Articles | Volume 15, issue 20
https://doi.org/10.5194/amt-15-6243-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-15-6243-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Estimation of refractivity uncertainties and vertical error correlations in collocated radio occultations, radiosondes, and model forecasts
Danish Meteorological Institute,
Lyngbyvej 100, 2100, Copenhagen, Denmark
Hans Gleisner
Danish Meteorological Institute,
Lyngbyvej 100, 2100, Copenhagen, Denmark
Stig Syndergaard
Danish Meteorological Institute,
Lyngbyvej 100, 2100, Copenhagen, Denmark
Kent B. Lauritsen
Danish Meteorological Institute,
Lyngbyvej 100, 2100, Copenhagen, Denmark
Related authors
Vinícius Ludwig-Barbosa, Johannes Kristoffer Nielsen, Kent Bækgaard Lauritsen, Brian Kerridge, Richard Siddans, and Tim Trent
EGUsphere, https://doi.org/10.5194/egusphere-2025-5578, https://doi.org/10.5194/egusphere-2025-5578, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Water vapour data from microwave, infrared (RAL IMS), and radio occultation (GRAS-RO) instruments onboard Metop-A are compared during 9.5 years under a set of cloud scenarios, land and water coverage, and time of day, while accounting for differences in resolutions. RAL IMS is wetter and GRAS-RO is drier than ERA-Interim analysis and GRUAN (references) in the lower troposphere. Mid-troposphere statistics are similar, suggesting a potential synergy could be exploited in climate data records.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Vinícius Ludwig-Barbosa, Johannes Kristoffer Nielsen, Kent Bækgaard Lauritsen, Brian Kerridge, Richard Siddans, and Tim Trent
EGUsphere, https://doi.org/10.5194/egusphere-2025-5578, https://doi.org/10.5194/egusphere-2025-5578, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
Water vapour data from microwave, infrared (RAL IMS), and radio occultation (GRAS-RO) instruments onboard Metop-A are compared during 9.5 years under a set of cloud scenarios, land and water coverage, and time of day, while accounting for differences in resolutions. RAL IMS is wetter and GRAS-RO is drier than ERA-Interim analysis and GRUAN (references) in the lower troposphere. Mid-troposphere statistics are similar, suggesting a potential synergy could be exploited in climate data records.
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024, https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Short summary
In a warmer future, water vapour will spend more time in the atmosphere, changing global rainfall patterns. In this study, we analysed the performance of 28 water vapour records between 1988 and 2014. We find sensitivity to surface warming generally outside expected ranges, attributed to breakpoints in individual record trends and differing representations of climate variability. The implication is that longer records are required for high confidence in assessing climate trends.
Michael Gorbunov, Gottfried Kirchengast, and Kent B. Lauritsen
Atmos. Meas. Tech., 14, 853–867, https://doi.org/10.5194/amt-14-853-2021, https://doi.org/10.5194/amt-14-853-2021, 2021
Short summary
Short summary
Currently, the canonical transform (CT) approach to the processing of radio occultation observations is widely used. For the spherically symmetric atmosphere, the applicability of this method can be strictly proven. However, in the presence of horizontal gradients, this approach may not work. Here we introduce a generalization of the CT method in order to reduce the errors due to horizontal gradients.
Cited articles
Barnes, J.: Atomic Timekeeping and the Statistics of Precision Signal
Generators, Proc. IEEE, 54, 207–220,
https://doi.org/10.1109/PROC.1966.4633, 1966. a
Bormann, N., Bonavita, M., Dragani, R., Eresmaa, R., Matricardi, M., and
McNally, A.: Enhancing the Impact of IASI Observations through an Updated
Observation-Error Covariance Matrix, Q. J. Roy. Meteor. Soc., 142, 1767–1780, https://doi.org/10.1002/qj.2774, 2016. a, b
Desroziers, G., Berre, L., Chapnik, B., and Poli, P.: Diagnosis of Observation,
Background and Analysis-Error Statistics in Observation Space, Q. J. Roy. Meteor. Soc., 131, 3385–3396,
https://doi.org/10.1256/qj.05.108, 2005. a
Dirksen, R. J., Sommer, M., Immler, F. J., Hurst, D. F., Kivi, R., and Vömel, H.: Reference quality upper-air measurements: GRUAN data processing for the Vaisala RS92 radiosonde, Atmos. Meas. Tech., 7, 4463–4490, https://doi.org/10.5194/amt-7-4463-2014, 2014. a, b
Gleisner, H., Lauritsen, K. B., Nielsen, J. K., and Syndergaard, S.: Evaluation of the 15-year ROM SAF monthly mean GPS radio occultation climate data record, Atmos. Meas. Tech., 13, 3081–3098, https://doi.org/10.5194/amt-13-3081-2020, 2020. a, b
Gleisner, H., Bækgaard Lauritsen, K. B., Nielsen, J. K., and Syndergaard, S.: ROM SAF Radio Occultation Climate Data Record v1.0, GRM-29-R1 (2019),
for 2006 to 2016, EUMETSAT [data set],
https://doi.org/10.15770/EUM_SAF_GRM_0002, 2019. a, b
Gleisner, H., Bækgaard Lauritsen, K. B., Nielsen, J. K., and Syndergaard, S.:
ROM SAF Radio Occultation Interim Climate Data Record v1.0, GRM-29-I1
(2019), for 2017 to 2020, EUMETSAT [data set],
https://doi.org/10.15770/EUM_SAF_GRM_0006, 2022. a, b
Gray, J. and Allan, D.: A Method for Estimating the Frequency
Stability of an Individual Oscillator, in: 28th Annual Symposium on
Frequency Control, Atlantic City, NJ, USA, 29–31 May 1974, 243–246, https://doi.org/10.1109/FREQ.1974.200027, 1974. a
Healy, S. B. and Eyre, J. R.: Retrieving Temperature, Water Vapour and Surface
Pressure Information from Refractive-Index Profiles Derived by Radio
Occultation: A Simulation Study, Q. J. Roy. Meteor. Soc., 126, 1661–1683, https://doi.org/10.1002/qj.49712656606, 2000. a
Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A.,
Muñoz-Sabater, J., Nicolas, J., Peubey, C., Radu, R., Schepers, D.,
Simmons, A., Soci, C., Abdalla, S., Abellan, X., Balsamo, G., Bechtold, P.,
Biavati, G., Bidlot, J., Bonavita, M., Chiara, G. D., Dahlgren, P., Dee, D.,
Diamantakis, M., Dragani, R., Flemming, J., Forbes, R., Fuentes, M., Geer,
A., Haimberger, L., Healy, S., Hogan, R. J., Hólm, E., Janisková, M.,
Keeley, S., Laloyaux, P., Lopez, P., Lupu, C., Radnoti, G., de Rosnay, P.,
Rozum, I., Vamborg, F., Villaume, S., and Thépaut, J.-N.: The ERA5
Global Reanalysis, Q. J. Roy. Meteor. Soc.,
146, 1999–2049, https://doi.org/10.1002/qj.3803, 2020. a, b
Hollingsworth, A. and Lönnberg, P.: The Statistical Structure of
Short-Range Forecast Errors as Determined from Radiosonde Data. Part I:
The Wind Field, Tellus A, 38A, 111–136,
https://doi.org/10.1111/j.1600-0870.1986.tb00460.x, 1986. a
Joint Committee for Guides in Metrology: JCGM 100:2008,
GUM 1995 with minor corrections,
Evaluation of measurement data – Guide to the expression of uncertainty
in measurement,
https://www.bipm.org/documents/20126/2071204/JCGM_100_2008_E.pdf, last access: September 2008. a
Kursinski, E. R., Hajj, G. A., Schofield, J. T., Linfield, R. P., and Hardy,
K. R.: Observing Earth's Atmosphere with Radio Occultation Measurements
Using the Global Positioning System, J. Geophys. Res.-Atmos., 102, 23429–23465, https://doi.org/10.1029/97JD01569, 1997. a, b, c, d
Kursinski, E. R., Healy, S. B., and Romans, L. J.: Initial Results of Combining
GPS Occultations with ECMWF Global Analyses within a 1DVar
Framework, Earth Planets Space, 52, 885–892, https://doi.org/10.1186/BF03352301,
2000. a
Levine, J.: Introduction to Time and Frequency Metrology, Rev. Sci. Instrum., 70, 2567, https://doi.org/10.1063/1.1149844, 1999. a
Merchant, C. J., Holl, G., Mittaz, J. P. D., and Woolliams, E. R.: Radiance
Uncertainty Characterisation to Facilitate Climate Data Record
Creation, Remote Sens., 11, 474, https://doi.org/10.3390/rs11050474, 2019. a
O'Carroll, A. G., Eyre, J. R., and Saunders, R. W.: Three-Way Error
Analysis between AATSR, AMSR-E, and In Situ Sea Surface
Temperature Observations, J. Atmos. Ocean. Tech.,
25, 1197–1207, https://doi.org/10.1175/2007JTECHO542.1, 2008. a
Rieckh, T. and Anthes, R.: Evaluating two methods of estimating error variances using simulated data sets with known errors, Atmos. Meas. Tech., 11, 4309–4325, https://doi.org/10.5194/amt-11-4309-2018, 2018. a, b
Rieckh, T., Sjoberg, J. P., and Anthes, R. A.: The Three-Cornered Hat
Method for Estimating Error Variances of Three or More
Atmospheric Datasets. Part II: Evaluating Radio Occultation and
Radiosonde Observations, Global Model Forecasts, and Reanalyses,
J. Atmos. Ocean. Tech., 38, 1777–1796,
https://doi.org/10.1175/JTECH-D-20-0209.1, 2021. a, b, c, d
ROM SAF: The Radio Occultation Processing Package (ROPP) Forward
Model Module User Guide, EUMETSAT ROM
SAF, Tech. Rep. SAF/ROM/METO/UG/ROPP/006, https://www.romsaf.org/romsaf_ropp_ug_fm.pdf, last access: December 2021a. a
Scherllin-Pirscher, B., Steiner, A. K., Kirchengast, G., Kuo, Y.-H., and Foelsche, U.: Empirical analysis and modeling of errors of atmospheric profiles from GPS radio occultation, Atmos. Meas. Tech., 4, 1875–1890, https://doi.org/10.5194/amt-4-1875-2011, 2011. a, b, c
Schröder, M., Lockhoff, M., Fell, F., Forsythe, J., Trent, T., Bennartz, R., Borbas, E., Bosilovich, M. G., Castelli, E., Hersbach, H., Kachi, M., Kobayashi, S., Kursinski, E. R., Loyola, D., Mears, C., Preusker, R., Rossow, W. B., and Saha, S.: The GEWEX Water Vapor Assessment archive of water vapour products from satellite observations and reanalyses, Earth Syst. Sci. Data, 10, 1093–1117, https://doi.org/10.5194/essd-10-1093-2018, 2018. a
Semane, N., Anthes, R., Sjoberg, J., Healy, S., and Ruston, B.: Comparison of
Desroziers and Three-Cornered Hat Methods for Estimating COSMIC-2
Bending Angle Uncertainties, J. Atmos. Ocean. Tech.,
39, 929–939, https://doi.org/10.1175/JTECH-D-21-0175.1, 2022.
a
Sjoberg, J. P., Anthes, R. A., and Rieckh, T.: The Three-Cornered Hat
Method for Estimating Error Variances of Three or More
Atmospheric Data Sets – Part I: Overview and
Evaluation, J. Atmos. Ocean. Tech., 38, 555–572,
https://doi.org/10.1175/JTECH-D-19-0217.1, 2020. a, b, c
Sommer, M., Dirksen, R., and Immler, F.: RS92 GRUAN Data Product Version 2 (RS92-GDP.2), GRUAN [data set], https://doi.org/10.5676/GRUAN/RS92-GDP.2, 2012. a, b
Steiner, A. K. and Kirchengast, G.: Error Analysis for GNSS Radio
Occultation Data Based on Ensembles of Profiles from End-to-End Simulations,
J. Geophys. Res.-Atmos., 110, D15307,
https://doi.org/10.1029/2004JD005251, 2005. a, b
Steiner, A. K., Ladstädter, F., Ao, C. O., Gleisner, H., Ho, S.-P., Hunt, D., Schmidt, T., Foelsche, U., Kirchengast, G., Kuo, Y.-H., Lauritsen, K. B., Mannucci, A. J., Nielsen, J. K., Schreiner, W., Schwärz, M., Sokolovskiy, S., Syndergaard, S., and Wickert, J.: Consistency and structural uncertainty of multi-mission GPS radio occultation records, Atmos. Meas. Tech., 13, 2547–2575, https://doi.org/10.5194/amt-13-2547-2020, 2020. a
Syndergaard, S., Kursinski, E. R., Herman, B. M., Lane, E. M., and Flittner,
D. E.: A Refractive Index Mapping Operator for Assimilation of
Occultation Data, Mon. Weather Rev., 133, 2650–2668,
https://doi.org/10.1175/MWR3001.1, 2005. a
Xie, F., Wu, D. L., Ao, C. O., Mannucci, A. J., and Kursinski, E. R.: Advances and limitations of atmospheric boundary layer observations with GPS occultation over southeast Pacific Ocean, Atmos. Chem. Phys., 12, 903–918, https://doi.org/10.5194/acp-12-903-2012, 2012. a
Short summary
This paper provides a new way to estimate uncertainties and error correlations. The method is a generalization of a known method called the
three-cornered hat: Instead of calculating uncertainties from assumed knowledge about the observation method, uncertainties and error correlations are estimated statistically from tree independent observation series, measuring the same variable. The results are useful for future estimation of atmospheric-specific humidity from the bending of radio waves.
This paper provides a new way to estimate uncertainties and error correlations. The method is a...