Articles | Volume 17, issue 16
https://doi.org/10.5194/amt-17-4979-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-4979-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Wegener Center for Climate and Global Change, University of Graz, Graz, 8010, Austria
Magdalena Pieler
Wegener Center for Climate and Global Change, University of Graz, Graz, 8010, Austria
Gottfried Kirchengast
Wegener Center for Climate and Global Change, University of Graz, Graz, 8010, Austria
Institute of Physics, University of Graz, Graz, 8010, Austria
Related authors
Annika Reiter, Julia Danzer, and Andrea Karin Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3745, https://doi.org/10.5194/egusphere-2025-3745, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Observational GNSS radio occultation (RO) temperature and wind data show high potential to study the tropical width. Comparisons of RO data with state-of-the-art reanalyses demonstrate their feasibility to study the tropopause break and jet stream metrics for zonal-mean and longitudinally-resolved studies. The RO data record provides observations in regions where other methods fall short, such as over oceans and in the Southern Hemisphere.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Short summary
Due to the shortcomings of available observations, having accurate global 3D wind fields remains a challenge. A promising option is radio occultation (RO) satellite data, which enable the derivation of winds based on wind approximations. We test how well RO winds describe the ERA5 winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Annika Reiter, Julia Danzer, and Andrea Karin Steiner
EGUsphere, https://doi.org/10.5194/egusphere-2025-3745, https://doi.org/10.5194/egusphere-2025-3745, 2025
This preprint is open for discussion and under review for Weather and Climate Dynamics (WCD).
Short summary
Short summary
Observational GNSS radio occultation (RO) temperature and wind data show high potential to study the tropical width. Comparisons of RO data with state-of-the-art reanalyses demonstrate their feasibility to study the tropopause break and jet stream metrics for zonal-mean and longitudinally-resolved studies. The RO data record provides observations in regions where other methods fall short, such as over oceans and in the Southern Hemisphere.
Andreas Kvas, Gottfried Kirchengast, and Jürgen Fuchsberger
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2025-176, https://doi.org/10.5194/essd-2025-176, 2025
Preprint under review for ESSD
Short summary
Short summary
The WegenerNet 3D Open-Air Laboratory for Climate Change Research in southeastern Austria observes the atmosphere from the surface up to an altitude of 10 kilometers. A variety of different sensors measure precipitation, water vapor content, humidity, temperature, and cloud properties in high spatial and temporal resolution. This enables detailed analyses of weather phenomena in a changing climate, such as heavy rainfall events and thunderstorms.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech., 18, 265–286, https://doi.org/10.5194/amt-18-265-2025, https://doi.org/10.5194/amt-18-265-2025, 2025
Short summary
Short summary
Due to the shortcomings of available observations, having accurate global 3D wind fields remains a challenge. A promising option is radio occultation (RO) satellite data, which enable the derivation of winds based on wind approximations. We test how well RO winds describe the ERA5 winds. We separate the total wind difference into the approximation bias and the systematic difference between the two datasets. The results show the utility of RO winds for climate monitoring and analyses.
Josef Innerkofler, Gottfried Kirchengast, Marc Schwärz, Christian Marquardt, and Yago Andres
Atmos. Meas. Tech., 16, 5217–5247, https://doi.org/10.5194/amt-16-5217-2023, https://doi.org/10.5194/amt-16-5217-2023, 2023
Short summary
Short summary
Atmosphere remote sensing using GNSS radio occultation provides a highly valuable basis for atmospheric and climate science. For the highest-quality demands, the Wegener Center set up a rigorous system for processing low-level measurement data. This excess-phase processing setup includes integrated quality control and uncertainty estimation. It was successfully evaluated and inter-compared, ensuring the capability of producing reliable long-term data records for climate applications.
Irena Nimac, Julia Danzer, and Gottfried Kirchengast
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-100, https://doi.org/10.5194/amt-2023-100, 2023
Revised manuscript not accepted
Short summary
Short summary
As global wind measurements are limited by low spatial coverage or lack of vertical profile information, radio occultation (RO) satellite data might be of help. Wind fields are indirectly retrieved using the geostrophic approximation. We first test how well the method performs, finding agreement better than 2 m/s in wind speed. In a second step, we investigate how good RO and reanalysis data compare. The results suggest that RO-derived wind fields provide added value for climate monitoring.
Karina von Schuckmann, Audrey Minière, Flora Gues, Francisco José Cuesta-Valero, Gottfried Kirchengast, Susheel Adusumilli, Fiammetta Straneo, Michaël Ablain, Richard P. Allan, Paul M. Barker, Hugo Beltrami, Alejandro Blazquez, Tim Boyer, Lijing Cheng, John Church, Damien Desbruyeres, Han Dolman, Catia M. Domingues, Almudena García-García, Donata Giglio, John E. Gilson, Maximilian Gorfer, Leopold Haimberger, Maria Z. Hakuba, Stefan Hendricks, Shigeki Hosoda, Gregory C. Johnson, Rachel Killick, Brian King, Nicolas Kolodziejczyk, Anton Korosov, Gerhard Krinner, Mikael Kuusela, Felix W. Landerer, Moritz Langer, Thomas Lavergne, Isobel Lawrence, Yuehua Li, John Lyman, Florence Marti, Ben Marzeion, Michael Mayer, Andrew H. MacDougall, Trevor McDougall, Didier Paolo Monselesan, Jan Nitzbon, Inès Otosaka, Jian Peng, Sarah Purkey, Dean Roemmich, Kanako Sato, Katsunari Sato, Abhishek Savita, Axel Schweiger, Andrew Shepherd, Sonia I. Seneviratne, Leon Simons, Donald A. Slater, Thomas Slater, Andrea K. Steiner, Toshio Suga, Tanguy Szekely, Wim Thiery, Mary-Louise Timmermans, Inne Vanderkelen, Susan E. Wjiffels, Tonghua Wu, and Michael Zemp
Earth Syst. Sci. Data, 15, 1675–1709, https://doi.org/10.5194/essd-15-1675-2023, https://doi.org/10.5194/essd-15-1675-2023, 2023
Short summary
Short summary
Earth's climate is out of energy balance, and this study quantifies how much heat has consequently accumulated over the past decades (ocean: 89 %, land: 6 %, cryosphere: 4 %, atmosphere: 1 %). Since 1971, this accumulated heat reached record values at an increasing pace. The Earth heat inventory provides a comprehensive view on the status and expectation of global warming, and we call for an implementation of this global climate indicator into the Paris Agreement’s Global Stocktake.
Ying Li, Gottfried Kirchengast, Marc Schwaerz, and Yunbin Yuan
Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, https://doi.org/10.5194/acp-23-1259-2023, 2023
Short summary
Short summary
We develop a new approach to monitor sudden stratospheric warming (SSW) events since 1980 and develop a 42-year SSW event climatology. Detection and evaluation results suggest that the new method is robust for SSW monitoring. We also found an increase in the duration of SSW main-phase warmings of about 5(±2) d over the three decades from the 1980s to the 2010s, raising the average duration from about 10 to 15 d, and the warming strength is also found increased.
Wouter Dorigo, Irene Himmelbauer, Daniel Aberer, Lukas Schremmer, Ivana Petrakovic, Luca Zappa, Wolfgang Preimesberger, Angelika Xaver, Frank Annor, Jonas Ardö, Dennis Baldocchi, Marco Bitelli, Günter Blöschl, Heye Bogena, Luca Brocca, Jean-Christophe Calvet, J. Julio Camarero, Giorgio Capello, Minha Choi, Michael C. Cosh, Nick van de Giesen, Istvan Hajdu, Jaakko Ikonen, Karsten H. Jensen, Kasturi Devi Kanniah, Ileen de Kat, Gottfried Kirchengast, Pankaj Kumar Rai, Jenni Kyrouac, Kristine Larson, Suxia Liu, Alexander Loew, Mahta Moghaddam, José Martínez Fernández, Cristian Mattar Bader, Renato Morbidelli, Jan P. Musial, Elise Osenga, Michael A. Palecki, Thierry Pellarin, George P. Petropoulos, Isabella Pfeil, Jarrett Powers, Alan Robock, Christoph Rüdiger, Udo Rummel, Michael Strobel, Zhongbo Su, Ryan Sullivan, Torbern Tagesson, Andrej Varlagin, Mariette Vreugdenhil, Jeffrey Walker, Jun Wen, Fred Wenger, Jean Pierre Wigneron, Mel Woods, Kun Yang, Yijian Zeng, Xiang Zhang, Marek Zreda, Stephan Dietrich, Alexander Gruber, Peter van Oevelen, Wolfgang Wagner, Klaus Scipal, Matthias Drusch, and Roberto Sabia
Hydrol. Earth Syst. Sci., 25, 5749–5804, https://doi.org/10.5194/hess-25-5749-2021, https://doi.org/10.5194/hess-25-5749-2021, 2021
Short summary
Short summary
The International Soil Moisture Network (ISMN) is a community-based open-access data portal for soil water measurements taken at the ground and is accessible at https://ismn.earth. Over 1000 scientific publications and thousands of users have made use of the ISMN. The scope of this paper is to inform readers about the data and functionality of the ISMN and to provide a review of the scientific progress facilitated through the ISMN with the scope to shape future research and operations.
Ying Li, Gottfried Kirchengast, Marc Schwärz, Florian Ladstädter, and Yunbin Yuan
Atmos. Meas. Tech., 14, 2327–2343, https://doi.org/10.5194/amt-14-2327-2021, https://doi.org/10.5194/amt-14-2327-2021, 2021
Short summary
Short summary
We introduce a new method to detect and monitor sudden stratospheric warming (SSW) events using Global Navigation Satellite System (GNSS) radio occultation (RO) data at high northern latitudes and demonstrate it for the well-known Jan.–Feb. 2009 event. We found that RO data are capable of SSW monitoring. Based on our method, a SSW event can be detected and tracked, and the duration and the strength of the event can be recorded. The results are consistent with other research on the 2009 event.
Jürgen Fuchsberger, Gottfried Kirchengast, and Thomas Kabas
Earth Syst. Sci. Data, 13, 1307–1334, https://doi.org/10.5194/essd-13-1307-2021, https://doi.org/10.5194/essd-13-1307-2021, 2021
Short summary
Short summary
The paper describes the most recent weather and climate data from the WegenerNet station networks, providing hydrometeorological measurements since 2007 at very high spatial and temporal resolution for long-term observation in two regions in southeastern Austria: the WegenerNet Feldbach Region, in the Alpine forelands, comprising 155 stations with 1 station about every 2 km2, and the WegenerNet Johnsbachtal, in a mountainous region, with 14 stations at altitudes from about 600 m to 2200 m.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Pierre-Yves Tournigand, Valeria Cigala, Elzbieta Lasota, Mohammed Hammouti, Lieven Clarisse, Hugues Brenot, Fred Prata, Gottfried Kirchengast, Andrea K. Steiner, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 3139–3159, https://doi.org/10.5194/essd-12-3139-2020, https://doi.org/10.5194/essd-12-3139-2020, 2020
Short summary
Short summary
The detection and monitoring of volcanic clouds are important for aviation management, climate and weather forecasts. We present in this paper the first comprehensive archive collecting spatial and temporal information about volcanic clouds generated by the 11 largest eruptions of this century. We provide a complete set of state-of-the-art data allowing the development and testing of new algorithms contributing to improve the accuracy of the estimation of fundamental volcanic cloud parameters.
Elżbieta Lasota, Andrea K. Steiner, Gottfried Kirchengast, and Riccardo Biondi
Earth Syst. Sci. Data, 12, 2679–2693, https://doi.org/10.5194/essd-12-2679-2020, https://doi.org/10.5194/essd-12-2679-2020, 2020
Short summary
Short summary
In this work, we provide a comprehensive archive of tropical cyclone vertical structure for the period 2001–2018. The tropical cyclone best tracks are co-located in time and space with high-vertical-resolution atmospheric profiles (temperature, pressure, humidity and refractivity) from radio occultations and with climatological profiles. This dataset can be used to analyze the inner vertical thermodynamic structure of tropical cyclones and the pre-cyclone environment.
Clara Hohmann, Gottfried Kirchengast, Sungmin O, Wolfgang Rieger, and Ulrich Foelsche
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2020-453, https://doi.org/10.5194/hess-2020-453, 2020
Manuscript not accepted for further review
Short summary
Short summary
Heavy precipitation events are still feeding with a large uncertainty into hydrological models. Based on the highly dense station network WegenerNet (one station per 2 km2) we analyzed the sensitivity of runoff simulations to different rain network densities and interpolation methods in small catchments. We find, and quantify relevant characteristics, that runoff curves especially from
short-duration convective rainfall events are strongly influenced by gauge station density and distribution.
Karina von Schuckmann, Lijing Cheng, Matthew D. Palmer, James Hansen, Caterina Tassone, Valentin Aich, Susheel Adusumilli, Hugo Beltrami, Tim Boyer, Francisco José Cuesta-Valero, Damien Desbruyères, Catia Domingues, Almudena García-García, Pierre Gentine, John Gilson, Maximilian Gorfer, Leopold Haimberger, Masayoshi Ishii, Gregory C. Johnson, Rachel Killick, Brian A. King, Gottfried Kirchengast, Nicolas Kolodziejczyk, John Lyman, Ben Marzeion, Michael Mayer, Maeva Monier, Didier Paolo Monselesan, Sarah Purkey, Dean Roemmich, Axel Schweiger, Sonia I. Seneviratne, Andrew Shepherd, Donald A. Slater, Andrea K. Steiner, Fiammetta Straneo, Mary-Louise Timmermans, and Susan E. Wijffels
Earth Syst. Sci. Data, 12, 2013–2041, https://doi.org/10.5194/essd-12-2013-2020, https://doi.org/10.5194/essd-12-2013-2020, 2020
Short summary
Short summary
Understanding how much and where the heat is distributed in the Earth system is fundamental to understanding how this affects warming oceans, atmosphere and land, rising temperatures and sea level, and loss of grounded and floating ice, which are fundamental concerns for society. This study is a Global Climate Observing System (GCOS) concerted international effort to obtain the Earth heat inventory over the period 1960–2018.
Cited articles
Angerer, B., Ladstädter, F., Scherllin-Pirscher, B., Schwärz, M., Steiner, A. K., Foelsche, U., and Kirchengast, G.: Quality aspects of the Wegener Center multi-satellite GPS radio occultation record OPSv5.6, Atmos. Meas. Tech., 10, 4845–4863, https://doi.org/10.5194/amt-10-4845-2017, 2017. a, b, c, d, e, f
Anthes, R. A.: Exploring Earth's atmosphere with radio occultation: contributions to weather, climate and space weather, Atmos. Meas. Tech., 4, 1077–1103, https://doi.org/10.5194/amt-4-1077-2011, 2011. a
Anthes, R. A., Bernhardt, P. A., Chen, Y., Cucurull, L., Dymond, K. F., Ector, D., Healy, S. B., Ho, S.-P., Hunt, D. C., Kuo, Y.-H., Liu, H., Manning, K., McCormick, C., Meehan, T. K., Randel, W. J., Rocken, C., Schreiner, W. S., Sokolovskiy, S. V., Syndergaard, S., Thompson, D. C., Trenberth, K. E., Wee, T.-K., Yen, N. L., and Zeng, Z.: The COSMIC/FORMOSAT-3 mission: Early results, B. Am. Meteorol. Soc., 89, 313–333, https://doi.org/10.1175/BAMS-89-3-313, 2008. a, b
Baker, W. E., Atlas, R., Cardinali, C., Clement, A., Emmitt, G. D., 60 Gentry, B. M., Hardesty, R. M., Källén, E., Kavaya, M. J., Langland, R., Ma, Z., Masutani, M., McCarty, W., Pierce, R. B., Pu, Z., Riishojgaard, L. P., Ryan, J., Tucker, S., Weissmann, M., and Yoe, J. G.: Lidar-measured wind profiles, B. Am. Meteorol. Soc., 95, 543–564, https://doi.org/10.1175/BAMS-D-12-00164.1, 2014. a
Beyerle, G., Schmidt, T., Michalak, G., Heise, S., Wickert, J., and Reigber, C.: GPS radio occultation with GRACE: Atmospheric profiling utilizing the zero difference technique, Geophys. Res. Lett., 32, L13806, https://doi.org/10.1029/2005GL023109, 2005. a
Bodeker, G., Bojinski, S., Cimini, D., Dirksen, R., Haeffelin, M., Hannigan, J., Hurst, D., Leblanc, T., Madonna, F., Maturilli, M., A. C. Mikalsen, Philipona, R., Reale, T., Seidel, D. J., Tan, D. G. H., Thorne, P. W., Vömel, H., and Wang, J.: Reference upper-air observations for climate: From concept to reality, B. Am. Meteorol. Soc., 97, 123–135, 2016. a
Bonavita, M.: On the limitations of data-driven weather forecasting models, arXiv [preprint], arXiv:2309.08473, 2023. a
Cardinali, C. and Healy, S.: Impact of GPS radio occultation measurements in the ECMWF system using adjoint-based diagnostics, Q. J. Roy. Meteor. Soc., 140, 2315–2320, https://doi.org/10.1002/qj.2300, 2014. a
Chandra, S., Fleming, E. L., Schoeberl, M. R., and Barnett, J. J.: Monthly mean global climatology of temperature, wind, geopotential height and pressure for 0–120 km, Adv. Space Res., 10, 3–12, https://doi.org/10.1016/0273-1177(90)90230-W, 1990. a, b
Cucurull, L.: Improvement in the use of an operational constellation of GPS radio occultation receivers in weather forecasting, Weather Forecast., 25, 749–767, 2010. a
Danzer, J., Scherllin-Pirscher, B., and Foelsche, U.: Systematic residual ionospheric errors in radio occultation data and a potential way to minimize them, Atmos. Meas. Tech., 6, 2169–2179, https://doi.org/10.5194/amt-6-2169-2013, 2013. a
Danzer, J., Schwärz, M., Proschek, V., Foelsche, U., and Gleisner, H.: Comparison study of COSMIC RO dry-air climatologies based on average profile inversion, Atmos. Meas. Tech., 11, 4867–4882, https://doi.org/10.5194/amt-11-4867-2018, 2018. a
Danzer, J., Haas, S. J., Schwaerz, M., and Kirchengast, G.: Performance of the ionospheric Kappa correction of radio occultation profiles under diverse ionization and solar activity conditions, Earth Space Sci., 8, e2020EA001581, https://doi.org/10.1029/2020EA001581, 2021. a
English, S., McNally, T., Bormann, N., Salonen, K., Matricardi, M., Moranyi, A., Rennie, M., Janisková, M., Di Michele, S., Geer, A., Tomaso, E., Cardinali, C., de Rosnay, P., Sabater, J. M., Bonavita, M., Albergel, C., Engelen, R., and Thépaut, J.-N.: Impact of satellite data, ECMWF Technical Memoranda, October 2013, 2013. a
Eyre, J. R., English, S. J., and Forsythe, M.: Assimilation of satellite data in numerical weather prediction. Part I: The early years, Q. J. Roy. Meteor. Soc., 146, 49–68, 2020. a
Foelsche, U., Pirscher, B., Borsche, M., Kirchengast, G., and Wickert, J.: Assessing the climate monitoring utility of radio occultation data: From CHAMP to FORMOSAT-3/COSMIC, Terr. Atmos. Ocean. Sci., 20, 155–170, https://doi.org/10.3319/TAO.2008.01.14.01(F3C), 2009. a
Foelsche, U., Scherllin-Pirscher, B., Ladstädter, F., Steiner, A. K., and Kirchengast, G.: Refractivity and temperature climate records from multiple radio occultation satellites consistent within 0.05 %, Atmos. Meas. Tech., 4, 2007–2018, https://doi.org/10.5194/amt-4-2007-2011, 2011a. a
Foelsche, U., Syndergaard, S., Fritzer, J., and Kirchengast, G.: Errors in GNSS radio occultation data: relevance of the measurement geometry and obliquity of profiles, Atmos. Meas. Tech., 4, 189–199, https://doi.org/10.5194/amt-4-189-2011, 2011b. a
Geer, A. J., Lonitz, K., Weston, P., Kazumori, M., Okamoto, K., Zhu, Y., Liu, E. H., Collard, A., Bell, W., Migliorini, S., Chambon, P., Fourrié, N., Kim, M.-J., Köpken-Watts, C., and Schraff, C.: All-sky satellite data assimilation at operational weather forecasting centres, Q. J. Roy. Meteor. Soc., 144, 1191–1217, 2018. a
Hajj, G. A., Kursinski, E. R., Romans, L. J., Bertiger, W. I., and Leroy, S. S.: A technical description of atmospheric sounding by GPS occultation, J. Atmos. Sol.-Terr. Phy., 64, 451–469, https://doi.org/10.1016/S1364-6826(01)00114-6, 2002. a
Hajj, G. A., Ao, C., Iijima, B., Kuang, D., Kursinski, E., Mannucci, A., Meehan, T., Romans, L., de La Torre Juarez, M., and Yunck, T.: CHAMP and SAC-C atmospheric occultation results and intercomparisons, J. Geophys. Res.-Atmos., 109, D6, https://doi.org/10.1029/2003JD003909, 2004. a
Healy, S.: Operational assimilation of GPS radio occultation measurements at ECMWF, ECMWF Newsletter, 111, 6–11, 2007. a
Healy, S. B., Polichtchouk, I., and Horányi, A.: Monthly and zonally averaged zonal wind information in the equatorial stratosphere provided by GNSS radio occultation, Q. J. Roy. Meteor. Soc., 146, 3612–3621, https://doi.org/10.1002/qj.3870, 2020. a, b, c
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D., Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, Biavati, P., G., Bidlot, J., Bonavita, M., De Chiara, G., Dahlgren, P., Dee, D., Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer, A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M., Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P., Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5 global reanalysis, Q. J. Roy. Meteor. Soc., 146, 1999–2049, 2020. a, b, c
Ho, S.-P., Zhou, X., Shao, X., Zhang, B., Adhikari, L., Kireev, S., He, Y., Yoe, J. G., Xia-Serafino, W., and Lynch, E.: Initial assessment of the COSMIC-2/FORMOSAT-7 neutral atmosphere data quality in NESDIS/STAR using in situ and satellite data, Remote Sens., 12, 4099, https://doi.org/10.3390/rs12244099, 2020. a, b, c
Holton, J. R.: An introduction to dynamic meteorology, in: International geophysics series, 4th ed edn., no. v. 88, Elsevier Academic Press, Burlington, MA, oCLC: 54400282, ISBN 0-12-354015-1, 2004. a
Kanitz, T., Lochard, J., Marshall, J., McGoldrick, P., Lecrenier, O., Bravetti, P., Reitebuch, O., Rennie, M., Wernham, D., and Elfving, A.: Aeolus first light: first glimpse, in: International Conference on Space Optics–ICSO 2018, 9–12 October 2018, SPIE, vol. 11180, 659–664 pp., 2019. a
Kuo, Y.-H., Sokolovskiy, S. V., Anthes, R. A., and Vandenberghe, F.: Assimilation of GPS radio occultation data for numerical weather prediction, Terr. Atmos. Ocean. Sci., 11, 157–186, 2000. a
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy, K. R.: Observing Earth's atmosphere with radio occultation measurements using the Global Positioning System, J. Geophys. Res., 102, D19, https://doi.org/10.1029/97JD01569, 1997. a, b
Ladstädter, F.: Talk on gridding strategies, in: OPAC-IROWG 2022 conference, Seggau, Austria, Seggau Castle, 8–14 September 2022, https://static.uni-graz.at/fileadmin/veranstaltungen/opacirowg2022/programme/08.9.22/AM/Session_1/OPAC-IROWG-2022_Ladstaedter.pdf (last access: 19 August 2024), 2022. a
Ladstädter, F., Steiner, A. K., Schwärz, M., and Kirchengast, G.: Climate intercomparison of GPS radio occultation, RS90/92 radiosondes and GRUAN from 2002 to 2013, Atmos. Meas. Tech., 8, 1819–1834, https://doi.org/10.5194/amt-8-1819-2015, 2015. a
Li, Y., Kirchengast, G., Scherllin-Pirscher, B., Schwaerz, M., Nielsen, J. K., Ho, S.-p., and Yuan, Y.-b.: A new algorithm for the retrieval of atmospheric profiles from GNSS radio occultation data in moist air and comparison to 1DVar retrievals, Remote Sens., 11, 2729, https://doi.org/10.1029/2003JD003909, 2019. a, b
Li, Y., Kirchengast, G., Schwaerz, M., and Yuan, Y.: Monitoring sudden stratospheric warmings under climate change since 1980 based on reanalysis data verified by radio occultation, Atmos. Chem. Phys., 23, 1259–1284, https://doi.org/10.5194/acp-23-1259-2023, 2023. a
Liu, C., Kirchengast, G., Syndergaard, S., Schwaerz, M., and Danzer, J.: New higher-order correction of GNSS RO bending angles accounting for ionospheric asymmetry: evaluation of performance and added value, Remote Sens., 12, 3637, https://doi.org/10.3390/rs12213637, 2020. a, b
Liu, C., Danzer, J., Kirchengast, G., Haas, S. J., Proschek, V., Schwaerz, M., Sun, Y., and Wang, X.: Understanding ionospheric and geomagnetic effects on residual biases in radio occultation data for stratospheric climate monitoring, J. Geophys. Res.-Space, 129, e2023JA032110, https://doi.org/10.1029/2023JA032110, 2024. a
Luntama, J.-P., Kirchengast, G., Borsche, M., Foelsche, U., Steiner, A., Healy, S., von Engeln, A., O'Clerigh, E., and Marquardt, C.: Prospects of the EPS GRAS mission for operational atmospheric applications, B. Am. Meteorol. Soc., 89, 1863–1876, 2008. a
Nimac, I., Danzer, J., and Kirchengast, G.: The added value and potential of long-term radio occultation data for climatological wind field monitoring, Atmos. Meas. Tech. Discuss. [preprint], https://doi.org/10.5194/amt-2024-59, in review, 2024. a
Scaife, A. A., Austin, J., Butchart, N., Pawson, S., Keil, M., Nash, J., and James, I. N.: Seasonal and interannual variability of the stratosphere diagnosed from UKMO TOVS analyses, Q. J. Roy. Meteor. Soc., 126, 2585–2604, https://doi.org/10.1002/qj.49712656812, 2000. a, b, c
Scherllin-Pirscher, B., Kirchengast, G., Steiner, A. K., Kuo, Y.-H., and Foelsche, U.: Quantifying uncertainty in climatological fields from GPS radio occultation: an empirical-analytical error model, Atmos. Meas. Tech., 4, 2019–2034, https://doi.org/10.5194/amt-4-2019-2011, 2011. a, b
Scherllin-Pirscher, B., Steiner, A. K., and Kirchengast, G.: Deriving dynamics from GPS radio occultation: Three-dimensional wind fields for monitoring the climate, Geophys. Res. Lett., 41, 7367–7374, https://doi.org/10.1002/2014GL061524, 2014. a, b
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Schwärz, M., and Leroy, S. S.: The power of vertical geolocation of atmospheric profiles from GNSS radio occultation, J. Geophy. Res.-Atmos., 122, 1595–1616, 2017. a
Schreiner, W. S., Weiss, J. P., Anthes, R. A., Braun, J., Chu, V., Fong, J., Hunt, D., Kuo, Y.-H., Meehan, T., Serafino, W., Sjoberg, J., Sokolovskiy, S., Talaat, E., Wee, T. K., and Zeng, Z.: COSMIC-2 radio occultation constellation: First results, Geophys. Res. Lett., 47, e2019GL086841, https://doi.org/10.1029/2019GL086841, 2020. a, b, c
Schwarz, J., Kirchengast, G., and Schwaerz, M.: Integrating uncertainty propagation in GNSS radio occultation retrieval: from bending angle to dry-air atmospheric profiles, Earth Space Sci., 4, 200–228, https://doi.org/10.1002/2016EA000234, 2017. a, b
Schwarz, J., Kirchengast, G., and Schwaerz, M.: Integrating uncertainty propagation in GNSS radio occultation retrieval: from excess phase to atmospheric bending angle profiles, Atmos. Meas. Tech., 11, 2601–2631, https://doi.org/10.5194/amt-11-2601-2018, 2018. a
Steiner, A., Lackner, B., Ladstädter, F., Scherllin-Pirscher, B., Foelsche, U., and Kirchengast, G.: GPS radio occultation for climate monitoring and change detection, Radio Sci., 46, 1–17, https://doi.org/10.1029/2010RS004614, 2011. a
Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, 2020. a, b, c, d, e
Stoffelen, A., Benedetti, A., Borde, R., Dabas, A., Flamant, P., Forsythe, M., Hardesty, M., Isaksen, L., Källén, E., Körnich, H., Lee, T., Reitebuch, O., Rennie, M., Riishøjgaard, L.-P., Schyberg, H., Straume, A. G., and Vaughan, M.: Wind profile satellite observation requirements and capabilities, B. Am. Meteorol. Soc., 101, E2005–E2021, 2020. a, b
Verkhoglyadova, O. P., Leroy, S. S., and Ao, C. O.: Estimation of winds from GPS radio occultations, J. Atmos. Ocean. Tech., 31, 2451–2461, 2014. a
WEGC Cloud: GNSS Radio Occultation Record OPS 5.6 2001–2020, Wegener Center Data Record, https://doi.org/10.25364/WEGC/OPS5.6:2021.1, 2024. a
Wickert, J., Reigber, C., Beyerle, G., König, R., Marquardt, C., Schmidt, T., Grunwaldt, L., Galas, R., Meehan, T. K., Melbourne, W. G., and Hocke, K.: Atmosphere sounding by GPS radio occultation: First results from CHAMP, Geophys. Res. Lett., 28, 3263–3266, 2001. a
Zaplotnik, Ž., Žagar, N., and Semane, N.: Flow-dependent wind extraction in strong-constraint 4D-Var, Q. J. Roy. Meteor. Soc., 149, 2107–2124, 2023. a
Zeng, Z., Sokolovskiy, S., Schreiner, W. S., and Hunt, D.: Representation of vertical atmospheric structures by radio occultation observations in the upper troposphere and lower stratosphere: Comparison to high resolution radiosonde profiles, J. Atmos. Ocean. Tech., 36, 655–670, https://doi.org/10.1175/JTECH-D-18-0105.1, 2019. a, b
Short summary
We investigated the potential of radio occultation (RO) data for climate-oriented wind field monitoring, focusing on the equatorial band within ±5° latitude. In this region, the geostrophic balance breaks down, and the equatorial balance approximation takes over. The study encourages the use of RO wind fields for mesoscale climate monitoring for the equatorial region, showing a small improvement in the troposphere when including the meridional wind in the zonal-mean total wind speed.
We investigated the potential of radio occultation (RO) data for climate-oriented wind field...