripoll, R. Sarda-Estève, J. G. Slowik, A. Setyan, A. Wiedensohler, U. Baltensperger, A. S. H. Prévôt, J. T. Jayne, and O. Favez
Atmos. Meas. Tech., 8, 5063–5087, https://doi.org/10.5194/amt-8-5063-2015, https://doi.org/10.5194/amt-8-5063-2015, 2015
Short summary
Short summary
A large intercomparison study of 13 Q-ACSM was conducted for a 3-week period in the region of Paris to evaluate the performance of this instrument and to monitor the major NR-PM1 chemical components. Reproducibility expanded uncertainties of Q-ACSM concentration measurements were found to be 9, 15, 19, 28, and 36% for NR-PM1, NO3, OM, SO4, and NH4, respectively. Some recommendations regarding best calibration practices, standardized data processing and data treatment are also provided.
I. Ježek, T. Katrašnik, D. Westerdahl, and G. Močnik
Atmos. Chem. Phys., 15, 11011–11026, https://doi.org/10.5194/acp-15-11011-2015, https://doi.org/10.5194/acp-15-11011-2015, 2015
Short summary
Short summary
On-road measurement of black carbon (BC), NOx and particle number (PN) emission factors (EF) by chasing vehicles is the first such study where BC EFs of many individual diesel cars were determined in real-world conditions. Median BC EF of diesel and gasoline cars in use for <5 years, decreased by 60% and 47% from those in use for 5–10 years. Reductions for goods vehicles' NOx and PN EFs were 52% and 67%. We found an increase of BC EFs in newer goods vehicle fleet compared to 5 – 10 year old one.
A. Karanasiou, M. C. Minguillón, M. Viana, A. Alastuey, J.-P. Putaud, W. Maenhaut, P. Panteliadis, G. Močnik, O. Favez, and T. A. J. Kuhlbusch
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amtd-8-9649-2015, https://doi.org/10.5194/amtd-8-9649-2015, 2015
Revised manuscript not accepted
N. Kalivitis, V.-M. Kerminen, G. Kouvarakis, I. Stavroulas, A. Bougiatioti, A. Nenes, H. E. Manninen, T. Petäjä, M. Kulmala, and N. Mihalopoulos
Atmos. Chem. Phys., 15, 9203–9215, https://doi.org/10.5194/acp-15-9203-2015, https://doi.org/10.5194/acp-15-9203-2015, 2015
Short summary
Short summary
Cloud condensation nuclei (CCN) production associated with atmospheric new particle formation (NPF) is presented, and this is the first direct evidence of CCN production resulting from NPF in the eastern Mediterranean atmosphere. We show that condensation of both gaseous sulfuric acid and organic compounds from multiple sources leads to the rapid growth of nucleated particles. Sub-100nm particles were found to be substantially less hygroscopic than larger particles during the active NPF period.
R. Fröhlich, V. Crenn, A. Setyan, C. A. Belis, F. Canonaco, O. Favez, V. Riffault, J. G. Slowik, W. Aas, M. Aijälä, A. Alastuey, B. Artiñano, N. Bonnaire, C. Bozzetti, M. Bressi, C. Carbone, E. Coz, P. L. Croteau, M. J. Cubison, J. K. Esser-Gietl, D. C. Green, V. Gros, L. Heikkinen, H. Herrmann, J. T. Jayne, C. R. Lunder, M. C. Minguillón, G. Močnik, C. D. O'Dowd, J. Ovadnevaite, E. Petralia, L. Poulain, M. Priestman, A. Ripoll, R. Sarda-Estève, A. Wiedensohler, U. Baltensperger, J. Sciare, and A. S. H. Prévôt
Atmos. Meas. Tech., 8, 2555–2576, https://doi.org/10.5194/amt-8-2555-2015, https://doi.org/10.5194/amt-8-2555-2015, 2015
Short summary
Short summary
Source apportionment (SA) of organic aerosol mass spectrometric data measured with the Aerodyne ACSM using PMF/ME2 is a frequently used technique in the AMS/ACSM community. ME2 uncertainties due to instrument-to-instrument variations are elucidated by performing SA on ambient data from 14 individual, co-located ACSMs, recorded during the first ACTRIS ACSM intercomparison study at SIRTA near Paris (France). The mean uncertainty was 17.2%. Recommendations for future studies using ME2 are provided.
L. Drinovec, G. Močnik, P. Zotter, A. S. H. Prévôt, C. Ruckstuhl, E. Coz, M. Rupakheti, J. Sciare, T. Müller, A. Wiedensohler, and A. D. A. Hansen
Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, https://doi.org/10.5194/amt-8-1965-2015, 2015
Short summary
Short summary
We present a new real-time algorithm for compensation of the filter-loading effect in filter photometers, based on a two parallel spot measurement of optical absorption. This algorithm has been incorporated into the new Aethalometer AE33. Intercomparison studies show excellent reproducibility of the AE33 measurements and very good agreement with post-processed data obtained using earlier aethalometer models and other filter-based absorption photometers.
J.-E. Petit, O. Favez, J. Sciare, V. Crenn, R. Sarda-Estève, N. Bonnaire, G. Močnik, J.-C. Dupont, M. Haeffelin, and E. Leoz-Garziandia
Atmos. Chem. Phys., 15, 2985–3005, https://doi.org/10.5194/acp-15-2985-2015, https://doi.org/10.5194/acp-15-2985-2015, 2015
E. A. Bruns, M. Krapf, J. Orasche, Y. Huang, R. Zimmermann, L. Drinovec, G. Močnik, I. El-Haddad, J. G. Slowik, J. Dommen, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 15, 2825–2841, https://doi.org/10.5194/acp-15-2825-2015, https://doi.org/10.5194/acp-15-2825-2015, 2015
Short summary
Short summary
Residential wood combustion contributes significantly to the total atmospheric particulate burden; however, uncertainties remain in the magnitude and characteristics of wood burning products. The effects of wood loading on freshly emitted and aged emissions were investigated. Polycyclic aromatic hydrocarbons, which negatively impact health, contributed more to the total organic aerosol under highly loaded burner conditions, which has significant implications for burner operation protocols.
I. Ježek, L. Drinovec, L. Ferrero, M. Carriero, and G. Močnik
Atmos. Meas. Tech., 8, 43–55, https://doi.org/10.5194/amt-8-43-2015, https://doi.org/10.5194/amt-8-43-2015, 2015
Short summary
Short summary
We used two methods - the stationary method and the chasing method - for measuring emission factors (EF) of black carbon and particle number concentration in real driving conditions in a controlled environment. We further developed the data processing for both methods. The comparison of emission factors determined by the two methods showed good agreement. EFs of a single car measured with either method have a specific distribution with a characteristic value and a long tail of super emissions.
J.-E. Petit, O. Favez, J. Sciare, F. Canonaco, P. Croteau, G. Močnik, J. Jayne, D. Worsnop, and E. Leoz-Garziandia
Atmos. Chem. Phys., 14, 13773–13787, https://doi.org/10.5194/acp-14-13773-2014, https://doi.org/10.5194/acp-14-13773-2014, 2014
L. Ferrero, M. Castelli, B. S. Ferrini, M. Moscatelli, M. G. Perrone, G. Sangiorgi, L. D'Angelo, G. Rovelli, B. Moroni, F. Scardazza, G. Močnik, E. Bolzacchini, M. Petitta, and D. Cappelletti
Atmos. Chem. Phys., 14, 9641–9664, https://doi.org/10.5194/acp-14-9641-2014, https://doi.org/10.5194/acp-14-9641-2014, 2014
S. Segura, V. Estellés, G. Titos, H. Lyamani, M. P. Utrillas, P. Zotter, A. S. H. Prévôt, G. Močnik, L. Alados-Arboledas, and J. A. Martínez-Lozano
Atmos. Meas. Tech., 7, 2373–2387, https://doi.org/10.5194/amt-7-2373-2014, https://doi.org/10.5194/amt-7-2373-2014, 2014
A. Bougiatioti, I. Stavroulas, E. Kostenidou, P. Zarmpas, C. Theodosi, G. Kouvarakis, F. Canonaco, A. S. H. Prévôt, A. Nenes, S. N. Pandis, and N. Mihalopoulos
Atmos. Chem. Phys., 14, 4793–4807, https://doi.org/10.5194/acp-14-4793-2014, https://doi.org/10.5194/acp-14-4793-2014, 2014
S. M. Platt, I. El Haddad, A. A. Zardini, M. Clairotte, C. Astorga, R. Wolf, J. G. Slowik, B. Temime-Roussel, N. Marchand, I. Ježek, L. Drinovec, G. Močnik, O. Möhler, R. Richter, P. Barmet, F. Bianchi, U. Baltensperger, and A. S. H. Prévôt
Atmos. Chem. Phys., 13, 9141–9158, https://doi.org/10.5194/acp-13-9141-2013, https://doi.org/10.5194/acp-13-9141-2013, 2013
Related subject area
Subject: Aerosols | Technique: In Situ Measurement | Topic: Instruments and Platforms
Simulations of the collection of mesospheric dust particles with a rocket instrument
Characterisation of particle single-scattering albedo with a modified airborne dual-wavelength CAPS monitor
Use of an uncrewed aerial system to investigate aerosol direct and indirect radiative forcing effects in the marine atmosphere
Characterization of the airborne aerosol inlet and transport system used during the A-LIFE aircraft field experiment
Large-scale automated emission measurement of individual vehicles with point sampling
Development of a cascade impactor optimized for size-fractionated analysis of aerosol metal content by total reflection X-ray fluorescence spectroscopy (TXRF)
Deriving the hygroscopicity of ambient particles using low-cost optical particle counters
Modular Multiplatform Compatible Air Measurement System (MoMuCAMS): a new modular platform for boundary layer aerosol and trace gas vertical measurements in extreme environments
Two new multirotor uncrewed aerial vehicles (UAVs) for glaciogenic cloud seeding and aerosol measurements within the CLOUDLAB project
Real-time pollen identification using holographic imaging and fluorescence measurements
Assessing potential indicators of aerosol wet scavenging during long-range transport
Next-generation ice-nucleating particle sampling on board aircraft: characterization of the High-volume flow aERosol particle filter sAmpler (HERA)
Development and characterization of the Portable Ice Nucleation Chamber 2 (PINCii)
The four-wavelength Photoacoustic Aerosol Absorption Spectrometer (PAAS-4λ)
Improved counting statistics of an ultrafine differential mobility particle size spectrometer system
Performance evaluation of the Alphasense OPC-N3 and Plantower PMS5003 sensor in measuring dust events in the Salt Lake Valley, Utah
Source apportionment of black carbon and combustion-related CO2 for the determination of source-specific emission factors
CAMP: an instrumented platform for balloon-borne aerosol particle studies in the lower atmosphere
New method to determine black carbon mass size distribution
The realization of autonomous, aircraft-based, real-time aerosol mass spectrometry in the upper troposphere and lower stratosphere
A study on the performance of low-cost sensors for source apportionment at an urban background site
A dual-wavelength photothermal aerosol absorption monitor: design, calibration and performance
A high-transmission axial ion mobility classifier for mass–mobility measurements of atmospheric ions
Design, characterization, and first field deployment of a novel aircraft-based aerosol mass spectrometer combining the laser ablation and flash vaporization techniques
An instrument for direct measurement of emissions: cooling tower example
The Aerosol Research Observation Station (AEROS)
Laser imaging nephelometer for aircraft deployment
A new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by thermal desorption aerosol mass spectrometry
Evaluating the PurpleAir monitor as an aerosol light scattering instrument
Undersizing of aged African biomass burning aerosol by an ultra-high-sensitivity aerosol spectrometer
Evaluation methods for low-cost particulate matter sensors
Simulation-aided characterization of a versatile water-based condensation particle counter for atmospheric airborne research
Development of an in situ dual-channel thermal desorption gas chromatography instrument for consistent quantification of volatile, intermediate-volatility and semivolatile organic compounds
Assessment of online water-soluble brown carbon measuring systems for aircraft sampling
Characterizing the performance of a POPS miniaturized optical particle counter when operated on a quadcopter drone
A low-cost monitor for simultaneous measurement of fine particulate matter and aerosol optical depth – Part 3: Automation and design improvements
Rapid measurement of RH-dependent aerosol hygroscopic growth using a humidity-controlled fast integrated mobility spectrometer (HFIMS)
Detection of ship plumes from residual fuel operation in emission control areas using single-particle mass spectrometry
Highly time-resolved characterization of carbonaceous aerosols using a two-wavelength Sunset thermal–optical carbon analyzer
Captive Aerosol Growth and Evolution (CAGE) chamber system to investigate particle growth due to secondary aerosol formation
Design and characterization of a new oxidation flow reactor for laboratory and long-term ambient studies
A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Airborne extractive electrospray mass spectrometry measurements of the chemical composition of organic aerosol
A semicontinuous study on the ecotoxicity of atmospheric particles using a versatile aerosol concentration enrichment system (VACES): development and field characterization
A novel rocket-borne ion mass spectrometer with large mass range: instrument description and first-flight results
Detailed characterization of the CAPS single-scattering albedo monitor (CAPS PMssa) as a field-deployable instrument for measuring aerosol light absorption with the extinction-minus-scattering method
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 1: Spectral Aerosol Extinction (SpEx) instrument field validation during the KORUS-OC cruise
New in situ aerosol hyperspectral optical measurements over 300–700 nm – Part 2: Extinction, total absorption, water- and methanol-soluble absorption observed during the KORUS-OC cruise
Continuous online monitoring of ice-nucleating particles: development of the automated Horizontal Ice Nucleation Chamber (HINC-Auto)
Evaluation of optical particulate matter sensors under realistic conditions of strong and mild urban pollution
Adrien Pineau, Henriette Trollvik, Herman Greaker, Sveinung Olsen, Yngve Eilertsen, and Ingrid Mann
Atmos. Meas. Tech., 17, 3843–3861, https://doi.org/10.5194/amt-17-3843-2024, https://doi.org/10.5194/amt-17-3843-2024, 2024
Short summary
Short summary
The mesosphere, part of the upper atmosphere, contains small solid dust particles, mostly made up of material from interplanetary space. We are preparing an experiment to collect such particles during a rocket flight. A new instrument has been designed and numerical simulations have been performed to investigate the airflow nearby as well as its dust collection efficiency. The collected dust particles will be further analyzed in the laboratory in order to study their chemical composition.
Chenjie Yu, Edouard Pangui, Kevin Tu, Mathieu Cazaunau, Maxime Feingesicht, Landsheere Xavier, Thierry Bourrianne, Vincent Michoud, Christopher Cantrell, Timothy B. Onasch, Andrew Freedman, and Paola Formenti
Atmos. Meas. Tech., 17, 3419–3437, https://doi.org/10.5194/amt-17-3419-2024, https://doi.org/10.5194/amt-17-3419-2024, 2024
Short summary
Short summary
To meet the requirements for measuring aerosol optical properties on airborne platforms and conducting dual-wavelength measurements, we introduced A2S2, an airborne dual-wavelength cavity-attenuated phase-shift single monitor. This study reports the results in the laboratory and an aircraft campaign over Paris and its surrounding regions. The results demonstrate A2S2's reliability in measuring aerosol optical properties at both wavelengths and its suitability for future aircraft campaigns.
Patricia K. Quinn, Timothy S. Bates, Derek J. Coffman, James E. Johnson, and Lucia M. Upchurch
Atmos. Meas. Tech., 17, 3157–3170, https://doi.org/10.5194/amt-17-3157-2024, https://doi.org/10.5194/amt-17-3157-2024, 2024
Short summary
Short summary
An uncrewed aerial observing system has been developed for the measurement of vertical profiles of aerosol and cloud properties that affect Earth's radiation balance. The system was successfully deployed from a ship and from a coastal site and flown autonomously up to 3050 m and for 4.5 h. These results indicate the potential of the observing system to make routine, operational flights from ships and land to characterize aerosol interactions with radiation and clouds.
Manuel Schöberl, Maximilian Dollner, Josef Gasteiger, Petra Seibert, Anne Tipka, and Bernadett Weinzierl
Atmos. Meas. Tech., 17, 2761–2776, https://doi.org/10.5194/amt-17-2761-2024, https://doi.org/10.5194/amt-17-2761-2024, 2024
Short summary
Short summary
Transporting a representative aerosol sample to instrumentation inside a research aircraft remains a challenge due to losses or enhancements of particles in the aerosol sampling system. Here, we present sampling efficiencies and the cutoff diameter for the DLR Falcon aerosol sampling system as a function of true airspeed by comparing the in-cabin and the out-cabin particle number size distributions observed during the A-LIFE aircraft mission.
Markus Knoll, Martin Penz, Hannes Juchem, Christina Schmidt, Denis Pöhler, and Alexander Bergmann
Atmos. Meas. Tech., 17, 2481–2505, https://doi.org/10.5194/amt-17-2481-2024, https://doi.org/10.5194/amt-17-2481-2024, 2024
Short summary
Short summary
Exhaust emissions from combustion-based vehicles are negatively affecting human health and our environment. In particular, a small share (< 20 %) of poorly maintained or tampered vehicles are responsible for the majority (60 %–90 %) of traffic-related emissions. The emissions from vehicles are currently not properly monitored during their lifetime. We present a roadside measurement technique, called
point sampling, which can be used to monitor vehicle emissions throughout their life cycle.
Claudio Crazzolara and Andreas Held
Atmos. Meas. Tech., 17, 2183–2194, https://doi.org/10.5194/amt-17-2183-2024, https://doi.org/10.5194/amt-17-2183-2024, 2024
Short summary
Short summary
Our paper describes the development of a collection device that can be used to collect airborne dust particles classified according to their size. This collection device is optimized for a special analysis method based on X-ray fluorescence so that particles can be collected from the air and analyzed with high sensitivity. This enables the determination of the content of heavy metals in the airborne particle fraction, which are of health-relevant significance.
Wei-Chieh Huang, Hui-Ming Hung, Ching-Wei Chu, Wei-Chun Hwang, and Shih-Chun Candice Lung
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-39, https://doi.org/10.5194/amt-2024-39, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study investigates aerosol properties crucial for health, cloud formation, and climate impact. Employing a low-cost sensor system, we assess hygroscopicity of particulate matter (PM), the ability to influence cloud formation to improve the reported PM concentrations from low-cost sensors. The study introduces an alternate methodology for assessing aerosol hygroscopicity, offering insights into atmospheric science, air quality, and cloud dynamics.
Roman Pohorsky, Andrea Baccarini, Julie Tolu, Lenny H. E. Winkel, and Julia Schmale
Atmos. Meas. Tech., 17, 731–754, https://doi.org/10.5194/amt-17-731-2024, https://doi.org/10.5194/amt-17-731-2024, 2024
Short summary
Short summary
This manuscript presents a new tethered-balloon-based platform for in situ vertical measurements of aerosols and trace gases in the lower atmosphere of polar and alpine regions. The system can host various instrumental setups to target different research questions and features new instruments, in particular a miniaturized scanning electrical mobility spectrometer, deployed for the first time in a tethered balloon.
Anna J. Miller, Fabiola Ramelli, Christopher Fuchs, Nadja Omanovic, Robert Spirig, Huiying Zhang, Ulrike Lohmann, Zamin A. Kanji, and Jan Henneberger
Atmos. Meas. Tech., 17, 601–625, https://doi.org/10.5194/amt-17-601-2024, https://doi.org/10.5194/amt-17-601-2024, 2024
Short summary
Short summary
We present a method for aerosol and cloud research using two uncrewed aerial vehicles (UAVs). The UAVs have a propeller heating mechanism that allows flights in icing conditions, which has so far been a limitation for cloud research with UAVs. One UAV burns seeding flares, producing a plume of particles that causes ice formation in supercooled clouds. The second UAV measures aerosol size distributions and is used for measuring the seeding plume or for characterizing the boundary layer.
Sophie Erb, Elias Graf, Yanick Zeder, Simone Lionetti, Alexis Berne, Bernard Clot, Gian Lieberherr, Fiona Tummon, Pascal Wullschleger, and Benoît Crouzy
Atmos. Meas. Tech., 17, 441–451, https://doi.org/10.5194/amt-17-441-2024, https://doi.org/10.5194/amt-17-441-2024, 2024
Short summary
Short summary
In this study, we focus on an automatic bioaerosol measurement instrument and investigate the impact of using its fluorescence measurement for pollen identification. The fluorescence signal is used together with a pair of images from the same instrument to identify single pollen grains via neural networks. We test whether considering fluorescence as a supplementary input improves the pollen identification performance by comparing three different neural networks.
Miguel Ricardo A. Hilario, Avelino F. Arellano, Ali Behrangi, Ewan C. Crosbie, Joshua P. DiGangi, Glenn S. Diskin, Michael A. Shook, Luke D. Ziemba, and Armin Sorooshian
Atmos. Meas. Tech., 17, 37–55, https://doi.org/10.5194/amt-17-37-2024, https://doi.org/10.5194/amt-17-37-2024, 2024
Short summary
Short summary
Wet scavenging strongly influences aerosol lifetime and interactions but is a large uncertainty in global models. We present a method to identify meteorological variables relevant for estimating wet scavenging. During long-range transport over the tropical western Pacific, relative humidity and the frequency of humid conditions are better predictors of scavenging than precipitation. This method can be applied to other regions, and our findings can inform scavenging parameterizations in models.
Sarah Grawe, Conrad Jentzsch, Jonas Schaefer, Heike Wex, Stephan Mertes, and Frank Stratmann
Atmos. Meas. Tech., 16, 4551–4570, https://doi.org/10.5194/amt-16-4551-2023, https://doi.org/10.5194/amt-16-4551-2023, 2023
Short summary
Short summary
Measurements of ice-nucleating particle (INP) concentrations are valuable for the simulation of cloud properties. In recent years, filter sampling in combination with offline INP measurements has become increasingly popular. However, most sampling is ground-based, and the vertical transport of INPs is not well quantified. The High-volume flow aERosol particle filter sAmpler (HERA) for applications on board aircraft was developed to expand the sparse dataset of INP concentrations at cloud level.
Dimitri Castarède, Zoé Brasseur, Yusheng Wu, Zamin A. Kanji, Markus Hartmann, Lauri Ahonen, Merete Bilde, Markku Kulmala, Tuukka Petäjä, Jan B. C. Pettersson, Berko Sierau, Olaf Stetzer, Frank Stratmann, Birgitta Svenningsson, Erik Swietlicki, Quynh Thu Nguyen, Jonathan Duplissy, and Erik S. Thomson
Atmos. Meas. Tech., 16, 3881–3899, https://doi.org/10.5194/amt-16-3881-2023, https://doi.org/10.5194/amt-16-3881-2023, 2023
Short summary
Short summary
Clouds play a key role in Earth’s climate by influencing the surface energy budget. Certain types of atmospheric aerosols, called ice-nucleating particles (INPs), induce the formation of ice in clouds and, thus, often initiate precipitation formation. The Portable Ice Nucleation Chamber 2 (PINCii) is a new instrument developed to study ice formation and to conduct ambient measurements of INPs, allowing us to investigate the sources and properties of the atmospheric aerosols that can act as INPs.
Franz Martin Schnaiter, Claudia Linke, Eija Asmi, Henri Servomaa, Antti-Pekka Hyvärinen, Sho Ohata, Yutaka Kondo, and Emma Järvinen
Atmos. Meas. Tech., 16, 2753–2769, https://doi.org/10.5194/amt-16-2753-2023, https://doi.org/10.5194/amt-16-2753-2023, 2023
Short summary
Short summary
Light-absorbing particles from combustion processes are important contributors to climate warming. Their highly variable spectral light absorption properties need to be monitored in the field. Commonly used methods show measurement artefacts that are difficult to correct. We introduce a new instrument that is based on the photoacoustic effect. Long-term operation in the Finnish Arctic demonstrates the applicability of the new instrument for unattended light absorption monitoring.
Dominik Stolzenburg, Tiia Laurila, Pasi Aalto, Joonas Vanhanen, Tuukka Petäjä, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 2471–2483, https://doi.org/10.5194/amt-16-2471-2023, https://doi.org/10.5194/amt-16-2471-2023, 2023
Short summary
Short summary
Size-distribution measurements of ultrafine particles are of special interest as they can be used to estimate the atmospheric significance of new particle formation, a process which is thought to influence the global climate. Here we show that improved counting statistics in size-distribution measurements through the usage of higher sampling flows can significantly reduce the uncertainties in such calculations.
Kamaljeet Kaur and Kerry E. Kelly
Atmos. Meas. Tech., 16, 2455–2470, https://doi.org/10.5194/amt-16-2455-2023, https://doi.org/10.5194/amt-16-2455-2023, 2023
Short summary
Short summary
We evaluated the AlphaSense OPC-N3 and PMS5003 compared to federal equivalent method (FEM) PM10 measurements in the Salt Lake Valley during five dust events. Before correction, the OPC-N3 agreed well, but the PMS PM10 measurements correlated poorly with the FEM. After correcting the PMS with a PM2.5 / PM10 ratio-based factor, the PMS PM10 correlations improved significantly. This suggests the possibility of better resolved spatial estimates of PM10 using PMS measurements and PM2.5 / PM10 ratios.
Balint Alfoldy, Asta Gregorič, Matic Ivančič, Irena Ježek, and Martin Rigler
Atmos. Meas. Tech., 16, 135–152, https://doi.org/10.5194/amt-16-135-2023, https://doi.org/10.5194/amt-16-135-2023, 2023
Short summary
Short summary
Atmospheric concentrations and source apportionment (SA) of black carbon (BC) and CO2 were determined in an urban environment during a heating season. BC particles were attributed to two major sources: traffic and heating. The BC SA was implemented by an Aethalometer model used for the SA of CO2 supposing that the source-specific CO2 components are correlated with the corresponding BC. Source-specific emission factors were determined as a ratio of corresponding BC and CO2 components.
Christian Pilz, Sebastian Düsing, Birgit Wehner, Thomas Müller, Holger Siebert, Jens Voigtländer, and Michael Lonardi
Atmos. Meas. Tech., 15, 6889–6905, https://doi.org/10.5194/amt-15-6889-2022, https://doi.org/10.5194/amt-15-6889-2022, 2022
Short summary
Short summary
Tethered balloon observations are highly valuable for aerosol studies in the lowest part of the atmosphere. This study presents a newly developed platform called CAMP with four aerosol instruments for balloon-borne measurements in the Arctic. Laboratory characterizations and evaluations of the instruments and results of a first field deployment are shown. A case study highlights CAMP's capabilities and the importance of airborne aerosol studies for interpretation of ground-based observations.
Weilun Zhao, Gang Zhao, Ying Li, Song Guo, Nan Ma, Lizi Tang, Zirui Zhang, and Chunsheng Zhao
Atmos. Meas. Tech., 15, 6807–6817, https://doi.org/10.5194/amt-15-6807-2022, https://doi.org/10.5194/amt-15-6807-2022, 2022
Short summary
Short summary
A new method to determine black carbon mass size distribution (BCMSD) was proposed using the size-resolved absorption coefficient measured by an aerodynamic aerosol classifier in tandem with an aethalometer. This new method fills the gap in the high-time-resolution measurement of BCMSD ranging from upper submicron particle sizes to larger than 1 µm. This method can be applied to field measurement of BCMSD extensively for better understanding BC aging and better estimating the BC climate effect.
Antonis Dragoneas, Sergej Molleker, Oliver Appel, Andreas Hünig, Thomas Böttger, Markus Hermann, Frank Drewnick, Johannes Schneider, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 15, 5719–5742, https://doi.org/10.5194/amt-15-5719-2022, https://doi.org/10.5194/amt-15-5719-2022, 2022
Short summary
Short summary
The ERICA is a specially designed aerosol particle mass spectrometer for in situ, real-time chemical composition analysis of aerosols. It can operate completely autonomously, in the absence of an instrument operator. Its design has enabled its operation under harsh conditions, like those experienced in the upper troposphere and lower stratosphere, aboard unpressurized high-altitude research aircraft. The instrument has successfully participated in several aircraft operations around the world.
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022, https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Short summary
In the last decade, low-cost sensors have revolutionised the field of air quality monitoring. This paper extends the ability of low-cost sensors to not only measure air pollution, but also to understand where the pollution comes from. This "source apportionment" is a critical step in air quality management to allow for the mitigation of air pollution. The techniques developed in this paper have the potential for great impact in both research and industrial applications.
Luka Drinovec, Uroš Jagodič, Luka Pirker, Miha Škarabot, Mario Kurtjak, Kristijan Vidović, Luca Ferrero, Bradley Visser, Jannis Röhrbein, Ernest Weingartner, Daniel M. Kalbermatter, Konstantina Vasilatou, Tobias Bühlmann, Celine Pascale, Thomas Müller, Alfred Wiedensohler, and Griša Močnik
Atmos. Meas. Tech., 15, 3805–3825, https://doi.org/10.5194/amt-15-3805-2022, https://doi.org/10.5194/amt-15-3805-2022, 2022
Short summary
Short summary
A new photothermal interferometer (PTAAM-2λ) for artefact-free determination of the aerosol absorption coefficient at two wavelengths is presented. The instrument is calibrated with NO2 and polydisperse nigrosin, resulting in very low uncertainties of the absorption coefficients: 4 % at 532 nm and 6 % at 1064 nm. The instrument’s performance makes the PTAAM-2λ a strong candidate for reference measurements of the aerosol absorption coefficient.
Markus Leiminger, Lukas Fischer, Sophia Brilke, Julian Resch, Paul Martin Winkler, Armin Hansel, and Gerhard Steiner
Atmos. Meas. Tech., 15, 3705–3720, https://doi.org/10.5194/amt-15-3705-2022, https://doi.org/10.5194/amt-15-3705-2022, 2022
Short summary
Short summary
We developed an axial ion mobility classifier coupled to an atmospheric-pressure interface time-of-flight (APi-TOF) mass spectrometer to measure size-segregated atmospheric ions. We characterize the performance of the novel instrument with bipolar-electrospray-generated ion mobility standards and compare the results with CFD simulations and a simplified numerical particle-tracking model. Ultimately, we report first mass–mobility measurements of atmospheric ions in Innsbruck, Austria.
Andreas Hünig, Oliver Appel, Antonis Dragoneas, Sergej Molleker, Hans-Christian Clemen, Frank Helleis, Thomas Klimach, Franziska Köllner, Thomas Böttger, Frank Drewnick, Johannes Schneider, and Stephan Borrmann
Atmos. Meas. Tech., 15, 2889–2921, https://doi.org/10.5194/amt-15-2889-2022, https://doi.org/10.5194/amt-15-2889-2022, 2022
Short summary
Short summary
We have serially combined the two well-established methods for in situ real-time measurement of fine particle chemical composition, the single-particle laser ablation method and the flash evaporation with electron impact ionization method, into a novel instrument. Here we present the design; instrument characteristics, as derived from laboratory and field measurements; and results from the first field deployment during the 2017 StratoClim aircraft campaign.
Christopher D. Wallis, Mason D. Leandro, Patrick Y. Chuang, and Anthony S. Wexler
Atmos. Meas. Tech., 15, 2547–2556, https://doi.org/10.5194/amt-15-2547-2022, https://doi.org/10.5194/amt-15-2547-2022, 2022
Short summary
Short summary
Measuring emissions from stacks requires techniques to address a broad range of conditions and measurement challenges. Here we describe an instrument package held by a crane above a stack to characterize both wet droplet and dried aerosol emissions from cooling tower spray drift in situ. The instrument package characterizes the velocity, size distribution, and concentration of the wet droplet emissions and the mass concentration and elemental composition of the dried PM2.5 and PM10 emissions.
Karin Ardon-Dryer, Mary C. Kelley, Xia Xueting, and Yuval Dryer
Atmos. Meas. Tech., 15, 2345–2360, https://doi.org/10.5194/amt-15-2345-2022, https://doi.org/10.5194/amt-15-2345-2022, 2022
Short summary
Short summary
The Aerosol Research Observation Station (AEROS) located in West Texas was designed to continuously measure atmospheric particles, including different particulate matter sizes, total particle number concentration, and size distribution. This article provides a description of AEROS as well as an intercomparison of the different instruments using laboratory and atmospheric particles, showing similar concentration as well to distinguish between various pollution events (natural vs. anthropogenic).
Adam T. Ahern, Frank Erdesz, Nicholas L. Wagner, Charles A. Brock, Ming Lyu, Kyra Slovacek, Richard H. Moore, Elizabeth B. Wiggins, and Daniel M. Murphy
Atmos. Meas. Tech., 15, 1093–1105, https://doi.org/10.5194/amt-15-1093-2022, https://doi.org/10.5194/amt-15-1093-2022, 2022
Short summary
Short summary
Particles in the atmosphere play a significant role in climate change by scattering light back into space, reducing the amount of energy available to be absorbed by greenhouse gases. We built a new instrument to measure what direction light is scattered by particles, e.g., wildfire smoke. This is important because, depending on the angle of the sun, some particles scatter light into space (cooling the planet), but some light is also scattered towards the Earth (not cooling the planet).
Yuya Kobayashi and Nobuyuki Takegawa
Atmos. Meas. Tech., 15, 833–844, https://doi.org/10.5194/amt-15-833-2022, https://doi.org/10.5194/amt-15-833-2022, 2022
Short summary
Short summary
We propose a new method to quantify particulate sodium and potassium salts (nitrate, chloride, and sulfate) by using a refractory aerosol thermal desorption mass spectrometer (rTDMS). The combination of a graphite particle collector and a carbon dioxide laser enables high desorption temperature. Laboratory experiments showed that major ion signals originating from sodium or potassium salts were clearly detected, associated with the increase in the desorption temperature by laser heating.
James R. Ouimette, William C. Malm, Bret A. Schichtel, Patrick J. Sheridan, Elisabeth Andrews, John A. Ogren, and W. Patrick Arnott
Atmos. Meas. Tech., 15, 655–676, https://doi.org/10.5194/amt-15-655-2022, https://doi.org/10.5194/amt-15-655-2022, 2022
Short summary
Short summary
We show that the low-cost PurpleAir sensor can be characterized as a cell-reciprocal nephelometer. At two very different locations (Mauna Loa Observatory in Hawaii and the Table Mountain rural site in Colorado), the PurpleAir measurements are highly correlated with the submicrometer aerosol scattering coefficient measured by a research-grade integrating nephelometer. These results imply that, with care, PurpleAir data may be used to evaluate climate and air quality models.
Steven G. Howell, Steffen Freitag, Amie Dobracki, Nikolai Smirnow, and Arthur J. Sedlacek III
Atmos. Meas. Tech., 14, 7381–7404, https://doi.org/10.5194/amt-14-7381-2021, https://doi.org/10.5194/amt-14-7381-2021, 2021
Short summary
Short summary
Small particles in the air have important effects on visibility, clouds, and human health. For the ORACLES project we got a new particle sizing instrument that is fast, works over the most important particle sizes, and avoids some of the issues that plague other optical particle sizers. Unfortunately it sees some particles much smaller than they really are, likely because they heat up and evaporate. We show a crude correction and speculate why these particles heat up much more than expected.
Jeffrey K. Bean
Atmos. Meas. Tech., 14, 7369–7379, https://doi.org/10.5194/amt-14-7369-2021, https://doi.org/10.5194/amt-14-7369-2021, 2021
Short summary
Short summary
Understanding and improving the quality of data generated from low-cost air quality sensors are crucial steps in using these sensors. This work investigates how averaging time, choice of reference instrument, and the observation of higher pollutant concentrations can impact the perceived performance of low-cost sensors in an evaluation. The influence of these factors should be considered when comparing one sensor to another or determining if a sensor can produce data that fit a specific need.
Fan Mei, Steven Spielman, Susanne Hering, Jian Wang, Mikhail S. Pekour, Gregory Lewis, Beat Schmid, Jason Tomlinson, and Maynard Havlicek
Atmos. Meas. Tech., 14, 7329–7340, https://doi.org/10.5194/amt-14-7329-2021, https://doi.org/10.5194/amt-14-7329-2021, 2021
Short summary
Short summary
This study focuses on understanding a versatile water-based condensation particle counter (vWCPC 3789) performance under various ambient pressure conditions (500–1000 hPa). A vWCPC has the advantage of avoiding health and safety concerns. However, its performance characterization under low pressure is rare but crucial for ensuring successful airborne deployment. This paper provides advanced knowledge of operating a vWCPC 3789 to capture the spatial variations of atmospheric aerosols.
Rebecca A. Wernis, Nathan M. Kreisberg, Robert J. Weber, Yutong Liang, John Jayne, Susanne Hering, and Allen H. Goldstein
Atmos. Meas. Tech., 14, 6533–6550, https://doi.org/10.5194/amt-14-6533-2021, https://doi.org/10.5194/amt-14-6533-2021, 2021
Short summary
Short summary
cTAG is a new scientific instrument that measures concentrations of organic chemicals in the atmosphere. cTAG is the first instrument capable of measuring small, light chemicals as well as heavier chemicals and everything in between on a single detector, every hour. In this work we explain how cTAG works and some of the tests we performed to verify that it works properly and reliably. We also present measurements of alkanes that suggest they have three dominant sources in a Bay Area suburb.
Linghan Zeng, Amy P. Sullivan, Rebecca A. Washenfelder, Jack Dibb, Eric Scheuer, Teresa L. Campos, Joseph M. Katich, Ezra Levin, Michael A. Robinson, and Rodney J. Weber
Atmos. Meas. Tech., 14, 6357–6378, https://doi.org/10.5194/amt-14-6357-2021, https://doi.org/10.5194/amt-14-6357-2021, 2021
Short summary
Short summary
Three online systems for measuring water-soluble brown carbon are compared. A mist chamber and two different particle-into-liquid samplers were deployed on separate research aircraft targeting wildfires and followed a similar detection method using a long-path liquid waveguide with a spectrometer to measure the light absorption from 300 to 700 nm. Detection limits, signal hysteresis and other sampling issues are compared, and further improvements of these liquid-based systems are provided.
Zixia Liu, Martin Osborne, Karen Anderson, Jamie D. Shutler, Andy Wilson, Justin Langridge, Steve H. L. Yim, Hugh Coe, Suresh Babu, Sreedharan K. Satheesh, Paquita Zuidema, Tao Huang, Jack C. H. Cheng, and James Haywood
Atmos. Meas. Tech., 14, 6101–6118, https://doi.org/10.5194/amt-14-6101-2021, https://doi.org/10.5194/amt-14-6101-2021, 2021
Short summary
Short summary
This paper first validates the performance of an advanced aerosol observation instrument POPS against a reference instrument and examines any biases introduced by operating it on a quadcopter drone. The results show the POPS performs relatively well on the ground. The impact of the UAV rotors on the POPS is small at low wind speeds, but when operating under higher wind speeds, larger discrepancies occur. It appears that the POPS measures sub-micron aerosol particles more accurately on the UAV.
Eric A. Wendt, Casey Quinn, Christian L'Orange, Daniel D. Miller-Lionberg, Bonne Ford, Jeffrey R. Pierce, John Mehaffy, Michael Cheeseman, Shantanu H. Jathar, David H. Hagan, Zoey Rosen, Marilee Long, and John Volckens
Atmos. Meas. Tech., 14, 6023–6038, https://doi.org/10.5194/amt-14-6023-2021, https://doi.org/10.5194/amt-14-6023-2021, 2021
Short summary
Short summary
Fine particulate matter air pollution is one of the leading contributors to adverse health outcomes on the planet. Here, we describe the design and validation of a low-cost, compact, and autonomous instrument capable of measuring particulate matter levels directly, via mass sampling, and optically, via mass and sunlight extinction measurements. We demonstrate the instrument's accuracy relative to reference measurements and its potential for community-level sampling.
Jiaoshi Zhang, Steven Spielman, Yang Wang, Guangjie Zheng, Xianda Gong, Susanne Hering, and Jian Wang
Atmos. Meas. Tech., 14, 5625–5635, https://doi.org/10.5194/amt-14-5625-2021, https://doi.org/10.5194/amt-14-5625-2021, 2021
Short summary
Short summary
In this study, we present a newly developed instrument, the humidity-controlled fast integrated mobility spectrometer (HFIMS), for fast measurements of aerosol hygroscopic growth. The HFIMS can measure the distributions of particle hygroscopic growth factors at six diameters from 35 to 265 nm under five RH levels from 20 to 85 % within 25 min. The HFIMS significantly advances our capability of characterizing the hygroscopic growth of atmospheric aerosols over a wide range of relative humidities.
Johannes Passig, Julian Schade, Robert Irsig, Lei Li, Xue Li, Zhen Zhou, Thomas Adam, and Ralf Zimmermann
Atmos. Meas. Tech., 14, 4171–4185, https://doi.org/10.5194/amt-14-4171-2021, https://doi.org/10.5194/amt-14-4171-2021, 2021
Short summary
Short summary
Ships are major sources of air pollution; however, monitoring of ship emissions outside harbours is a challenging task. We optimized single-particle mass spectrometry (SPMS) for the detection of bunker fuel emissions and demonstrate the detection of individual ship plumes from more than 10 km in distance. The approach works independently of background air pollution and also when ships use exhaust-cleaning scrubbers. We discuss the potential and limits of SPMS-based monitoring of ship plumes.
Mengying Bao, Yan-Lin Zhang, Fang Cao, Yu-Chi Lin, Yuhang Wang, Xiaoyan Liu, Wenqi Zhang, Meiyi Fan, Feng Xie, Robert Cary, Joshua Dixon, and Lihua Zhou
Atmos. Meas. Tech., 14, 4053–4068, https://doi.org/10.5194/amt-14-4053-2021, https://doi.org/10.5194/amt-14-4053-2021, 2021
Short summary
Short summary
We introduce a two-wavelength method for brown C measurements with a modified Sunset carbon analyzer. We defined the enhanced concentrations and gave the possibility of providing an indicator of brown C. Compared with the strong local sources of organic and elemental C, we found that differences in EC mainly originated from regional transport. Biomass burning emissions significantly contributed to high differences in EC concentrations during the heavy biomass burning periods.
Candice L. Sirmollo, Don R. Collins, Jordan M. McCormick, Cassandra F. Milan, Matthew H. Erickson, James H. Flynn, Rebecca J. Sheesley, Sascha Usenko, Henry W. Wallace, Alexander A. T. Bui, Robert J. Griffin, Matthew Tezak, Sean M. Kinahan, and Joshua L. Santarpia
Atmos. Meas. Tech., 14, 3351–3370, https://doi.org/10.5194/amt-14-3351-2021, https://doi.org/10.5194/amt-14-3351-2021, 2021
Short summary
Short summary
The newly developed portable 1 m3 CAGE chamber systems were characterized using data acquired during a 2-month field study in 2016 in a forested area north of Houston, TX, USA. Concentrations of several oxidant and organic compounds measured in the chamber were found to closely agree with those calculated with a zero-dimensional model. By tracking the modes of injected monodisperse particles, a pattern change was observed for hourly averaged growth rates between late summer and early fall.
Ningjin Xu and Don R. Collins
Atmos. Meas. Tech., 14, 2891–2906, https://doi.org/10.5194/amt-14-2891-2021, https://doi.org/10.5194/amt-14-2891-2021, 2021
Short summary
Short summary
Oxidation flow reactors (OFRs) are frequently used to study atmospheric chemistry and aerosol formation by accelerating by up to 10 000 times the reactions that can take hours, days, or even weeks in the atmosphere. Here we present the design and evaluation of a new all-Teflon OFR. The computational, laboratory, and field use data we present demonstrate that the PFA OFR is suitable for a range of applications, including the study of rapidly changing ambient concentrations.
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021, https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Short summary
This work introduces a novel instrument system for high-resolution atmospheric profiling, which lowers and retracts a suspended instrument package beneath drifting long-duration balloons. During a 100 d circumtropical flight, the instrument collected over a hundred 2 km profiles of temperature, water vapor, clouds, and aerosol at 1 m resolution, yielding unprecedented geographic sampling and vertical resolution measurements of the tropical tropopause layer.
Demetrios Pagonis, Pedro Campuzano-Jost, Hongyu Guo, Douglas A. Day, Melinda K. Schueneman, Wyatt L. Brown, Benjamin A. Nault, Harald Stark, Kyla Siemens, Alex Laskin, Felix Piel, Laura Tomsche, Armin Wisthaler, Matthew M. Coggon, Georgios I. Gkatzelis, Hannah S. Halliday, Jordan E. Krechmer, Richard H. Moore, David S. Thomson, Carsten Warneke, Elizabeth B. Wiggins, and Jose L. Jimenez
Atmos. Meas. Tech., 14, 1545–1559, https://doi.org/10.5194/amt-14-1545-2021, https://doi.org/10.5194/amt-14-1545-2021, 2021
Short summary
Short summary
We describe the airborne deployment of an extractive electrospray time-of-flight mass spectrometer (EESI-MS). The instrument provides a quantitative 1 Hz measurement of the chemical composition of organic aerosol up to altitudes of
7 km, with single-compound detection limits as low as 50 ng per standard cubic meter.
Xiaona Shang, Ling Li, Xinlian Zhang, Huihui Kang, Guodong Sui, Gehui Wang, Xingnan Ye, Hang Xiao, and Jianmin Chen
Atmos. Meas. Tech., 14, 1037–1045, https://doi.org/10.5194/amt-14-1037-2021, https://doi.org/10.5194/amt-14-1037-2021, 2021
Short summary
Short summary
Oxidative stress can be used to evaluate not only adverse health effects but also adverse ecological effects. However, little research uses eco-toxicological assay to assess the risks posed by particle matter to non-human biomes. One important reason might be that the concentration of toxic components of atmospheric particles is far below the high detection limit of eco-toxic measurement. To solve the rapid detection problem, we extended a VACES for ecotoxicity aerosol measurement.
Joan Stude, Heinfried Aufmhoff, Hans Schlager, Markus Rapp, Frank Arnold, and Boris Strelnikov
Atmos. Meas. Tech., 14, 983–993, https://doi.org/10.5194/amt-14-983-2021, https://doi.org/10.5194/amt-14-983-2021, 2021
Short summary
Short summary
In this paper we describe the instrument ROMARA and show data from the first flight on a research rocket.
On the way through the atmosphere, the instrument detects positive and negative, natural occurring ions before returning back to ground.
ROMARA was successfully launched together with other instruments into a special radar echo.
We detected typical, light ions of positive and negative charge and heavy negative ions, but no heavy positive ions.
Rob L. Modini, Joel C. Corbin, Benjamin T. Brem, Martin Irwin, Michele Bertò, Rosaria E. Pileci, Prodromos Fetfatzis, Kostas Eleftheriadis, Bas Henzing, Marcel M. Moerman, Fengshan Liu, Thomas Müller, and Martin Gysel-Beer
Atmos. Meas. Tech., 14, 819–851, https://doi.org/10.5194/amt-14-819-2021, https://doi.org/10.5194/amt-14-819-2021, 2021
Short summary
Short summary
Extinction-minus-scattering is an important method for measuring aerosol light absorption, but its application in the field presents a number of challenges. A recently developed instrument based on this method – the CAPS PMssa – has the potential to overcome some of these challenges. We present a compilation of theory, lab measurements, and field examples to characterize this instrument and show the conditions under which it can deliver reliable absorption measurements for atmospheric aerosols.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Charles H. Hudgins, Kenneth L. Thornhill, Gregory L. Schuster, Richard H. Moore, Ewan C. Crosbie, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 695–713, https://doi.org/10.5194/amt-14-695-2021, https://doi.org/10.5194/amt-14-695-2021, 2021
Short summary
Short summary
First field data from a custom-built in situ instrument measuring hyperspectral (300–700 nm, 0.8 nm resolution) ambient atmospheric aerosol extinction are presented. The advantage of this capability is that it can be directly linked to other in situ techniques that measure physical and chemical properties of atmospheric aerosols. Second-order polynomials provided a better fit to the data than traditional power law fits, yielding greater discrimination among distinct ambient aerosol populations.
Carolyn E. Jordan, Ryan M. Stauffer, Brian T. Lamb, Michael Novak, Antonio Mannino, Ewan C. Crosbie, Gregory L. Schuster, Richard H. Moore, Charles H. Hudgins, Kenneth L. Thornhill, Edward L. Winstead, Bruce E. Anderson, Robert F. Martin, Michael A. Shook, Luke D. Ziemba, Andreas J. Beyersdorf, Claire E. Robinson, Chelsea A. Corr, and Maria A. Tzortziou
Atmos. Meas. Tech., 14, 715–736, https://doi.org/10.5194/amt-14-715-2021, https://doi.org/10.5194/amt-14-715-2021, 2021
Short summary
Short summary
In situ measurements of ambient atmospheric aerosol hyperspectral (300–700 nm) optical properties (extinction, total absorption, water- and methanol-soluble absorption) were observed around the Korean peninsula. Such in situ observations provide a direct link between ambient aerosol optical properties and their physicochemical properties. The benefit of hyperspectral measurements is evident as simple mathematical functions could not fully capture the observed spectral detail of ambient aerosols.
Cyril Brunner and Zamin A. Kanji
Atmos. Meas. Tech., 14, 269–293, https://doi.org/10.5194/amt-14-269-2021, https://doi.org/10.5194/amt-14-269-2021, 2021
Short summary
Short summary
Subvisual microscopic particles in the atmosphere are needed to act as seeds for cloud droplets or ice crystals to form. The microscopic particles, called ice-nucleating particles (INPs), form ice crystals and are rare, and their properties are not well understood, in part because measuring them is challenging and time consuming, and to date has not been automated. Here, we present the first online instrument that can continuously and autonomously measure INP concentration at 243 K.
Adnan Masic, Dzevad Bibic, Boran Pikula, Almir Blazevic, Jasna Huremovic, and Sabina Zero
Atmos. Meas. Tech., 13, 6427–6443, https://doi.org/10.5194/amt-13-6427-2020, https://doi.org/10.5194/amt-13-6427-2020, 2020
Short summary
Short summary
Optical-based particulate matter sensors offer some advantages: price (especially low-cost sensors), time and space resolution, but they are less accurate than reference instruments. Understanding their performance and limitations is crucial for wider adoption. This is a case study for strong and mild air pollution done in Sarajevo, Bosnia-Herzegovina. Tested optical sensors were found to be generally acceptable in this study, but proper calibration is required for getting reliable data.
Cited articles
Alfaro, S. C., Lafon, S., Rajot, J. L., Formenti, P., Gaudichet, A., and
Maillé, M.: Iron oxides and light absorption by pure desert
dust: An experimental study, J. Geophys. Res., 109, D08208,
https://doi.org/10.1029/2003JD004374, 2004.
Anderson, T. L. and Ogren, J. A.: Determining Aerosol Radiative Properties
Using the TSI 3563 Integrating Nephelometer, Aerosol Sci. Tech.,
29, 57–69, https://doi.org/10.1080/02786829808965551, 1998.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P., Satheesh,
S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and Aerosols, in:
Climate Change 2013: The Physical Science Basis. Contribution of Working
Group I to the Fifth Assessment Report of the Intergovernmental Panel on
Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M.,
Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P. M.,
Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
2013.
Bukowiecki, N., Hill, M., Gehrig, R., Zwicky, C. N., Lienemann, P.,
Hegedüs, F., Falkenberg, G., Weingartner, E., and Baltensperger, U.:
Trace metals in ambient air: Hourly size-segregated mass concentrations
determined by synchrotron-XRF, Environ. Sci. Technol., 39, 5754–5762,
https://doi.org/10.1021/es048089m, 2005.
Caponi, L., Formenti, P., Massabó, D., Di Biagio, C., Cazaunau, M., Pangui, E., Chevaillier, S., Landrot, G., Andreae, M. O., Kandler, K., Piketh, S., Saeed, T., Seibert, D., Williams, E., Balkanski, Y., Prati, P., and Doussin, J.-F.: Spectral- and size-resolved mass absorption efficiency of mineral dust aerosols in the shortwave spectrum: a simulation chamber study, Atmos. Chem. Phys., 17, 7175–7191, https://doi.org/10.5194/acp-17-7175-2017, 2017.
Cavalli, F., Viana, M., Yttri, K. E., Genberg, J., and Putaud, J.-P.: Toward a standardised thermal-optical protocol for measuring atmospheric organic and elemental carbon: the EUSAAR protocol, Atmos. Meas. Tech., 3, 79–89, https://doi.org/10.5194/amt-3-79-2010, 2010.
Chen, B., Stein, A. F., Castell, N., Gonzalez-Castanedo, Y., Sanchez de la
Campa, A. M., and de la Rosa, J. D.: Modeling and evaluation of urban
pollution events of atmospheric heavy metals from a large Cu-smelter, Sci.
Total Environ., 539, 17–25,
https://doi.org/10.1016/j.scitotenv.2015.08.117, 2016.
Clarke, A. D., Shinozuka, Y., Kapustin, V.N., Howell, S., Huebert, B.,
Doherty, S., Anderson, T., Covert, D., Anderson, J., Hua, X., Moore II, K.
G., McNaughton, C., Carmichael, G., and Weber, R.: Size distributions and
mixtures of dust and black carbon aerosol in Asian outflow: Physiochemistry
and optical properties, J. Geophys. Res., 109, D15S09,
https://doi.org/10.1029/2003JD004378, 2004.
Collaud Coen, M., Weingartner, E., Schaub, D., Hueglin, C., Corrigan, C., Henning, S., Schwikowski, M., and Baltensperger, U.: Saharan dust events at the Jungfraujoch: detection by wavelength dependence of the single scattering albedo and first climatology analysis, Atmos. Chem. Phys., 4, 2465–2480, https://doi.org/10.5194/acp-4-2465-2004, 2004.
Cooper, J. A., Petterson, K., Geiger, A., Siemers, A., and Rupprecht, B.:
Guide for developing a multi-metals, fenceline monitoring plan for fugitive
emissions using X-ray based monitors, Cooper Environmental Services,
Portland, Oregon, 1–42, 2010.
Derimian, Y., Karnieli, A., Kaufman, Y. J., Andreae, M. O., Andreae, T. W., Dubovik, O., Maenhaut, W., and Koren, I.: The role of iron and black carbon in aerosol light absorption, Atmos. Chem. Phys., 8, 3623–3637, https://doi.org/10.5194/acp-8-3623-2008, 2008.
Di Biagio, C., Formenti, P., Cazaunau, M., Pangui, E., Marchand, N., and Doussin, J.-F.: Aethalometer multiple scattering correction Cref for mineral dust aerosols, Atmos. Meas. Tech., 10, 2923–2939, https://doi.org/10.5194/amt-10-2923-2017, 2017.
Di Biagio, C., Formenti, P., Balkanski, Y., Caponi, L., Cazaunau, M., Pangui, E., Journet, E., Nowak, S., Andreae, M. O., Kandler, K., Saeed, T., Piketh, S., Seibert, D., Williams, E., and Doussin, J.-F.: Complex refractive indices and single-scattering albedo of global dust aerosols in the shortwave spectrum and relationship to size and iron content, Atmos. Chem. Phys., 19, 15503–15531, https://doi.org/10.5194/acp-19-15503-2019, 2019.
Di Mauro, B., Fava, F., Ferrero, L., Garzonio, R., Baccolo, G., Delmonte, B.,
and Colombo, R.: Mineral dust impact on snow radiative properties in the
European Alps combining ground, UAV, and satellite observations, J. Geophys.
Res.-Atmos., 120, 6080–6097, https://doi.org/10.1002/2015JD023287, 2015.
Drinovec, L., Močnik, G., Zotter, P., Prévôt, A. S. H., Ruckstuhl, C., Coz, E., Rupakheti, M., Sciare, J., Müller, T., Wiedensohler, A., and Hansen, A. D. A.: The ”dual-spot” Aethalometer: an improved measurement of aerosol black carbon with real-time loading compensation, Atmos. Meas. Tech., 8, 1965–1979, https://doi.org/10.5194/amt-8-1965-2015, 2015.
Drinovec, L., Gregorič, A., Zotter, P., Wolf, R., Bruns, E. A., Prévôt, A. S. H., Petit, J.-E., Favez, O., Sciare, J., Arnold, I. J., Chakrabarty, R. K., Moosmüller, H., Filep, A., and Močnik, G.: The filter-loading effect by ambient aerosols in filter absorption photometers depends on the coating of the sampled particles, Atmos. Meas. Tech., 10, 1043–1059, https://doi.org/10.5194/amt-10-1043-2017, 2017.
Ealo, M., Alastuey, A., Ripoll, A., Pérez, N., Minguillón, M. C., Querol, X., and Pandolfi, M.: Detection of Saharan dust and biomass burning events using near-real-time intensive aerosol optical properties in the north-western Mediterranean, Atmos. Chem. Phys., 16, 12567–12586, https://doi.org/10.5194/acp-16-12567-2016, 2016.
ECAC-report-IN-2015-1-5: Intercomparison of Integrating Nephelometers and Extinction monitors, available at:
https://www.actris-ecac.eu/files/ECAC-report-IN-2015-1-5_the-cyprus-institute_TSI3563-1082.pdf (last access: 17 June 2019), 2016.
European Commission: Establishing guidelines for demonstration and
subtraction of exceedances attributable to natural sources under the
Directive 2008/50/EC on ambient air quality and cleaner air for Europe,
SEC(2011) 208 final, Brussels, 15 February 2011, available at: http://ec.europa.eu/environment/air/quality/legislation/pdf/sec_2011_0208.pdf (last access: 13 May 2019), 2011.
European Committee for Standardisation (CEN): EN 16913:2017 Ambient Air – Standard
Method for the Measurement of , , Cl−, , Na+, K+,
, in PM2.5 as deposited on filters, CEN, Brussels, 2017a.
European Committee for Standardisation (CEN): EN 16909:2017 Ambient air –
Measurement of elemental carbon (EC) and organic carbon (OC) collected on
filters, CEN, Brussels, 2017b.
Fang, G. C., Kuo, Y. C., and Zhuang, Y. J.: Source Analysis of Trace Metal
Pollution Received at Harbor, Airport and Farmland Locations in Central
Taiwan, Aerosol Air Qual. Res, 15, 1774–1786,
https://https://doi.org/10.4209/aaqr.2014.12.0314, 2015.
Fialho, P., Hansen, A. D. A., and Honrath, R. E.: Absorption coefficients by
aerosols in remote areas: a new approach to decouple dust and black carbon
absorption coefficients using seven-wavelength Aethalometer data, J. Aerosol
Sci., 36, 267–282, https://doi.org/10.1016/j.jaerosci.2004.09.004, 2005.
Fialho, P., Freitas, M. C., Barata, F., Vieira, B., Hansen, A. D. A., and Honrath,
R. E.: The Aethalometer calibration and determination of iron concentration
in dust aerosols, J. Aerosol Sci., 37, 1497–1506,
https://doi.org/10.1016/j.jaerosci.2006.03.002, 2006.
Fialho, P., Cerqueira, M., Pio, C., Cardoso, J., Nunes, T., Custódio,
D., Alves, C., Almeida, S. M., Almeida-Silva, M., Reis, M., and Rocha, F.: The
application of a multi-wavelength Aethalometer to estimate iron dust and
black carbon concentrations in the marine boundary layer of Cape Verde,
Atmos. Environ., 97, 136–143,
https://doi.org/10.1016/j.atmosenv.2014.08.008, 2014.
Greilinger, M., Schauer, G., Baumann-Stanzer, K., Skomorowski, P.,
Schöner, W., and Kasper-Giebl, A.: Contribution of Saharan Dust to Ion
Deposition Loads of High Alpine Snow Packs in Austria (1987–2017), Front.
Earth Sci., 6, 1–14, https://doi.org/10.3389/feart.2018.00126, 2018.
Hand, V. L., Capes, G., Vaughan, D. J., Formenti, P., Haywood, J. M., and
Coe, H.: Evidence of internal mixing of African dust and biomass burning
particles by individual particle analysis using electron beam techniques, J.
Geophys. Res., 115, D13301, https://doi.org/10.1029/2009JD012938, 2010.
Herbert F.: Dune, Chilton books, Philadelphia, 1965.
Jeong, C.-H., Wang, J. M., and Evans, G. J.: Source Apportionment of Urban Particulate Matter using Hourly Resolved Trace Metals, Organics, and Inorganic Aerosol Components, Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2016-189, 2016.
Linke, C., Möhler, O., Veres, A., Mohácsi, Á., Bozóki, Z., Szabó, G., and Schnaiter, M.: Optical properties and mineralogical composition of different Saharan mineral dust samples: a laboratory study, Atmos. Chem. Phys., 6, 3315–3323, https://doi.org/10.5194/acp-6-3315-2006, 2006.
Mamali, D., Marinou, E., Sciare, J., Pikridas, M., Kokkalis, P., Kottas, M., Binietoglou, I., Tsekeri, A., Keleshis, C., Engelmann, R., Baars, H., Ansmann, A., Amiridis, V., Russchenberg, H., and Biskos, G.: Vertical profiles of aerosol mass concentration derived by unmanned airborne in situ and remote sensing instruments during dust events, Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, 2018.
Mamouri, R. E., Ansmann, A., Nisantzi, A., Kokkalis, P., Schwarz, A., and
Hadjimitsis, D.: Low Arabian extinctionto-backscatter ratio, Geophys. Res.
Lett., 40, 4762–4766, https://doi.org/10.1002/grl.50898, 2013.
Mani, M. and Pillai, R.: Impact of dust on solar photovoltaic (PV)
performance: Research status, challenges and recommendations,
Renew. Sust. Energ. Rev., 14, 3124–3131, https://doi.org/10.1016/j.rser.2010.07.065,
2010.
Marinou, E., Tesche, M., Nenes, A., Ansmann, A., Schrod, J., Mamali, D., Tsekeri, A., Pikridas, M., Baars, H., Engelmann, R., Voudouri, K.-A., Solomos, S., Sciare, J., Groß, S., Ewald, F., and Amiridis, V.: Retrieval of ice-nucleating particle concentrations from lidar observations and comparison with UAV in situ measurements, Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, 2019.
Middleton, N., Yiallouros, P., Kleanthous, S., Kolokotroni, O., Schwartz,
J., Dockery, D. W., Demokritou, P., and Koutrakis, P.: A 10-year time-series
analysis of respiratory and cardiovascular morbidity in Nicosia, Cyprus: the
effect of short-term changes in air pollution and dust storms, Environ.
Health, 7, 39, https://doi.org/10.1186/1476-069X-7-39, 2008.
Middleton, N. J.: Desert dust hazards: A global review, Aeolian Res., 24,
56–63, https://doi.org/10.1016/j.aeolia.2016.12.001, 2017.
Myhre, G., Shindell, D., Bréon, F.-M., Collins, W., Fuglestvedt, J.,
Huang, J., Koch, D., Lamarque, J.-F., Lee, D., Mendoza, B., Nakajima, T.,
Robock, A., Stephens, G., Takemura, T., and Zhang, H.: Anthropogenic and
Natural Radiative Forcing, in: Climate Change 2013: The Physical Science
Basis. Contribution of Working Group I to the Fifth Assessment Report of the
Intergovernmental Panel on Climate Change, edited by: Stocker, T. F., Qin, D.,
Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, United Kingdom
and New York, NY, USA, 2013.
Pandolfi, M., Cusack, M., Alastuey, A., and Querol, X.: Variability of aerosol optical properties in the Western Mediterranean Basin, Atmos. Chem. Phys., 11, 8189–8203, https://doi.org/10.5194/acp-11-8189-2011, 2011.
Pandolfi, M., Ripoll, A., Querol, X., and Alastuey, A.: Climatology of aerosol optical properties and black carbon mass absorption cross section at a remote high-altitude site in the western Mediterranean Basin, Atmos. Chem. Phys., 14, 6443–6460, https://doi.org/10.5194/acp-14-6443-2014, 2014.
Perez, L., Tobías, A., Querol, X., Pey, J., Alastuey, A., Díaz,
J., and Sunyer, J.: Saharan dust, particulate matter and cause-specific
mortality: A case–crossover study in Barcelona (Spain), Environ.
Int., 48, 150–155, https://doi.org/10.1016/j.envint.2012.07.001,
2012.
Phillips-Smith, C., Jeong, C.-H., Healy, R. M., Dabek-Zlotorzynska, E., Celo, V., Brook, J. R., and Evans, G.: Sources of particulate matter components in the Athabasca oil sands region: investigation through a comparison of trace element measurement methodologies, Atmos. Chem. Phys., 17, 9435–9449, https://doi.org/10.5194/acp-17-9435-2017, 2017.
Pikridas, M., Vrekoussis, M., Sciare, J., Kleanthous, S., Vasiliadou, E.,
Kizas, C., Savvides, C., and Mihalopoulos, N.: Spatial and temporal (short
and long-term) variability of submicron, fine and sub-10µm
particulate matter (PM1, PM2.5, PM10) in Cyprus, Atmos. Environ., 191,
79–93, https://doi.org/10.1016/j.atmosenv.2018.07.048, 2018.
Pikridas, M., Bezantakos, S., Močnik, G., Keleshis, C., Brechtel, F., Stavroulas, I., Demetriades, G., Antoniou, P., Vouterakos, P., Argyrides, M., Liakakou, E., Drinovec, L., Marinou, E., Amiridis, V., Vrekoussis, M., Mihalopoulos, N., and Sciare, J.: On-flight intercomparison of three miniature aerosol absorption sensors using unmanned aerial systems (UASs), Atmos. Meas. Tech., 12, 6425–6447, https://doi.org/10.5194/amt-12-6425-2019, 2019.
Poulakis, E., Theodosi, C., Bressi, M., Sciare, J., Ghersi, V., and
Mihalopoulos, N.: Airborne mineral components and trace metals in Paris
region: spatial and temporal variability, Environ. Sci. Pollut. R, 22,
14663–14672, 2015.
Rodríguez, S., Querol, X., Alastuey, A., Kallos, G., and Kakaliagou, O.:
Saharan dust contributions to PM10 and TSP levels in Southern and Eastern
Spain, Atmos. Environ., 35, 2433–2447, https://doi.org/10.1016/S1352-2310(00)00496-9, 2001.
Rodríguez, S., Alastuey, A., Alonso-Pérez, S., Querol, X., Cuevas, E., Abreu-Afonso, J., Viana, M., Pérez, N., Pandolfi, M., and de la Rosa, J.: Transport of desert dust mixed with North African industrial pollutants in the subtropical Saharan Air Layer, Atmos. Chem. Phys., 11, 6663–6685, https://doi.org/10.5194/acp-11-6663-2011, 2011.
Scarnato, B. V., China, S., Nielsen, K., and Mazzoleni, C.: Perturbations of the optical properties of mineral dust particles by mixing with black carbon: a numerical simulation study, Atmos. Chem. Phys., 15, 6913–6928, https://doi.org/10.5194/acp-15-6913-2015, 2015.
Schauer, G., Kasper-Giebl, A., and Močnik, G.: Increased PM
concentrations during a combined wildfire and Saharan dust event observed at
high-altitude sonnblick observatory, Austria, Aerosol Air Qual. Res., 16,
542–554, https://doi.org/10.4209/aaqr.2015.05.0337, 2016.
Schrod, J., Weber, D., Drücke, J., Keleshis, C., Pikridas, M., Ebert, M., Cvetković, B., Nickovic, S., Marinou, E., Baars, H., Ansmann, A., Vrekoussis, M., Mihalopoulos, N., Sciare, J., Curtius, J., and Bingemer, H. G.: Ice nucleating particles over the Eastern Mediterranean measured by unmanned aircraft systems, Atmos. Chem. Phys., 17, 4817–4835, https://doi.org/10.5194/acp-17-4817-2017, 2017.
Sciare, J., Oikonomou, K., Cachier, H., Mihalopoulos, N., Andreae, M. O., Maenhaut, W., and Sarda-Estève, R.: Aerosol mass closure and reconstruction of the light scattering coefficient over the Eastern Mediterranean Sea during the MINOS campaign, Atmos. Chem. Phys., 5, 2253–2265, https://doi.org/10.5194/acp-5-2253-2005, 2005.
Sciare, J., D'Argouges, O., Esteve, R. S., Gaimoz, C., Dolgorouky, C.,
Bonnaire, N., Favez, O., Bonsang, B., and Gros, V.: Large contribution of
water insoluble secondary organic aerosols in the region of Paris (France)
during wintertime, J. Geophys. Res., 116, D22203, https://doi.org/10.1029/2011JD015756,
2011.
Sioutas, C., Koutrakis, P., and Burton, R. M.: Development of a low cutpoint slit
virtual impactor for sampling ambient fine particles, J. Aerosol Sci.,
25, 1321–1330, https://doi.org/10.1016/0021-8502(94)90128-7 1994.
Sokolik, I. and Toon, O.: Incorporation of mineralogical composition into
models of the radiative properties of mineral aerosol from UV to IR
wavelengths, J. Geophys. Res., 104, 9423–9444, 1999.
Valenzuela, A., Olmo, F. J., Lyamani, H., Antón, M., Titos, G., Cazorla,
A., and Alados-Arboledas, L.: Aerosol scattering and absorption Angström
exponents as indicators of dust and dust-free days over Granada (Spain),
Atmos. Res., 154, 1–13, https://doi.org/10.1016/j.atmosres.2014.10.015,
2015.
Viana, M., Salvador, P., Artíñano, B., Querol, X., Alastuey, A.,
Pey, J., Latz, A. J., Cabañas, M., Moreno, T., Dos Santos, S. G., Herce,
M. D., Hernández, P. D., García D. R., and Fernández-Patier,
R.: Assessing the Performance of Methods to Detect and Quantify African Dust
in Airborne Particulates, Environ. Sci. Technol., 44, 8814–8820,
https://doi.org/10.1021/es1022625, 2010.
Visser, S., Slowik, J. G., Furger, M., Zotter, P., Bukowiecki, N., Canonaco, F., Flechsig, U., Appel, K., Green, D. C., Tremper, A. H., Young, D. E., Williams, P. I., Allan, J. D., Coe, H., Williams, L. R., Mohr, C., Xu, L., Ng, N. L., Nemitz, E., Barlow, J. F., Halios, C. H., Fleming, Z. L., Baltensperger, U., and Prévôt, A. S. H.: Advanced source apportionment of size-resolved trace elements at multiple sites in London during winter, Atmos. Chem. Phys., 15, 11291–11309, https://doi.org/10.5194/acp-15-11291-2015, 2015.
Vrekoussis, M., Liakakou, E.,Koçak, M., Kubilay, N., Oikonomou, K.,
Sciare, J., and Mihalopoulos, N.: Seasonal variability of optical properties of
aerosols in the Eastern Mediterranean, Atmos. Environ., 39, 7083–7094,
https://doi.org/10.1016/j.atmosenv.2005.08.011, 2005.
Weingartner, E., Saathoff, H., Schnaiter, M., Streit, N., Bitnar, B., and
Baltensperger, U.: Absorption of light by soot particles: determination of
the absorption coefficient by means of aethalometers, J. Aerosol Sci., 34,
1445–1463, https://doi.org/10.1016/S0021-8502(03)00359-8, 2003.
WHO: Workshop: Evaluating the short-term health effects of desert and
anthropogenic dust, 29 October 2018, Geneva, WHO, 2018.
WMO: Report No. 227: WMO/GAW Aerosol Measurement Procedures, Guidelines and
Recommendations, 2nd Edition, Geneva, WMO, 2016.
Zhang, X. Y., Wang, Y. Q., Zhang, X. C., Guo, W., Niu, T., Gong, S. L., Yin,
Y., Zhao, P., Jin, J. L., and Yu M.: Aerosol monitoring at multiple
locations in China: contributions of EC and dust to aerosol light
absorption, Tellus B, 60, 647–656,
https://doi.org/10.1111/j.1600-0889.2008.00359.x, 2008.
Short summary
Atmospheric mineral dust influences Earth's radiative budget, has adverse health effects, and affects regulatory PM10 concentrations. We present a highly time resolved online technique for quantification of mineral dust concentration in ambient air. The technique uses a virtual impactor to concentrate coarse particles, where absorption is then measured using a filter photometer. The method was tested in the field at a regional background site on Cyprus.
Atmospheric mineral dust influences Earth's radiative budget, has adverse health effects, and...