Articles | Volume 11, issue 11
https://doi.org/10.5194/amt-11-6003-2018
https://doi.org/10.5194/amt-11-6003-2018
Research article
 | 
30 Oct 2018
Research article |  | 30 Oct 2018

Potential of INSAT-3D sounder-derived total precipitable water product for weather forecast

Shailesh Parihar, Ashim Kumar Mitra, Mrutyunjay Mohapatra, and Rajjev Bhatla

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Closing the gap in the tropics: the added value of radio-occultation data for wind field monitoring across the Equator
Julia Danzer, Magdalena Pieler, and Gottfried Kirchengast
Atmos. Meas. Tech., 17, 4979–4995, https://doi.org/10.5194/amt-17-4979-2024,https://doi.org/10.5194/amt-17-4979-2024, 2024
Short summary
Verification of weather-radar-based hail metrics with crowdsourced observations from Switzerland
Jérôme Kopp, Alessandro Hering, Urs Germann, and Olivia Martius
Atmos. Meas. Tech., 17, 4529–4552, https://doi.org/10.5194/amt-17-4529-2024,https://doi.org/10.5194/amt-17-4529-2024, 2024
Short summary
Atmospheric motion vector (AMV) error characterization and bias correction by leveraging independent lidar data: a simulation using an observing system simulation experiment (OSSE) and optical flow AMVs
Hai Nguyen, Derek Posselt, Igor Yanovsky, Longtao Wu, and Svetla Hristova-Veleva
Atmos. Meas. Tech., 17, 3103–3119, https://doi.org/10.5194/amt-17-3103-2024,https://doi.org/10.5194/amt-17-3103-2024, 2024
Short summary
Rotary-wing drone-induced flow – comparison of simulations with lidar measurements
Liqin Jin, Mauro Ghirardelli, Jakob Mann, Mikael Sjöholm, Stephan Thomas Kral, and Joachim Reuder
Atmos. Meas. Tech., 17, 2721–2737, https://doi.org/10.5194/amt-17-2721-2024,https://doi.org/10.5194/amt-17-2721-2024, 2024
Short summary
Improving the Estimate of Higher Order Moments from Lidar Observations Near the Top of the Convective Boundary Layer
Tessa Rosenberger, David D. Turner, Thijs Heus, Girish N. Raghunathan, Timothy J. Wagner, and Julia Simonson
EGUsphere, https://doi.org/10.5194/egusphere-2024-868,https://doi.org/10.5194/egusphere-2024-868, 2024
Short summary

Cited articles

Ferraro, R. R., Weng, F., Grody, N. C., Zhao, L., Meng, H., Kongoli, C., Pellegrino, P., Qiu, S., and Dean, S.: NOAA Operational Hydrological Products Derived From the Advanced Microwave Sounding Unit, IEEE T. Geosci. Remote, 43, 1036–1049, 2005. 
Fuelberg, H. E. and Oslon, S. R.: An assessment of VAS derived retrievals and parameters used in thunderstorm forecasting, Mon. Weather Rev., 119, 795–814, 1991. 
Hannon, S., Strow, L. L., and Mc Millan, W. W.: Atmospheric Infrared fast transmittance models: A comparison of two approaches, Proc. SPIE – Int. Soc. Opt. Eng., 2830, 94–105, 1996. 
Kidder, S. Q. and Jones, A. S.: A blended satellite Total Precipitable Water product for operational forecasting, J. Atmos. Ocean. Tech., 24, 74–81, 2007. 
Kuo, Y. H., Zou, X., and Guo, Y. R.: Variational assimilation of precipitable water using a non-hydrostatic mesoscale adjoint model, Mon. Weather Rev., 124, 122–147, 1996. 
Download
Short summary
This paper is based on operational work carried out at IMD, New Delhi using the INSAT-3D satellite-derived sounder product TPW for weather events such as rainfall and thunderstorms. The INSAT-3D TPW has been used by forecasters as well as many other users over the last 2 years. This work mainly brings out an in-depth validation with in situ ground measurement data as well as a GNSS system for its suitability in weather prediction. This paper can be utilized operationally for weather purposes.