Articles | Volume 9, issue 10
https://doi.org/10.5194/amt-9-5163-2016
https://doi.org/10.5194/amt-9-5163-2016
Research article
 | 
21 Oct 2016
Research article |  | 21 Oct 2016

Random uncertainties of flux measurements by the eddy covariance technique

Üllar Rannik, Olli Peltola, and Ivan Mammarella

Related authors

The high-frequency response correction of eddy covariance fluxes – Part 2: An experimental approach for analysing noisy measurements of small fluxes
Toprak Aslan, Olli Peltola, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5089–5106, https://doi.org/10.5194/amt-14-5089-2021,https://doi.org/10.5194/amt-14-5089-2021, 2021
Short summary
The high-frequency response correction of eddy covariance fluxes – Part 1: An experimental approach and its interdependence with the time-lag estimation
Olli Peltola, Toprak Aslan, Andreas Ibrom, Eiko Nemitz, Üllar Rannik, and Ivan Mammarella
Atmos. Meas. Tech., 14, 5071–5088, https://doi.org/10.5194/amt-14-5071-2021,https://doi.org/10.5194/amt-14-5071-2021, 2021
Short summary
Direct effect of aerosols on solar radiation and gross primary production in boreal and hemiboreal forests
Ekaterina Ezhova, Ilona Ylivinkka, Joel Kuusk, Kaupo Komsaare, Marko Vana, Alisa Krasnova, Steffen Noe, Mikhail Arshinov, Boris Belan, Sung-Bin Park, Jošt Valentin Lavrič, Martin Heimann, Tuukka Petäjä, Timo Vesala, Ivan Mammarella, Pasi Kolari, Jaana Bäck, Üllar Rannik, Veli-Matti Kerminen, and Markku Kulmala
Atmos. Chem. Phys., 18, 17863–17881, https://doi.org/10.5194/acp-18-17863-2018,https://doi.org/10.5194/acp-18-17863-2018, 2018
Short summary
Uncertainty of eddy covariance flux measurements over an urban area based on two towers
Leena Järvi, Üllar Rannik, Tom V. Kokkonen, Mona Kurppa, Ari Karppinen, Rostislav D. Kouznetsov, Pekka Rantala, Timo Vesala, and Curtis R. Wood
Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018,https://doi.org/10.5194/amt-11-5421-2018, 2018
Short summary
Boreal forest BVOC exchange: emissions versus in-canopy sinks
Putian Zhou, Laurens Ganzeveld, Ditte Taipale, Üllar Rannik, Pekka Rantala, Matti Petteri Rissanen, Dean Chen, and Michael Boy
Atmos. Chem. Phys., 17, 14309–14332, https://doi.org/10.5194/acp-17-14309-2017,https://doi.org/10.5194/acp-17-14309-2017, 2017
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Intercomparison of fast airborne ozone instruments to measure eddy covariance fluxes: spatial variability in deposition at the ocean surface and evidence for cloud processing
Randall Chiu, Florian Obersteiner, Alessandro Franchin, Teresa Campos, Adriana Bailey, Christopher Webster, Andreas Zahn, and Rainer Volkamer
Atmos. Meas. Tech., 17, 5731–5746, https://doi.org/10.5194/amt-17-5731-2024,https://doi.org/10.5194/amt-17-5731-2024, 2024
Short summary
Field assessments on the impact of CO2 concentration fluctuations along with complex-terrain flows on the estimation of the net ecosystem exchange of temperate forests
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech., 17, 5581–5599, https://doi.org/10.5194/amt-17-5581-2024,https://doi.org/10.5194/amt-17-5581-2024, 2024
Short summary
Multi-instrumental analysis of ozone vertical profiles and total columns in South America: comparison between subtropical and equatorial latitudes
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024,https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors
Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi
Atmos. Meas. Tech., 17, 3917–3931, https://doi.org/10.5194/amt-17-3917-2024,https://doi.org/10.5194/amt-17-3917-2024, 2024
Short summary
Direct high-precision radon quantification for interpreting high frequency greenhouse gas measurements
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Foster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, and Tim Arnold
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-54,https://doi.org/10.5194/amt-2024-54, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

Billesbach, D. P.: Estimating uncertainties in individual eddy covariance flux measurements: A comparison of methods and a proposed new method, Agr. Forest Meteorol., 151 394–405, 2011.
Businger, J. A.: Evaluation of the accuracy with which dry deposition can be measured with current micrometeorological techniques, J. Clim. Appl. Meteorol., 25, 1100–1124, 1986.
Detto, M., Verfaillie, J., Anderson, F., Xu, L., and Baldocchi, D.: Comparing laser-based open- and closed-path gas analyzers to measure methane fluxes using the eddy covariance method, Agric. Forest Meteorol., 151, 1312–1324, 2011.
Deventer, M. J., Held, A., El-Madanya, T. S., and Klemm, O.: Size-resolved eddy covariance fluxes of nucleation to accumulation mode aerosol particles over a coniferous forest, Agr. Forest Meteorol., 151, 1312–1324, 2015.
Finkelstein, P. L. and Sims, P. F.: Sampling error in eddy correlation flux measurements, J. Geophys. Res., 106, 3503–3509, 2001.
Download
Short summary
We review available methods for the random error estimation of turbulent fluxes that are widely used by the flux community. Flux errors are evaluated theoretically as well as via numerical calculations by using measured and simulated records. We recommend two flux random errors with clear physical meaning: the total error resulting from stochastic nature of turbulence, well approximated by the method of Finkelstein and Sims (2001), and the error of the flux due to the instrumental noise.