Articles | Volume 15, issue 10
Atmos. Meas. Tech., 15, 3261–3278, 2022
https://doi.org/10.5194/amt-15-3261-2022
Atmos. Meas. Tech., 15, 3261–3278, 2022
https://doi.org/10.5194/amt-15-3261-2022
Research article
01 Jun 2022
Research article | 01 Jun 2022

Machine learning techniques to improve the field performance of low-cost air quality sensors

Tony Bush et al.

Related authors

A study on the performance of low-cost sensors for source apportionment at an urban background site
Dimitrios Bousiotis, David C. S. Beddows, Ajit Singh, Molly Haugen, Sebastián Diez, Pete M. Edwards, Adam Boies, Roy M. Harrison, and Francis D. Pope
Atmos. Meas. Tech., 15, 4047–4061, https://doi.org/10.5194/amt-15-4047-2022,https://doi.org/10.5194/amt-15-4047-2022, 2022
Short summary
Mass concentration measurements of autumn bioaerosol using low-cost sensors in a mature temperate woodland free-air carbon dioxide enrichment (FACE) experiment: investigating the role of meteorology and carbon dioxide levels
Aileen B. Baird, Edward J. Bannister, A. Robert MacKenzie, and Francis D. Pope
Biogeosciences, 19, 2653–2669, https://doi.org/10.5194/bg-19-2653-2022,https://doi.org/10.5194/bg-19-2653-2022, 2022
Short summary
Evaluation of WRF-CHIMERE coupled models for the simulation of PM2.5 in large East African urban conurbations
Andrea Mazzeo, Michael Burrow, Andrew Quinn, Eloise A. Marais, Ajit Singh, David Ng'ang'a, Michael J. Gatari, and Francis D. Pope
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-552,https://doi.org/10.5194/acp-2021-552, 2022
Revised manuscript accepted for ACP
Short summary
Is the ocean surface a source of nitrous acid (HONO) in the marine boundary layer?
Leigh R. Crilley, Louisa J. Kramer, Francis D. Pope, Chris Reed, James D. Lee, Lucy J. Carpenter, Lloyd D. J. Hollis, Stephen M. Ball, and William J. Bloss
Atmos. Chem. Phys., 21, 18213–18225, https://doi.org/10.5194/acp-21-18213-2021,https://doi.org/10.5194/acp-21-18213-2021, 2021
Short summary
A phenomenology of new particle formation (NPF) at 13 European sites
Dimitrios Bousiotis, Francis D. Pope, David C. S. Beddows, Manuel Dall'Osto, Andreas Massling, Jakob Klenø Nøjgaard, Claus Nordstrøm, Jarkko V. Niemi, Harri Portin, Tuukka Petäjä, Noemi Perez, Andrés Alastuey, Xavier Querol, Giorgos Kouvarakis, Nikos Mihalopoulos, Stergios Vratolis, Konstantinos Eleftheriadis, Alfred Wiedensohler, Kay Weinhold, Maik Merkel, Thomas Tuch, and Roy M. Harrison
Atmos. Chem. Phys., 21, 11905–11925, https://doi.org/10.5194/acp-21-11905-2021,https://doi.org/10.5194/acp-21-11905-2021, 2021
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Evaluation of two common source estimation measurement strategies using large-eddy simulation of plume dispersion under neutral atmospheric conditions
Anja Ražnjević, Chiel van Heerwaarden, and Maarten Krol
Atmos. Meas. Tech., 15, 3611–3628, https://doi.org/10.5194/amt-15-3611-2022,https://doi.org/10.5194/amt-15-3611-2022, 2022
Short summary
Estimation of sulfuric acid concentration using ambient ion composition and concentration data obtained with atmospheric pressure interface time-of-flight ion mass spectrometer
Lisa J. Beck, Siegfried Schobesberger, Mikko Sipilä, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Meas. Tech., 15, 1957–1965, https://doi.org/10.5194/amt-15-1957-2022,https://doi.org/10.5194/amt-15-1957-2022, 2022
Short summary
Importance of the Webb, Pearman, and Leuning (WPL) correction for the measurement of small CO2 fluxes
Katharina Jentzsch, Julia Boike, and Thomas Foken
Atmos. Meas. Tech., 14, 7291–7296, https://doi.org/10.5194/amt-14-7291-2021,https://doi.org/10.5194/amt-14-7291-2021, 2021
Short summary
Unravelling a black box: an open-source methodology for the field calibration of small air quality sensors
Seán Schmitz, Sherry Towers, Guillermo Villena, Alexandre Caseiro, Robert Wegener, Dieter Klemp, Ines Langer, Fred Meier, and Erika von Schneidemesser
Atmos. Meas. Tech., 14, 7221–7241, https://doi.org/10.5194/amt-14-7221-2021,https://doi.org/10.5194/amt-14-7221-2021, 2021
Short summary
An algorithm to detect non-background signals in greenhouse gas time series from European tall tower and mountain stations
Alex Resovsky, Michel Ramonet, Leonard Rivier, Jerome Tarniewicz, Philippe Ciais, Martin Steinbacher, Ivan Mammarella, Meelis Mölder, Michal Heliasz, Dagmar Kubistin, Matthias Lindauer, Jennifer Müller-Williams, Sebastien Conil, and Richard Engelen
Atmos. Meas. Tech., 14, 6119–6135, https://doi.org/10.5194/amt-14-6119-2021,https://doi.org/10.5194/amt-14-6119-2021, 2021
Short summary

Cited articles

Alphasense Ltd.: NO2-A43F Nitrogen Dioxide Sensor 4-Electrode Technical Specification, https://www.alphasense.com/wp-content/uploads/2019/09/NO2-A43F.pdf (last access: 19 May 2021), 2019a. 
Alphasense Ltd.: OPC-N3 Particle Monitor Technical Specification, https://www.alphasense.com/wp-content/uploads/2019/03/OPC-N3.pdf (last access: 19 May 2021), 2019b. 
Berrar, D.: Cross-validation, in Encyclopaedia of Bioinformatics and Computational Biology: ABC of Bioinformatics, Elsevier, 3, 542–545, 2018. 
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018. 
Breiman, L.: Bagging predictors, Mach. Learn., 24, 123–140, https://doi.org/10.1023/A:1018054314350, 1996. 
Download
Short summary
Poor air quality is a human health risk which demands high-spatiotemporal-resolution monitoring data to manage. Low-cost air quality sensors present a convenient pathway to delivering these needs, compared to traditional methods, but bring methodological challenges which can limit operational ability. In this study within Oxford, UK, we develop machine learning methods to improve the quality of low-cost sensors for NO2, PM10 (particulate matter) and PM2.5 and demonstrate their effectiveness.