Articles | Volume 13, issue 5
https://doi.org/10.5194/amt-13-2697-2020
https://doi.org/10.5194/amt-13-2697-2020
Research article
 | 
27 May 2020
Research article |  | 27 May 2020

Net CO2 fossil fuel emissions of Tokyo estimated directly from measurements of the Tsukuba TCCON site and radiosondes

Arne Babenhauserheide, Frank Hase, and Isamu Morino

Related authors

On the improved stability of the version 7 MIPAS ozone record
Alexandra Laeng, Ellen Eckert, Thomas von Clarmann, Michael Kiefer, Daan Hubert, Gabriele Stiller, Norbert Glatthor, Manuel López-Puertas, Bernd Funke, Udo Grabowski, Johannes Plieninger, Sylvia Kellmann, Andrea Linden, Stefan Lossow, Arne Babenhauserheide, Lucien Froidevaux, and Kaley Walker
Atmos. Meas. Tech., 11, 4693–4705, https://doi.org/10.5194/amt-11-4693-2018,https://doi.org/10.5194/amt-11-4693-2018, 2018
Short summary
MIPAS IMK/IAA carbon tetrachloride (CCl4) retrieval and first comparison with other instruments
Ellen Eckert, Thomas von Clarmann, Alexandra Laeng, Gabriele P. Stiller, Bernd Funke, Norbert Glatthor, Udo Grabowski, Sylvia Kellmann, Michael Kiefer, Andrea Linden, Arne Babenhauserheide, Gerald Wetzel, Christopher Boone, Andreas Engel, Jeremy J. Harrison, Patrick E. Sheese, Kaley A. Walker, and Peter F. Bernath
Atmos. Meas. Tech., 10, 2727–2743, https://doi.org/10.5194/amt-10-2727-2017,https://doi.org/10.5194/amt-10-2727-2017, 2017
Short summary
The CarbonTracker Data Assimilation Shell (CTDAS) v1.0: implementation and global carbon balance 2001–2015
Ingrid T. van der Laan-Luijkx, Ivar R. van der Velde, Emma van der Veen, Aki Tsuruta, Karolina Stanislawska, Arne Babenhauserheide, Hui Fang Zhang, Yu Liu, Wei He, Huilin Chen, Kenneth A. Masarie, Maarten C. Krol, and Wouter Peters
Geosci. Model Dev., 10, 2785–2800, https://doi.org/10.5194/gmd-10-2785-2017,https://doi.org/10.5194/gmd-10-2785-2017, 2017
Short summary
Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions
A. Babenhauserheide, S. Basu, S. Houweling, W. Peters, and A. Butz
Atmos. Chem. Phys., 15, 9747–9763, https://doi.org/10.5194/acp-15-9747-2015,https://doi.org/10.5194/acp-15-9747-2015, 2015
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
The differences between remote sensing and in situ air pollutant measurements over the Canadian oil sands
Xiaoyi Zhao, Vitali Fioletov, Debora Griffin, Chris McLinden, Ralf Staebler, Cristian Mihele, Kevin Strawbridge, Jonathan Davies, Ihab Abboud, Sum Chi Lee, Alexander Cede, Martin Tiefengraber, and Robert Swap
Atmos. Meas. Tech., 17, 6889–6912, https://doi.org/10.5194/amt-17-6889-2024,https://doi.org/10.5194/amt-17-6889-2024, 2024
Short summary
NitroNet – a machine learning model for the prediction of tropospheric NO2 profiles from TROPOMI observations
Leon Kuhn, Steffen Beirle, Sergey Osipov, Andrea Pozzer, and Thomas Wagner
Atmos. Meas. Tech., 17, 6485–6516, https://doi.org/10.5194/amt-17-6485-2024,https://doi.org/10.5194/amt-17-6485-2024, 2024
Short summary
Improved convective cloud differential (CCD) tropospheric ozone from S5P-TROPOMI satellite data using local cloud fields
Swathi Maratt Satheesan, Kai-Uwe Eichmann, John P. Burrows, Mark Weber, Ryan Stauffer, Anne M. Thompson, and Debra Kollonige
Atmos. Meas. Tech., 17, 6459–6484, https://doi.org/10.5194/amt-17-6459-2024,https://doi.org/10.5194/amt-17-6459-2024, 2024
Short summary
Atmospheric propane (C3H8) column retrievals from ground-based FTIR observations in Xianghe, China
Minqiang Zhou, Pucai Wang, Bart Dils, Bavo Langerock, Geoff Toon, Christian Hermans, Weidong Nan, Qun Cheng, and Martine De Mazière
Atmos. Meas. Tech., 17, 6385–6396, https://doi.org/10.5194/amt-17-6385-2024,https://doi.org/10.5194/amt-17-6385-2024, 2024
Short summary
Can the remote sensing of combustion phase improve estimates of landscape fire smoke emission rate and composition?
Farrer Owsley-Brown, Martin J. Wooster, Mark J. Grosvenor, and Yanan Liu
Atmos. Meas. Tech., 17, 6247–6264, https://doi.org/10.5194/amt-17-6247-2024,https://doi.org/10.5194/amt-17-6247-2024, 2024
Short summary

Cited articles

Andres, R. J., Gregg, J. S., Losey, L., Marland, G., and Boden, T. A.: Monthly, global emissions of carbon dioxide from fossil fuel consumption, Tellus B, 63, 309–327, https://doi.org/10.1111/j.1600-0889.2011.00530.x, 2011. a
Babenhauserheide, A., Basu, S., Houweling, S., Peters, W., and Butz, A.: Comparing the CarbonTracker and TM5-4DVar data assimilation systems for CO2 surface flux inversions, Atmos. Chem. Phys., 15, 9747–9763, https://doi.org/10.5194/acp-15-9747-2015, 2015. a
Babenhauserheide, A., Hase, F., and Morino, I.: Code and Data for amt-2018-224, https://doi.org/10.5281/zenodo.3845548, 2020. a, b, c, d, e
Bagan, H. and Yamagata, Y.: Land-cover change analysis in 50 global cities by using a combination of Landsat data and analysis of grid cells, Environ. Res. Lett., 9, 064015, https://doi.org/10.1088/1748-9326/9/6/064015, 2014. a, b
Bannon, P. R., Bishop, C. H., and Kerr, J. B.: Does the Surface Pressure Equal the Weight per Unit Area of a Hydrostatic Atmosphere?, B. Am. Meteorol. Soc., 78, 2637–2642, https://doi.org/10.1175/1520-0477(1997)078<2637:dtspet>2.0.co;2, 1997. a
Download
Short summary
This paper demonstrates that the carbon dioxide emissions of Tokyo can be estimated from long-term ground-based measurements of column-averaged atmospheric carbon dioxide abundances recorded at the TCCON site Tsukuba.