Articles | Volume 8, issue 10
https://doi.org/10.5194/amt-8-4383-2015
https://doi.org/10.5194/amt-8-4383-2015
Research article
 | 
19 Oct 2015
Research article |  | 19 Oct 2015

Real-time remote detection and measurement for airborne imaging spectroscopy: a case study with methane

D. R. Thompson, I. Leifer, H. Bovensmann, M. Eastwood, M. Fladeland, C. Frankenberg, K. Gerilowski, R. O. Green, S. Kratwurst, T. Krings, B. Luna, and A. K. Thorpe

Related authors

Brief communication: Not as dirty as they look, flawed airborne and satellite snow spectra
Edward H. Bair, Dar A. Roberts, David R. Thompson, Philip G. Brodrick, Brenton A. Wilder, Niklas Bohn, Chris J. Crawford, Nimrod Carmon, Carrie M. Vuyovich, and Jeff Dozier
EGUsphere, https://doi.org/10.5194/egusphere-2024-1681,https://doi.org/10.5194/egusphere-2024-1681, 2024
Short summary
The pitfalls of ignoring topography in snow retrievals: a case study with EMIT
Niklas Bohn, Edward H. Bair, Philip G. Brodrick, Nimrod Carmon, Robert O. Green, Thomas H. Painter, and David R. Thompson
EGUsphere, https://doi.org/10.2139/ssrn.4671920,https://doi.org/10.2139/ssrn.4671920, 2024
Short summary
Modeling dust mineralogical composition: sensitivity to soil mineralogy atlases and their expected climate impacts
María Gonçalves Ageitos, Vincenzo Obiso, Ron L. Miller, Oriol Jorba, Martina Klose, Matt Dawson, Yves Balkanski, Jan Perlwitz, Sara Basart, Enza Di Tomaso, Jerónimo Escribano, Francesca Macchia, Gilbert Montané, Natalie M. Mahowald, Robert O. Green, David R. Thompson, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 23, 8623–8657, https://doi.org/10.5194/acp-23-8623-2023,https://doi.org/10.5194/acp-23-8623-2023, 2023
Short summary
New sampling strategy mitigates a solar-geometry-induced bias in sub-kilometre vapour scaling statistics derived from imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 15, 117–129, https://doi.org/10.5194/amt-15-117-2022,https://doi.org/10.5194/amt-15-117-2022, 2022
Short summary
Boundary layer water vapour statistics from high-spatial-resolution spaceborne imaging spectroscopy
Mark T. Richardson, David R. Thompson, Marcin J. Kurowski, and Matthew D. Lebsock
Atmos. Meas. Tech., 14, 5555–5576, https://doi.org/10.5194/amt-14-5555-2021,https://doi.org/10.5194/amt-14-5555-2021, 2021
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Instruments and Platforms
Design study for an airborne N2O lidar
Christoph Kiemle, Andreas Fix, Christian Fruck, Gerhard Ehret, and Martin Wirth
Atmos. Meas. Tech., 17, 6569–6578, https://doi.org/10.5194/amt-17-6569-2024,https://doi.org/10.5194/amt-17-6569-2024, 2024
Short summary
The Pyrenean Platform for Observation of the Atmosphere: site, long-term dataset, and science
Marie Lothon, François Gheusi, Fabienne Lohou, Véronique Pont, Serge Soula, Corinne Jambert, Solène Derrien, Yannick Bezombes, Emmanuel Leclerc, Gilles Athier, Antoine Vial, Alban Philibert, Bernard Campistron, Frédérique Saïd, Jeroen Sonke, Julien Amestoy, Erwan Bargain, Pierre Bosser, Damien Boulanger, Guillaume Bret, Renaud Bodichon, Laurent Cabanas, Guylaine Canut, Jean-Bernard Estrampes, Eric Gardrat, Zaida Gomez Kuri, Jérémy Gueffier, Fabienne Guesdon, Morgan Lopez, Olivier Masson, Pierre-Yves Meslin, Yves Meyerfeld, Nicolas Pascal, Eric Pique, Michel Ramonet, Felix Starck, and Romain Vidal
Atmos. Meas. Tech., 17, 6265–6300, https://doi.org/10.5194/amt-17-6265-2024,https://doi.org/10.5194/amt-17-6265-2024, 2024
Short summary
A novel, balloon-borne UV–Vis spectrometer for direct sun measurements of stratospheric bromine
Karolin Voss, Philip Holzbeck, Klaus Pfeilsticker, Ralph Kleinschek, Gerald Wetzel, Blanca Fuentes Andrade, Michael Höpfner, Jörn Ungermann, Björn-Martin Sinnhuber, and André Butz
Atmos. Meas. Tech., 17, 4507–4528, https://doi.org/10.5194/amt-17-4507-2024,https://doi.org/10.5194/amt-17-4507-2024, 2024
Short summary
Stability requirements of satellites to detect long-term stratospheric ozone trends based upon Monte Carlo simulations
Mark Weber
Atmos. Meas. Tech., 17, 3597–3604, https://doi.org/10.5194/amt-17-3597-2024,https://doi.org/10.5194/amt-17-3597-2024, 2024
Short summary
Martian column CO2 and pressure measurement with spaceborne differential absorption lidar at 1.96 µm
Zhaoyan Liu, Bing Lin, Joel F. Campbell, Jirong Yu, Jihong Geng, and Shibin Jiang
Atmos. Meas. Tech., 17, 2977–2990, https://doi.org/10.5194/amt-17-2977-2024,https://doi.org/10.5194/amt-17-2977-2024, 2024
Short summary

Cited articles

Ambrosia, V., Wegener, S., Zajkowski, T., Sullivan, D., Buechel, S., Enomoto, F., Lobitz, B., Johan, S., Brass, J., and Hinkley, E.: The Ikhana unmanned airborne system (UAS) western states fire imaging missions: from concept to reality (2006–2010), Geocarto International, 26, 85–101, 2011.
Ambrosia, V. G., Wegener, S. S., Sullivan, D. V., Buechel, S. W., Dunagan, S. E., Brass, J. A., Stoneburner, J., and Schoenung, S. M.: Demonstrating UAV-acquired real-time thermal data over fires, Photogramm. Eng. Rem. S., 69, 391–402, 2003.
Aubrey, A., Frankenberg, C., Green, R., Eastwood, M., Thompson, D., and Thorpe, A. K.: Crosscutting airborne remote sensing technologies for oil and gas and Earth science applications, in: Offshore Technology Conference, Houston, Texas, USA, 2015.
Boardman, J. W. and Kruse, F. A.: Analysis of imaging spectrometer data using n-dimensional geometry and a mixture-tuned matched filtering approach, IEEE T. Geosci. Remote, 49, 4138–4152, 2011.
Bojinski, S., Schlaepfer, D., Schaepman, M. E., and Keller, J.: Aerosol mapping over rugged heterogeneous terrain with imaging spectrometer data, in: International Symposium on Optical Science and Technology, International Society for Optics and Photonics, 108–119, 2002.
Download
Short summary
We discuss principles for real-time infrared spectral signature detection and measurement, and report performance onboard the NASA Airborne Visible Infrared Spectrometer - Next Generation (AVIRIS-NG). We describe a case study of the NASA/ESA CO2 and MEthane eXperiment (COMEX), a multi-platform campaign to measure CH4 plumes released from anthropogenic sources including oil and gas infrastructure. AVIRIS-NG successfully detected CH4 plumes in concert with other in situ and remote instruments.