Articles | Volume 17, issue 4
https://doi.org/10.5194/amt-17-1279-2024
https://doi.org/10.5194/amt-17-1279-2024
Research article
 | 
22 Feb 2024
Research article |  | 22 Feb 2024

Global evaluation of fast radiative transfer model coefficients for early meteorological satellite sensors

Bruna Barbosa Silveira, Emma Catherine Turner, and Jérôme Vidot

Related authors

A new gas absorption optical depth parameterisation for RTTOV version 13
James Hocking, Jérôme Vidot, Pascal Brunel, Pascale Roquet, Bruna Silveira, Emma Turner, and Cristina Lupu
Geosci. Model Dev., 14, 2899–2915, https://doi.org/10.5194/gmd-14-2899-2021,https://doi.org/10.5194/gmd-14-2899-2021, 2021
Short summary
Monitoring aerosols over Europe: an assessment of the potential benefit of assimilating the VIS04 measurements from the future MTG/FCI geostationary imager
Maxence Descheemaecker, Matthieu Plu, Virginie Marécal, Marine Claeyman, Francis Olivier, Youva Aoun, Philippe Blanc, Lucien Wald, Jonathan Guth, Bojan Sič, Jérôme Vidot, Andrea Piacentini, and Béatrice Josse
Atmos. Meas. Tech., 12, 1251–1275, https://doi.org/10.5194/amt-12-1251-2019,https://doi.org/10.5194/amt-12-1251-2019, 2019
Short summary
An update on the RTTOV fast radiative transfer model (currently at version 12)
Roger Saunders, James Hocking, Emma Turner, Peter Rayer, David Rundle, Pascal Brunel, Jerome Vidot, Pascale Roquet, Marco Matricardi, Alan Geer, Niels Bormann, and Cristina Lupu
Geosci. Model Dev., 11, 2717–2737, https://doi.org/10.5194/gmd-11-2717-2018,https://doi.org/10.5194/gmd-11-2717-2018, 2018
Short summary
IASI nitrous oxide (N2O) retrievals: validation and application to transport studies at daily time scales
Yannick Kangah, Philippe Ricaud, Jean-Luc Attié, Naoko Saitoh, Jérôme Vidot, Pascal Brunel, and Samuel Quesada-Ruiz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-21,https://doi.org/10.5194/amt-2018-21, 2018
Revised manuscript not accepted
Simulation of submillimetre atmospheric spectra for characterising potential ground-based remote sensing observations
Emma C. Turner, Stafford Withington, David A. Newnham, Peter Wadhams, Anna E. Jones, and Robin Clancy
Atmos. Meas. Tech., 9, 5461–5485, https://doi.org/10.5194/amt-9-5461-2016,https://doi.org/10.5194/amt-9-5461-2016, 2016
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer
Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-868,https://doi.org/10.5194/egusphere-2024-868, 2024
Short summary
Application of Doppler sodar in short-term forecasting of PM10 concentration in the air in Krakow (Poland)
Ewa Agnieszka Krajny, Leszek Ośródka, and Marek Jan Wojtylak
Atmos. Meas. Tech., 17, 2451–2464, https://doi.org/10.5194/amt-17-2451-2024,https://doi.org/10.5194/amt-17-2451-2024, 2024
Short summary

Cited articles

Berk, A., Bernstein, L., Anderson, G., Acharya, P., Robertson, D., Chetwynd, J., and Adler-Golden, S.: MODTRAN Cloud and Multiple Scattering Upgrades with Application to AVIRIS, Remote Sens. Environ., 65, 367–375, https://doi.org/10.1016/S0034-4257(98)00045-5, 1998. a
Chen, R. and Bennartz, R.: Sensitivity of 89–190-GHz Microwave Observations to Ice Particle Scattering, J. Appl. Meteorol. Clim., 59, 1195–1215, https://doi.org/10.1175/JAMC-D-19-0293.1, 2020. a
Chevallier, F., Michele, S. D., and McNally, A.: Diverse profile datasets from the ECMWF 91-level short-range forecasts, EUMETSAT/NWPSAF, p. 14, https://www.ecmwf.int/node/8685 (last access: 2 February 2024), 2006. a
Clough, S., Shephard, M., Mlawer, E., Delamere, J., Iacono, M., Cady-Pereira, K., Boukabara, S., and Brown, P.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005 (code available at: https://github.com/AER-RC/LBLRTM, last access: 10 June 2023). a, b
Eresmaa, R. and McNally, A.: Diverse profiles dataset from the ECMWF 137-level short-range forecasts, EUMETSAT/NWPSAF [data set], https://nwp-saf.eumetsat.int/site/software/atmospheric-profile-data/ (last access: 7 February 2024), 2014.​​​​​​​ a, b
Download
Short summary
A fast radiative transfer model, used to speed up the full spectral simulation of meteorological satellite channels in weather forecast models, is tested using 25 000 modelled atmospheres. The differences between calculations from the fast and the high-resolution reference models are examined for nine historic weather satellite instruments. The study confirms that a reduced set of 83 atmospheric profiles is robust enough to estimate the scale of the differences obtained from the larger sample.