Articles | Volume 13, issue 3
Atmos. Meas. Tech., 13, 1501–1516, 2020
https://doi.org/10.5194/amt-13-1501-2020

Special issue: Aeolus data and their application (AMT/ACP/WCD inter-journal...

Atmos. Meas. Tech., 13, 1501–1516, 2020
https://doi.org/10.5194/amt-13-1501-2020

Research article 31 Mar 2020

Research article | 31 Mar 2020

Doppler lidar at Observatoire de Haute-Provence for wind profiling up to 75 km altitude: performance evaluation and observations

Sergey M. Khaykin et al.

Related authors

A reel-down instrument system for profile measurements of water vapor, temperature, clouds, and aerosol beneath constant-altitude scientific balloons
Lars E. Kalnajs, Sean M. Davis, J. Douglas Goetz, Terry Deshler, Sergey Khaykin, Alex St. Clair, Albert Hertzog, Jerome Bordereau, and Alexey Lykov
Atmos. Meas. Tech., 14, 2635–2648, https://doi.org/10.5194/amt-14-2635-2021,https://doi.org/10.5194/amt-14-2635-2021, 2021
Short summary
Lower-stratospheric aerosol measurements in eastward-shedding vortices over Japan from the Asian summer monsoon anticyclone during the summer of 2018
Masatomo Fujiwara, Tetsu Sakai, Tomohiro Nagai, Koichi Shiraishi, Yoichi Inai, Sergey Khaykin, Haosen Xi, Takashi Shibata, Masato Shiotani, and Laura L. Pan
Atmos. Chem. Phys., 21, 3073–3090, https://doi.org/10.5194/acp-21-3073-2021,https://doi.org/10.5194/acp-21-3073-2021, 2021
Short summary
Evaluation of the New NDACC Ozone and Temperature Lidar at Hohenpeißenberg and Comparison of Results with Previous NDACC Campaigns
Robin Wing, Sophie Godin-Beekmann, Wolfgang Steinbrecht, Thomas J. McGee, John T. Sullivan, Sergey Khaykin, Grant Sumnicht, and Larry Twigg
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-396,https://doi.org/10.5194/amt-2020-396, 2020
Revised manuscript accepted for AMT
Short summary
A microphysics guide to cirrus – Part 2: Climatologies of clouds and humidity from observations
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020,https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Intercomparison and evaluation of ground- and satellite-based stratospheric ozone and temperature profiles above Observatoire de Haute-Provence during the Lidar Validation NDACC Experiment (LAVANDE)
Robin Wing, Wolfgang Steinbrecht, Sophie Godin-Beekmann, Thomas J. McGee, John T. Sullivan, Grant Sumnicht, Gérard Ancellet, Alain Hauchecorne, Sergey Khaykin, and Philippe Keckhut
Atmos. Meas. Tech., 13, 5621–5642, https://doi.org/10.5194/amt-13-5621-2020,https://doi.org/10.5194/amt-13-5621-2020, 2020
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021,https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Measurement characteristics of an airborne microwave temperature profiler (MTP)
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021,https://doi.org/10.5194/amt-14-1689-2021, 2021
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm
Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021,https://doi.org/10.5194/amt-14-1303-2021, 2021
Short summary
VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-33,https://doi.org/10.5194/amt-2021-33, 2021
Revised manuscript accepted for AMT
Short summary
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-487,https://doi.org/10.5194/amt-2020-487, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Abreu, V. J., Barnes, J. E., and Hays, P. B.: Observations of winds with an incoherent lidar detector, Appl. Optics, 31, 4509–4514, 1992. 
Baumgarten, G.: Doppler Rayleigh/Mie/Raman lidar for wind and temperature measurements in the middle atmosphere up to 80 km, Atmos. Meas. Tech., 3, 1509–1518, https://doi.org/10.5194/amt-3-1509-2010, 2010. 
Bills, R. E., Gardner, C. S., and S. J. Franke, Na Doppler/temperature lidar: Initial mesopause region observations and comparison with the Urbana medium-frequency radar, J. Geophys. Res., 96, 22701-22707, 1991. 
Chanin, M. L., Garnier, A., Hauchecorne, A., and Porteneuve, J.: A Doppler lidar for measuring winds in the middle atmosphere, Geopys. Res. Lett., 16, 1273–1276, https://doi.org/10.1029/GL016i011p01273, 1989. 
Download
Short summary
The article presents a powerful atmospheric instrument based on a laser radar (lidar), capable of measuring horizontal wind velocity at a wide range of altitudes. In this study, we evaluate the performance of the wind lidar at Observatoire de Haute-Provence and demonstrate the application of its measurements for studies of atmospheric dynamical processes. Finally, we present an example of early validation of the ESA Aeolus space-borne wind lidar using its ground-based predecessor.