Articles | Volume 11, issue 11
https://doi.org/10.5194/amt-11-6003-2018
https://doi.org/10.5194/amt-11-6003-2018
Research article
 | 
30 Oct 2018
Research article |  | 30 Oct 2018

Potential of INSAT-3D sounder-derived total precipitable water product for weather forecast

Shailesh Parihar, Ashim Kumar Mitra, Mrutyunjay Mohapatra, and Rajjev Bhatla

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022,https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022,https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022,https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Evaluation of tropospheric water vapour and temperature profiles retrieved from Metop-A by the Infrared and Microwave Sounding scheme
Tim Trent, Richard Siddens, Brian Kerridge, Marc Schroeder, Noëlle A. Scott, and John Remedios
EGUsphere, https://doi.org/10.5194/egusphere-2022-757,https://doi.org/10.5194/egusphere-2022-757, 2022
Short summary
Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022,https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary

Cited articles

Ferraro, R. R., Weng, F., Grody, N. C., Zhao, L., Meng, H., Kongoli, C., Pellegrino, P., Qiu, S., and Dean, S.: NOAA Operational Hydrological Products Derived From the Advanced Microwave Sounding Unit, IEEE T. Geosci. Remote, 43, 1036–1049, 2005. 
Fuelberg, H. E. and Oslon, S. R.: An assessment of VAS derived retrievals and parameters used in thunderstorm forecasting, Mon. Weather Rev., 119, 795–814, 1991. 
Hannon, S., Strow, L. L., and Mc Millan, W. W.: Atmospheric Infrared fast transmittance models: A comparison of two approaches, Proc. SPIE – Int. Soc. Opt. Eng., 2830, 94–105, 1996. 
Kidder, S. Q. and Jones, A. S.: A blended satellite Total Precipitable Water product for operational forecasting, J. Atmos. Ocean. Tech., 24, 74–81, 2007. 
Kuo, Y. H., Zou, X., and Guo, Y. R.: Variational assimilation of precipitable water using a non-hydrostatic mesoscale adjoint model, Mon. Weather Rev., 124, 122–147, 1996. 
Download
Short summary
This paper is based on operational work carried out at IMD, New Delhi using the INSAT-3D satellite-derived sounder product TPW for weather events such as rainfall and thunderstorms. The INSAT-3D TPW has been used by forecasters as well as many other users over the last 2 years. This work mainly brings out an in-depth validation with in situ ground measurement data as well as a GNSS system for its suitability in weather prediction. This paper can be utilized operationally for weather purposes.