Articles | Volume 15, issue 10
https://doi.org/10.5194/amt-15-3261-2022
https://doi.org/10.5194/amt-15-3261-2022
Research article
 | 
01 Jun 2022
Research article |  | 01 Jun 2022

Machine learning techniques to improve the field performance of low-cost air quality sensors

Tony Bush, Nick Papaioannou, Felix Leach, Francis D. Pope, Ajit Singh, G. Neil Thomas, Brian Stacey, and Suzanne Bartington

Related authors

Acoustic levitation of pollen and visualisation of hygroscopic behaviour
Sophie A. Mills, Adam Milsom, Christian Pfrang, A. Rob MacKenzie, and Francis D. Pope
Atmos. Meas. Tech., 16, 4885–4898, https://doi.org/10.5194/amt-16-4885-2023,https://doi.org/10.5194/amt-16-4885-2023, 2023
Short summary
Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in large East African urban conurbations
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys., 22, 10677–10701, https://doi.org/10.5194/acp-22-10677-2022,https://doi.org/10.5194/acp-22-10677-2022, 2022
Short summary
A study on the performance of low-cost sensors for source apportionment at an urban background site
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022,https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022,https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021,https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Development of low-cost air quality stations for next-generation monitoring networks: calibration and validation of NO2 and O3 sensors
Alice Cavaliere, Lorenzo Brilli, Bianca Patrizia Andreini, Federico Carotenuto, Beniamino Gioli, Tommaso Giordano, Marco Stefanelli, Carolina Vagnoli, Alessandro Zaldei, and Giovanni Gualtieri
Atmos. Meas. Tech., 16, 4723–4740, https://doi.org/10.5194/amt-16-4723-2023,https://doi.org/10.5194/amt-16-4723-2023, 2023
Short summary
Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise
Blake Actkinson and Robert J. Griffin
Atmos. Meas. Tech., 16, 3547–3559, https://doi.org/10.5194/amt-16-3547-2023,https://doi.org/10.5194/amt-16-3547-2023, 2023
Short summary
New Insights From The Jülich Ozone-Sonde Intercomparison Experiments: Calibration Functions Traceable To One Ozone Reference Instrument
Herman G.J. Smit, Deniz Poyraz, Roeland Van Malderen, Anne M. Thompson, David W. Tarasick, Ryan M. Stauffer, Bryan J. Johnson, and Debra E. Kollonige
EGUsphere, https://doi.org/10.5194/egusphere-2023-1466,https://doi.org/10.5194/egusphere-2023-1466, 2023
Short summary
Characterising the methane gas and environmental response of the Figaro Taguchi Gas Sensor (TGS) 2611-E00
Adil Shah, Olivier Laurent, Luc Lienhardt, Grégoire Broquet, Rodrigo Rivera Martinez, Elisa Allegrini, and Philippe Ciais
Atmos. Meas. Tech., 16, 3391–3419, https://doi.org/10.5194/amt-16-3391-2023,https://doi.org/10.5194/amt-16-3391-2023, 2023
Short summary
Identification of spikes in continuous ground-based in-situ time series of CO2, CH4 and CO: an extended experiment within the European ICOS-Atmosphere Network
Paolo Cristofanelli, Cosimo Fratticioli, Lynn Hazan, Mali Chariot, Cedric Couret, Orestis Gazetas, Dagmar Kubistin, Antti Laitinen, Ari Leskinen, Tuomas Laurila, Matthias Lindauer, Giovanni Manca, Michel Ramonet, Pamela Trisolino, and Martin Steinbacher
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-130,https://doi.org/10.5194/amt-2023-130, 2023
Revised manuscript accepted for AMT
Short summary

Cited articles

Alphasense Ltd.: NO2-A43F Nitrogen Dioxide Sensor 4-Electrode Technical Specification, https://www.alphasense.com/wp-content/uploads/2019/09/NO2-A43F.pdf (last access: 19 May 2021), 2019a. 
Alphasense Ltd.: OPC-N3 Particle Monitor Technical Specification, https://www.alphasense.com/wp-content/uploads/2019/03/OPC-N3.pdf (last access: 19 May 2021), 2019b. 
Berrar, D.: Cross-validation, in Encyclopaedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 3, 542–545, 2018. 
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018. 
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1023/A:1018054314350, 1996. 
Download
Short summary
Poor air quality is a human health risk which demands high-spatiotemporal-resolution monitoring data to manage. Low-cost air quality sensors present a convenient pathway to delivering these needs, compared to traditional methods, but bring methodological challenges which can limit operational ability. In this study within Oxford, UK, we develop machine learning methods to improve the quality of low-cost sensors for NO2, PM10 (particulate matter) and PM2.5 and demonstrate their effectiveness.