Articles | Volume 14, issue 7
Atmos. Meas. Tech., 14, 4857–4877, 2021
https://doi.org/10.5194/amt-14-4857-2021

Special issue: Analysis of atmospheric water vapour observations and their...

Atmos. Meas. Tech., 14, 4857–4877, 2021
https://doi.org/10.5194/amt-14-4857-2021

Research article 09 Jul 2021

Research article | 09 Jul 2021

Intercomparison review of IPWV retrieved from INSAT-3DR sounder, GNSS and CAMS reanalysis data

Ramashray Yadav et al.

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Sensitivity of Aeolus HLOS winds to temperature and pressure specification in the L2B processor
Matic Šavli, Vivien Pourret, Christophe Payan, and Jean-François Mahfouf
Atmos. Meas. Tech., 14, 4721–4736, https://doi.org/10.5194/amt-14-4721-2021,https://doi.org/10.5194/amt-14-4721-2021, 2021
Short summary
Airborne lidar observations of wind, water vapor, and aerosol profiles during the NASA Aeolus calibration and validation (Cal/Val) test flight campaign
Kristopher M. Bedka, Amin R. Nehrir, Michael Kavaya, Rory Barton-Grimley, Mark Beaubien, Brian Carroll, James Collins, John Cooney, G. David Emmitt, Steven Greco, Susan Kooi, Tsengdar Lee, Zhaoyan Liu, Sharon Rodier, and Gail Skofronick-Jackson
Atmos. Meas. Tech., 14, 4305–4334, https://doi.org/10.5194/amt-14-4305-2021,https://doi.org/10.5194/amt-14-4305-2021, 2021
Short summary
Improved method of estimating temperatures at meteor peak heights
Emranul Sarkar, Alexander Kozlovsky, Thomas Ulich, Ilkka Virtanen, Mark Lester, and Bernd Kaifler
Atmos. Meas. Tech., 14, 4157–4169, https://doi.org/10.5194/amt-14-4157-2021,https://doi.org/10.5194/amt-14-4157-2021, 2021
Short summary
Error analyses of a multistatic meteor radar system to obtain a three-dimensional spatial-resolution distribution
Wei Zhong, Xianghui Xue, Wen Yi, Iain M. Reid, Tingdi Chen, and Xiankang Dou
Atmos. Meas. Tech., 14, 3973–3988, https://doi.org/10.5194/amt-14-3973-2021,https://doi.org/10.5194/amt-14-3973-2021, 2021
Validation of wind measurements of two mesosphere–stratosphere–troposphere radars in northern Sweden and in Antarctica
Evgenia Belova, Peter Voelger, Sheila Kirkwood, Susanna Hagelin, Magnus Lindskog, Heiner Körnich, Sourav Chatterjee, and Karathazhiyath Satheesan
Atmos. Meas. Tech., 14, 2813–2825, https://doi.org/10.5194/amt-14-2813-2021,https://doi.org/10.5194/amt-14-2813-2021, 2021
Short summary

Cited articles

Andersson, E., Holm, E., Bauer, P., Beljaars, S., Kelly, G. A., McNally, A. P., Simmons, A. J., Thepaut, J. N., and Tompkins, A. M.: Analysis and forecast impact of the main humidity observing systems, Q. J. R. Meterol. Soc., 133, 1473–1485, 2007. 
Aumann, H. H., Chahine, M. T., Gautier, C., Goldberg, M. D., Kalnay, E., McMillin, L. M., and Revercomb, H.: AIRS/AMSU/HSB on the Aqua mission: Design, science objectives, data products, and processing systems, IEEE Trans. Geosci. Remote Sens., 41, 253–264, 2003. 
Beirle, S., Lampel, J., Wang, Y., Mies, K., Dörner, S., Grossi, M., Loyola, D., Dehn, A., Danielczok, A., Schröder, M., and Wagner, T.: The ESA GOME-Evolution “Climate” water vapor product: a homogenized time series of H2O columns from GOME, SCIAMACHY, and GOME-2, Earth Syst. Sci. Data, 10, 449–468, https://doi.org/10.5194/essd-10-449-2018, 2018. 
Berrisford, p., Kallberg, P., Kobayashi, S., Dee, D., Uppala S., Simmons, A. J., Poli, P., and Sato, H.: Atmospheric conservation properties in ERA-Interim, Q. J. R. Meterol. Soc., 137, 1381–1399, 2011. 
Bevis, M., Businger, S., Herring, T. A., Rocken, C., Anthes, R. A., and Ware, R.: GPS Meteorology: remote sensing of atmospheric water vapor using the Global Positioning System, J. Geophys. Res., 97, 15787–15801, 1992. 
Download
Short summary
We performed an intercomparison of seasonal and annual studies of retrievals of integrated precipitable water vapor (IPWV) carried out by INSAT-3DR satellite-borne infrared radiometer sounding and CAMS reanalysis data with ground-based Indian GNSS data. The magnitude and sign of the bias of INSAT-3DR and CAMS with respect to GNSS IPWV differs from station to station and season to season. A statistical evaluation of the collocated data sets was done to improve day-to-day weather forecasting.