Articles | Volume 14, issue 2
Atmos. Meas. Tech., 14, 889–903, 2021
https://doi.org/10.5194/amt-14-889-2021
Atmos. Meas. Tech., 14, 889–903, 2021
https://doi.org/10.5194/amt-14-889-2021

Research article 05 Feb 2021

Research article | 05 Feb 2021

Flywheel calibration of a continuous-wave coherent Doppler wind lidar

Anders Tegtmeier Pedersen and Michael Courtney

Related authors

Uncertainty model for dual-Doppler retrievals of wind speed and wind direction
Nikola Vasiljević, Michael Courtney, and Anders Tegtmeier Pedersen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-321,https://doi.org/10.5194/amt-2020-321, 2020
Revised manuscript has not been submitted
Short summary
Wind sensing with drone-mounted wind lidars: proof of concept
Nikola Vasiljević, Michael Harris, Anders Tegtmeier Pedersen, Gunhild Rolighed Thorsen, Mark Pitter, Jane Harris, Kieran Bajpai, and Michael Courtney
Atmos. Meas. Tech., 13, 521–536, https://doi.org/10.5194/amt-13-521-2020,https://doi.org/10.5194/amt-13-521-2020, 2020
Short summary
Performance evaluation of an all-fiber image-reject homodyne coherent Doppler wind lidar
C. F. Abari, A. T. Pedersen, E. Dellwik, and J. Mann
Atmos. Meas. Tech., 8, 4145–4153, https://doi.org/10.5194/amt-8-4145-2015,https://doi.org/10.5194/amt-8-4145-2015, 2015
Short summary
Retrieving wind statistics from average spectrum of continuous-wave lidar
E. Branlard, A. T. Pedersen, J. Mann, N. Angelou, A. Fischer, T. Mikkelsen, M. Harris, C. Slinger, and B. F. Montes
Atmos. Meas. Tech., 6, 1673–1683, https://doi.org/10.5194/amt-6-1673-2013,https://doi.org/10.5194/amt-6-1673-2013, 2013

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Performance evaluation of multiple satellite rainfall products for Dhidhessa River Basin (DRB), Ethiopia
Gizachew Kabite Wedajo, Misgana Kebede Muleta, and Berhan Gessesse Awoke
Atmos. Meas. Tech., 14, 2299–2316, https://doi.org/10.5194/amt-14-2299-2021,https://doi.org/10.5194/amt-14-2299-2021, 2021
Short summary
A 2-year intercomparison of continuous-wave focusing wind lidar and tall mast wind measurements at Cabauw
Steven Knoop, Fred C. Bosveld, Marijn J. de Haij, and Arnoud Apituley
Atmos. Meas. Tech., 14, 2219–2235, https://doi.org/10.5194/amt-14-2219-2021,https://doi.org/10.5194/amt-14-2219-2021, 2021
Short summary
Using machine learning to model uncertainty for water vapor atmospheric motion vectors
Joaquim V. Teixeira, Hai Nguyen, Derek J. Posselt, Hui Su, and Longtao Wu
Atmos. Meas. Tech., 14, 1941–1957, https://doi.org/10.5194/amt-14-1941-2021,https://doi.org/10.5194/amt-14-1941-2021, 2021
Short summary
Validation of pure rotational Raman temperature data from the Raman Lidar for Meteorological Observations (RALMO) at Payerne
Giovanni Martucci, Francisco Navas-Guzmán, Ludovic Renaud, Gonzague Romanens, S. Mahagammulla Gamage, Maxime Hervo, Pierre Jeannet, and Alexander Haefele
Atmos. Meas. Tech., 14, 1333–1353, https://doi.org/10.5194/amt-14-1333-2021,https://doi.org/10.5194/amt-14-1333-2021, 2021
Short summary
Validation of the TROPOspheric Monitoring Instrument (TROPOMI) surface UV radiation product
Kaisa Lakkala, Jukka Kujanpää, Colette Brogniez, Nicolas Henriot, Antti Arola, Margit Aun, Frédérique Auriol, Alkiviadis F. Bais, Germar Bernhard, Veerle De Bock, Maxime Catalfamo, Christine Deroo, Henri Diémoz, Luca Egli, Jean-Baptiste Forestier, Ilias Fountoulakis, Katerina Garane, Rosa Delia Garcia, Julian Gröbner, Seppo Hassinen, Anu Heikkilä, Stuart Henderson, Gregor Hülsen, Bjørn Johnsen, Niilo Kalakoski, Angelos Karanikolas, Tomi Karppinen, Kevin Lamy, Sergio F. León-Luis, Anders V. Lindfors, Jean-Marc Metzger, Fanny Minvielle, Harel B. Muskatel, Thierry Portafaix, Alberto Redondas, Ricardo Sanchez, Anna Maria Siani, Tove Svendby, and Johanna Tamminen
Atmos. Meas. Tech., 13, 6999–7024, https://doi.org/10.5194/amt-13-6999-2020,https://doi.org/10.5194/amt-13-6999-2020, 2020
Short summary

Cited articles

AMO GmbH: Incremental angle measuring systems based on the AMOSIN – Inductive Measuring Principle, available at: http://www.amoitalia.it/pdf/Catalogo%20rotativi_WMI_EN_2013_08_21.pdf (last access: 21 February 2020), 2013. a
Angelou, N., Foroughi Abari, F., Mann, J., Mikkelsen, T., and Sjöholm, M.: Challenges in noise removal from Doppler spectra acquired by a continuous-wave lidar, in: Proceedings of the 26th International Laser Radar Conference, 26th International Laser Radar Conference ILRC26, Porto Heli, Greece, 25–29 June 2012, S5P-01, 2012. a
Bean, V. and Hall, J.: New primary standards for air speed measurement at NIST, Metrology – at the Threshold of the Century Are We Ready?, Proceedings of the 1999 NCSL Conference, Charlotte, NC, USA, 11–15 July 1999, 413–421, 1999. a
Courtney, M.: Calibrating nacelle lidars, available at: https://orbit.dtu.dk/files/57802786/Calibrating_nacelle_lidars.pdf (last access: 27 January 2021), DTU Wind Energy E, 0020, 2013.  a
Cverna, F.: ASM ready reference – Thermal properties of metals, ASM International, Materials Park, Ohio 44073-0002, USA, ISBN 978-0-87170-768-0, 2002. a
Download
Short summary
This paper suggests and describes a method for calibrating wind lidars using a rotating flywheel. An uncertainty analysis shows that a standard uncertainty of 0.1 % can be achieved, with the main contributor being the width of the laser beam which is in agreement with experimental results. The method can potentially lower the calibration uncertainty of wind lidars, which today is often based on cup anemometers, and thus lead to better wind assessments and perhaps more widespread use.