Articles | Volume 8, issue 7
Atmos. Meas. Tech., 8, 2789–2800, 2015
https://doi.org/10.5194/amt-8-2789-2015

Special issue: Observing Atmosphere and Climate with Occultation Techniques...

Atmos. Meas. Tech., 8, 2789–2800, 2015
https://doi.org/10.5194/amt-8-2789-2015

Research article 16 Jul 2015

Research article | 16 Jul 2015

Use of radio occultation to probe the high-latitude ionosphere

A. J. Mannucci et al.

Related authors

On the comparisons of tropical relative humidity in the lower and middle troposphere among COSMIC radio occultations and MERRA and ECMWF data sets
P. Vergados, A. J. Mannucci, C. O. Ao, J. H. Jiang, and H. Su
Atmos. Meas. Tech., 8, 1789–1797, https://doi.org/10.5194/amt-8-1789-2015,https://doi.org/10.5194/amt-8-1789-2015, 2015

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of Aeolus Level 2B wind products using wind profilers, ground-based Doppler wind lidars, and radiosondes in Japan
Hironori Iwai, Makoto Aoki, Mitsuru Oshiro, and Shoken Ishii
Atmos. Meas. Tech., 14, 7255–7275, https://doi.org/10.5194/amt-14-7255-2021,https://doi.org/10.5194/amt-14-7255-2021, 2021
Short summary
Monitoring the Tropospheric Monitoring Instrument (TROPOMI) short-wave infrared (SWIR) module instrument stability using desert sites
Tim A. van Kempen, Filippo Oggionni, and Richard M. van Hees
Atmos. Meas. Tech., 14, 6711–6722, https://doi.org/10.5194/amt-14-6711-2021,https://doi.org/10.5194/amt-14-6711-2021, 2021
Short summary
Evaluating the use of Aeolus satellite observations in the regional numerical weather prediction (NWP) model Harmonie–Arome
Susanna Hagelin, Roohollah Azad, Magnus Lindskog, Harald Schyberg, and Heiner Körnich
Atmos. Meas. Tech., 14, 5925–5938, https://doi.org/10.5194/amt-14-5925-2021,https://doi.org/10.5194/amt-14-5925-2021, 2021
Short summary
Towards operational multi-GNSS tropospheric products at GFZ Potsdam
Karina Wilgan, Galina Dick, Florian Zus, and Jens Wickert
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-197,https://doi.org/10.5194/amt-2021-197, 2021
Revised manuscript accepted for AMT
Short summary
Inter-comparison of wind measurements in the atmospheric boundary layer with Aeolus and a ground-based coherent Doppler lidar network over China
Songhua Wu, Kangwen Sun, Guangyao Dai, Xiaoye Wang, Xiaoying Liu, Bingyi Liu, Xiaoquan Song, Oliver Reitebuch, Rongzhong Li, Jiaping Yin, and Xitao Wang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-260,https://doi.org/10.5194/amt-2021-260, 2021
Revised manuscript accepted for AMT
Short summary

Cited articles

Aksnes, A., Amm, O., Stadsnes, J., Østgaard, N., Germany, G. A., Vondrak, R. R., and Sillanpää, I.: Ionospheric conductances derived from satellite measurements of auroral UV and X-ray emissions, and ground-based electromagnetic data: a comparison, Ann. Geophys., 23, 343–358, https://doi.org/10.5194/angeo-23-343-2005, 2005.
Arras, C., Wickert, J., Beyerle, G., Heise, S., Schmidt, T., and Jacobi, C.: A global climatology of ionospheric irregularities derived from GPS radio occultation, Geophys. Res. Lett., 35, L14809, https://doi.org/10.1029/2008gl034158, 2008.
Asikainen, T. and Mursula, K.: Correcting the NOAA/MEPED energetic electron fluxes for detector efficiency and proton contamination, J. Geophys. Res., 118, 6500–6510, https://doi.org/10.1002/jgra.50584, 2013.
Bilitza, D., Altadill, D., Zhang, Y., Mertens, C., Truhlik, V., Richards, P., McKinnell, L.-A., and Reinischm B.: The International Reference Ionosphere 2012 – a model of international collaboration, Journal of Space Weather and Space Climate, 4, A07, https://doi.org/10.1051/swsc/2014004, 2014.
Cole, K. D.: Joule heating of upper atmosphere, Aust. J. Phys., 15, 223–235, 1962.
Download
Short summary
We have explored the use of COSMIC radio occultation data to provide valuable scientific information on how energetic particles arriving from the Earth’s magnetosphere affect the ionosphere. These precipitating particles significantly alter the Earth’s ionospheric electron density in the E region at altitudes near 120km. This affects the ionospheric conductivity and hence the global electrodynamics and structure of the upper atmosphere during geomagnetic storms caused by the solar wind.