Articles | Volume 17, issue 18
https://doi.org/10.5194/amt-17-5581-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-17-5581-2024
© Author(s) 2024. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Field assessments on the impact of CO2 concentration fluctuations along with complex-terrain flows on the estimation of the net ecosystem exchange of temperate forests
Dexiong Teng
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110000, China
Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
Jiaojun Zhu
CORRESPONDING AUTHOR
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110000, China
Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
CAS–CSI Joint Laboratory of Research and Development for Monitoring Forest Fluxes of Trace Gases and Isotope Elements, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110000, China
Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
CAS–CSI Joint Laboratory of Research and Development for Monitoring Forest Fluxes of Trace Gases and Isotope Elements, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Fengyuan Yu
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110000, China
Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
Yuan Zhu
CAS Key Laboratory of Forest Ecology and Silviculture, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110000, China
Qingyuan Forest CERN, National Observation and Research Station, Liaoning Province, Shenyang 110016, China
Xinhua Zhou
CAS–CSI Joint Laboratory of Research and Development for Monitoring Forest Fluxes of Trace Gases and Isotope Elements, Institute of Applied Ecology, Chinese Academy of Sciences, Shenyang 110016, China
Campbell Scientific, Inc., Logan, Utah 84321, USA
Bai Yang
Campbell Scientific, Inc., Logan, Utah 84321, USA
Related authors
No articles found.
Xinhua Zhou, Zhi Chen, Ryan Campbell, Atefeh Hosseini, Tian Gao, Xiufen Li, Jianmin Chu, Sen Wu, Ning Zheng, and Jiaojun Zhu
EGUsphere, https://doi.org/10.5194/egusphere-2025-4576, https://doi.org/10.5194/egusphere-2025-4576, 2026
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Short summary
To help environmental researchers better understand the sources of greenhouse gas measurements, we developed a practical method for field instruments to calculate the footprints. By using simplified math and efficient computing, our approach allows real-time analysis of measurement zones, which was previously too complex for on-site processing. This enables more accurate data collection worldwide, helping improve climate change monitoring and ecosystem studies.
Xinhua Zhou, Tian Gao, Ning Zheng, Bai Yang, Yanlei Li, Fengyuan Yu, Tala Awada, and Jiaojun Zhu
Geosci. Instrum. Method. Data Syst., 11, 335–357, https://doi.org/10.5194/gi-11-335-2022, https://doi.org/10.5194/gi-11-335-2022, 2022
Short summary
Short summary
Overall accuracy of CO2/H2O data from open-path eddy-covariance systems is modeled for data analysis. The model is further formulated into CO2 and H2O accuracy equations for uses. Based on atmospheric physics and bio-environment, both equations are used to evaluate accuracy of ecosystem CO2/H2O data and, as rationales, to assess field CO2/H2O zero and span procedures for the systems. The procedures are assessed for measurement improvement. An impractical H2O span while cold is found unnecessary.
Xinhua Zhou, Tian Gao, Eugene S. Takle, Xiaojie Zhen, Andrew E. Suyker, Tala Awada, Jane Okalebo, and Jiaojun Zhu
Atmos. Meas. Tech., 15, 95–115, https://doi.org/10.5194/amt-15-95-2022, https://doi.org/10.5194/amt-15-95-2022, 2022
Short summary
Short summary
Air temperature from sonic temperature and air moisture has been used without an exact equation. We present an exact equation of such air temperature for closed-path eddy-covariance flux measurements. Air temperature from this equation is equivalent to sonic temperature in its accuracy and frequency response. It is a choice for advanced flux topics because, with it, thermodynamic variables in the flux measurements can be temporally synchronized and spatially matched at measurement scales.
Cited articles
Aubinet, M., Grelle, A., Ibrom, A., Rannik, Ü., Moncrieff, J., Foken, T., Kowalski, A. S., Martin, P. H., Berbigier, P., Bernhofer, C., Clement, R., Elbers, J., Granier, A., Grünwald, T., Morgenstern, K., Pilegaard, K., Rebmann, C., Snijders, W., Valentini, R., and Vesala, T.: Estimates of the Annual Net Carbon and Water Exchange of Forests: The EUROFLUX Methodology, Adv. Ecol. Res., 30, 113–175, https://doi.org/10.1016/s0065-2504(08)60018-5, 2000.
Aubinet, M., Heinesch, B., and Yernaux, M.: Horizontal and Vertical CO2 Advection In A Sloping Forest, Bound.-Lay. Meteorol., 108, 397–417, https://doi.org/10.1023/a:1024168428135, 2003.
Aubinet, M., Vesala, T., and Papale, D.: Eddy Covariance: A Practical Guide to Measurement and Data Analysis, Springer Atmospheric Sciences, Springer, Dordrecht, XXII, 438 pp., https://doi.org/10.1007/978-94-007-2351-1, 2012.
Belušić, D. and Mahrt, L.: Is geometry more universal than physics in atmospheric boundary layer flow?, J. Geophys. Res.-Atmos., 117, D09115, https://doi.org/10.1029/2011jd016987, 2012.
Bjorkegren, A. B., Grimmond, C. S. B., Kotthaus, S., and Malamud, B. D.: CO2 emission estimation in the urban environment: Measurement of the CO2 storage term, Atmos. Environ., 122, 775–790, https://doi.org/10.1016/j.atmosenv.2015.10.012, 2015.
Brown, S.: Estimating Biomass and Biomass Change of Tropical Forests: A Primer, FAO Forestry Paper, 37–39, 1997.
Cava, D., Giostra, U., Siqueira, M., and Katul, G.: Organised motion and radiative perturbations in the nocturnal canopy sublayer above an even-aged pine forest, Bound.-Lay. Meteorol., 112, 129–157, https://doi.org/10.1023/B:BOUN.0000020160.28184.a0, 2004.
Cescatti, A., Marcolla, B., Goded, I., and Gruening, C.: Optimal use of buffer volumes for the measurement of atmospheric gas concentration in multi-point systems, Atmos. Meas. Tech., 9, 4665–4672, https://doi.org/10.5194/amt-9-4665-2016, 2016.
Chen, B., Chamecki, M., and Katul, G. G.: Effects of topography on in-canopy transport of gases emitted within dense forests, Q. J. Roy. Meteor. Soc., 145, 2101–2114, https://doi.org/10.1002/qj.3546, 2019.
Chen, B. C., Chamecki, M., and Katul, G. G.: Effects of Gentle Topography on Forest-Atmosphere Gas Exchanges and Implications for Eddy-Covariance Measurements, J. Geophys. Res.-Atmos., 125, e2020JD032581, https://doi.org/10.1029/2020JD032581, 2020.
Chen, J., Chen, X., Jia, W., Yu, Y., and Zhao, S.: Multi-sites observation of large-scale eddy in surface layer of Loess Plateau, Sci. China Earth Sci., 66, 871–881, https://doi.org/10.1007/s11430-022-1035-4, 2023.
de Araújo, A. C., Ometto, J. P. H. B., Dolman, A. J., Kruijt, B., Waterloo, M. J., and Ehleringer, J. R.: Implications of CO2 pooling on δ13C of ecosystem respiration and leaves in Amazonian forest, Biogeosciences, 5, 779–795, https://doi.org/10.5194/bg-5-779-2008, 2008.
de Araújo, A. C., Dolman, A. J., Waterloo, M. J., Gash, J. H. C., Kruijt, B., Zanchi, F. B., de Lange, J. M. E., Stoevelaar, R., Manzi, A. O., Nobre, A. D., Lootens, R. N., and Backer, J.: The spatial variability of CO2 storage and the interpretation of eddy covariance fluxes in central Amazonia, Agr. Forest Meteorol., 150, 226–237, https://doi.org/10.1016/j.agrformet.2009.11.005, 2010.
Edburg, S. L., Stock, D., Lamb, B. K., and Patton, E. G.: The Effect of the Vertical Source Distribution on Scalar Statistics within and above a Forest Canopy, Bound.-Lay. Meteorol., 142, 365–382, https://doi.org/10.1007/s10546-011-9686-1, 2011.
Feigenwinter, C., Bernhofer, C., and Vogt, R.: The Influence of Advection on the Short Term CO2-Budget in and Above a Forest Canopy, Bound.-Lay. Meteorol., 113, 201–224, https://doi.org/10.1023/B:BOUN.0000039372.86053.ff, 2004.
Feigenwinter, C., Bernhofer, C., Eichelmann, U., Heinesch, B., Hertel, M., Janous, D., Kolle, O., Lagergren, F., Lindroth, A., Minerbi, S., Moderow, U., Mölder, M., Montagnani, L., Queck, R., Rebmann, C., Vestin, P., Yernaux, M., Zeri, M., Ziegler, W., and Aubinet, M.: Comparison of horizontal and vertical advective CO2 fluxes at three forest sites, Agr. Forest Meteorol., 148, 12–24, https://doi.org/10.1016/j.agrformet.2007.08.013, 2008.
Finnigan, J.: The storage term in eddy flux calculations, Agr. Forest Meteorol., 136, 108–113, https://doi.org/10.1016/j.agrformet.2004.12.010, 2006.
Finnigan, J., Ayotte, K., Harman, I., Katul, G., Oldroyd, H., Patton, E., Poggi, D., Ross, A., and Taylor, P.: Boundary-Layer Flow Over Complex Topography, Bound.-Lay. Meteorol., 177, 247–313, https://doi.org/10.1007/s10546-020-00564-3, 2020.
Fuentes, J. D., Wang, D., Bowling, D. R., Potosnak, M., Monson, R. K., Goliff, W. S., and Stockwell, W. R.: Biogenic Hydrocarbon Chemistry within and Above a Mixed Deciduous Forest, J. Atmos. Chem., 56, 165–185, https://doi.org/10.1007/s10874-006-9048-4, 2006.
Gao, T., Yu, L.-Z., Yu, F.-Y., Wang, X.-C., Yang, K., Lu, D.-L., Li, X.-F., Yan, Q.-L., Sun, Y.-R., Liu, L.-F., Xu, S., Zhen, X.-J., Ni, Z.-D., Zhang, J.-X., Wang, G.-F., Wei, X.-H., Zhou, X.-H., and Zhu, J.-J.: Functions and applications of Multi-Tower Platform of Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences, Chinese Journal of Applied Ecology, 31, 695–705, https://doi.org/10.13287/j.1001-9332.202003.040, 2020.
Gerken, T., Chamecki, M., and Fuentes, J. D.: Air-Parcel Residence Times Within Forest Canopies, Bound.-Lay. Meteorol., 165, 29–54, https://doi.org/10.1007/s10546-017-0269-7, 2017.
Grant, E. R., Ross, A. N., Gardiner, B. A., and Mobbs, S. D.: Field Observations of Canopy Flows over Complex Terrain, Bound.-Lay. Meteorol., 156, 231–251, https://doi.org/10.1007/s10546-015-0015-y, 2015.
Gu, L., Massman, W. J., Leuning, R., Pallardy, S. G., Meyers, T., Hanson, P. J., Riggs, J. S., Hosman, K. P., and Yang, B.: The fundamental equation of eddy covariance and its application in flux measurements, Agr. Forest Meteorol., 152, 135–148, https://doi.org/10.1016/j.agrformet.2011.09.014, 2012.
Heinesch, B., Yernaux, M., and Aubinet, M.: Some methodological questions concerning advection measurements: a case study, Bound.-Lay. Meteorol., 122, 457–478, https://doi.org/10.1007/s10546-006-9102-4, 2007.
Hollinger, D. Y. and Richardson, A. D.: Uncertainty in eddy covariance measurements and its application to physiological models, Tree Physiol., 25, 873–885, https://doi.org/10.1093/treephys/25.7.873, 2005.
Huang, N. E. and Wu, Z.: A review on Hilbert-Huang transform: Method and its applications to geophysical studies, Rev. Geophys., 46, RG2006, https://doi.org/10.1029/2007rg000228, 2008.
Huang, N. E., Shen, Z., Long, S. R., Wu, M. C., Shih, H. H., Zheng, Q., Yen, N.-C., Tung, C. C., and Liu, H. H.: The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis, P. Roy. Soc. Lond. A, 454, 903–995, https://doi.org/10.1098/rspa.1998.0193, 1998.
Khélifa, N., Lecollinet, M., and Himbert, M.: Molar mass of dry air in mass metrology, Measurement, 40, 779–784, https://doi.org/10.1016/j.measurement.2006.05.009, 2007.
Leuning, R., Zegelin, S. J., Jones, K., Keith, H., and Hughes, D.: Measurement of horizontal and vertical advection of CO2 within a forest canopy, Agr. Forest Meteorol., 148, 1777–1797, https://doi.org/10.1016/j.agrformet.2008.06.006, 2008.
Li, S., Yan, Q., Liu, Z., Wang, X., Yu, F., Teng, D., Sun, Y., Lu, D., Zhang, J., Gao, T., and Zhu, J.: Seasonality of albedo and fraction of absorbed photosynthetically active radiation in the temperate secondary forest ecosystem: A comprehensive observation using Qingyuan Ker towers, Agr. Forest Meteorol., 333, 109418, https://doi.org/10.1016/j.agrformet.2023.109418, 2023.
Li, Y.-C., Liu, F., Wang, C.-K., Gao, T., and Wang, X.-C.: Carbon budget estimation based on different methods of CO2 storage flux in forest ecosystems, Chinese Journal of Applied Ecology, 31, 3665–3673, https://doi.org/10.13287/j.1001-9332.202011.004, 2020.
Loke, L. H. L. and Chisholm, R. A.: Measuring habitat complexity and spatial heterogeneity in ecology, Ecol. Lett., 25, 2269–2288, https://doi.org/10.1111/ele.14084, 2022.
Mandelbrot, B. B.: How Long Is the Coast of Britain? Statistical Self-Similarity and Fractional Dimension, Science, 156, 636–638, 1967.
Marcolla, B., Cobbe, I., Minerbi, S., Montagnani, L., and Cescatti, A.: Methods and uncertainties in the experimental assessment of horizontal advection, Agr. Forest Meteorol., 198–199, 62–71, https://doi.org/10.1016/j.agrformet.2014.08.002, 2014.
McHugh, I. D., Beringer, J., Cunningham, S. C., Baker, P. J., Cavagnaro, T. R., Mac Nally, R., and Thompson, R. M.: Interactions between nocturnal turbulent flux, storage and advection at an “ideal” eucalypt woodland site, Biogeosciences, 14, 3027–3050, https://doi.org/10.5194/bg-14-3027-2017, 2017.
McMaster, G. S. and Wilhelm, W. W.: Growing degree-days: one equation, two interpretations, Agr. Forest Meteorol., 87, 291–300, https://doi.org/10.1016/S0168-1923(97)00027-0, 1997.
Metzger, S.: Surface-atmosphere exchange in a box: Making the control volume a suitable representation for in-situ observations, Agr. Forest Meteorol., 255, 68–80, https://doi.org/10.1016/j.agrformet.2017.08.037, 2018.
Montagnani, L., Manca, G., Canepa, E., Georgieva, E., Acosta, M., Feigenwinter, C., Janous, D., Kerschbaumer, G., Lindroth, A., Minach, L., Minerbi, S., Mölder, M., Pavelka, M., Seufert, G., Zeri, M., and Ziegler, W.: A new mass conservation approach to the study of CO2 advection in an alpine forest, J. Geophys. Res., 114, D07306, https://doi.org/10.1029/2008jd010650, 2009.
Montagnani, L., Grunwald, T., Kowalski, A., Mammarella, I., Merbold, L., Metzger, S., Sedlak, P., and Siebicke, L.: Estimating the storage term in eddy covariance measurements: the ICOS methodology, Int. Agrophys., 32, 551–567, https://doi.org/10.1515/intag-2017-0037, 2018.
Nadeau, D. F., Pardyjak, E. R., Higgins, C. W., Huwald, H., and Parlange, M. B.: Flow during the evening transition over steep Alpine slopes, Q. J. Roy. Meteor. Soc., 139, 607–624, https://doi.org/10.1002/qj.1985, 2013.
Nicolini, G., Aubinet, M., Feigenwinter, C., Heinesch, B., Lindroth, A., Mamadou, O., Moderow, U., Mölder, M., Montagnani, L., Rebmann, C., and Papale, D.: Impact of CO2 storage flux sampling uncertainty on net ecosystem exchange measured by eddy covariance, Agr. Forest Meteorol., 248, 228–239, https://doi.org/10.1016/j.agrformet.2017.09.025, 2018.
Richardson, A. D., Hollinger, D. Y., Burba, G. G., Davis, K. J., Flanagan, L. B., Katul, G. G., William Munger, J., Ricciuto, D. M., Stoy, P. C., Suyker, A. E., Verma, S. B., and Wofsy, S. C.: A multi-site analysis of random error in tower-based measurements of carbon and energy fluxes, Agr. Forest Meteorol., 136, 1–18, https://doi.org/10.1016/j.agrformet.2006.01.007, 2006.
Richardson, A. D., Mahecha, M. D., Falge, E., Kattge, J., Moffat, A. M., Papale, D., Reichstein, M., Stauch, V. J., Braswell, B. H., Churkina, G., Kruijt, B., and Hollinger, D. Y.: Statistical properties of random CO2 flux measurement uncertainty inferred from model residuals, Agr. Forest Meteorol., 148, 38–50, https://doi.org/10.1016/j.agrformet.2007.09.001, 2008.
Sha, J., Zou, J., and Sun, J.: Observational study of land-atmosphere turbulent flux exchange over complex underlying surfaces in urban and suburban areas, Sci. China Earth Sci., 64, 1050–1064, https://doi.org/10.1007/s11430-020-9783-2, 2021.
Siebicke, L., Steinfeld, G., and Foken, T.: CO2-gradient measurements using a parallel multi-analyzer setup, Atmos. Meas. Tech., 4, 409–423, https://doi.org/10.5194/amt-4-409-2011, 2011.
Taud, H. and Parrot, J.-F.: Measurement of DEM roughness using the local fractal dimension, Géomorphologie, 11, 327–338, https://doi.org/10.4000/geomorphologie.622, 2005.
Teng, D., Zhu, J., Gao, T., and Yu, F.: High-Frequency Eddy Covariance Measurements of CO2 Fluxes in a Mountain Watershed: A Comprehensive Dataset for Understanding Carbon Exchange Dynamics in Forest Ecosystems[DS/OL], V1, Science Data Bank [data set], https://www.scidb.cn/en/s/7ZfQZv (last access: 18 September 2024), 2023.
van Gorsel, E., Harman, I. N., Finnigan, J. J., and Leuning, R.: Decoupling of air flow above and in plant canopies and gravity waves affect micrometeorological estimates of net scalar exchange, Agr. Forest Meteorol., 151, 927–933, https://doi.org/10.1016/j.agrformet.2011.02.012, 2011.
Wang, J., Shi, T., Yu, D., Teng, D., Ge, X., Zhang, Z., Yang, X., Wang, H., and Wu, G.: Ensemble machine-learning-based framework for estimating total nitrogen concentration in water using drone-borne hyperspectral imagery of emergent plants: A case study in an arid oasis, NW China, Environ. Pollut., 266, 115412, https://doi.org/10.1016/j.envpol.2020.115412, 2020.
Wang, X., Wang, C., Guo, Q., and Wang, J.: Improving the CO2 storage measurements with a single profile system in a tall-dense-canopy temperate forest, Agr. Forest Meteorol., 228–229, 327–338, https://doi.org/10.1016/j.agrformet.2016.07.020, 2016.
Warton, D. I., Duursma, R. A., Falster, D. S., and Taskinen, S.: smatr 3 – an R package for estimation and inference about allometric lines, Methods Ecol. Evol., 3, 257–259, https://doi.org/10.1111/j.2041-210X.2011.00153.x, 2012.
Webb, E. K., Pearman, G. I., and Leuning, R.: Correction of flux measurements for density effects due to heat and water vapour transfer, Q. J. Roy. Meteor. Soc., 106, 85–100, https://doi.org/10.1002/qj.49710644707, 1980.
Xu, K., Pingintha-Durden, N., Luo, H., Durden, D., Sturtevant, C., Desai, A. R., Florian, C., and Metzger, S.: The eddy-covariance storage term in air: Consistent community resources improve flux measurement reliability, Agr. Forest Meteorol., 279, 107734, https://doi.org/10.1016/j.agrformet.2019.107734, 2019.
Yang, B., Hanson, P. J., Riggs, J. S., Pallardy, S. G., Heuer, M., Hosman, K. P., Meyers, T. P., Wullschleger, S. D., and Gu, L.-H.: Biases of CO2 storage in eddy flux measurements in a forest pertinent to vertical configurations of a profile system and CO2 density averaging, J. Geophys. Res., 112, D20123, https://doi.org/10.1029/2006jd008243, 2007.
Yang, P. C., Black, T. A., Neumann, H. H., Novak, M. D., and Blanken, P. D.: Spatial and temporal variability of CO2 concentration and flux in a boreal aspen forest, J. Geophys. Res.-Atmos., 104, 27653–27661, https://doi.org/10.1029/1999jd900295, 1999.
Yao, Y., Zhang, Y., Yu, G., Song, Q., Tan, Z., and Zhao, J.: Estimation of CO2 storage flux between forest and atmosphere in a tropical forest, Journal of Beijing Forestry University, 33, 23–29, 2011.
Zhang, M., Wen, X., Yu, G.-R., Zhang, L.-M., Fu, Y., Sun, X., and Han, S.-J.: Effects of CO2 storage flux on carbon budget of forest ecosystem, Chinese Journal of Applied Ecology, 21, 1201–1209, 2010.
Zhu, J., Gao, T., Yu, L., Yu, F., Yang, K., Lu, D., Yan, Q., Sun, Y., Liu, L., Xu, S., Zhang, J., Zheng, X., Song, L., and Zhou, X.: Functions and Applications of Multi-tower Platform of Qingyuan Forest Ecosystem Research Station of Chinese Academy of Sciences (Qingyuan Ker Towers), Bulletin of the Chinese Academy of Sciences, 36, 351–361, https://doi.org/10.16418/j.issn.1000-3045.20210304002, 2021.
Short summary
Dense canopy weakens turbulent mixing, leading to significant CO2 storage (Fs), a key part of net ecosystem exchange (NEE) measured using eddy covariance. Gust-biased Fs measurements complicate NEE estimation in forests with complex terrain. We analyzed gust-induced CO2 fluctuations and their impact on Fs. Fs and its contribution to NEE can be explained by terrain complexity and turbulent mixing. This work highlights how gusts over complex terrain affect the Fs and NEE measurements.
Dense canopy weakens turbulent mixing, leading to significant CO2 storage (Fs), a key part of...