Articles | Volume 9, issue 1
Atmos. Meas. Tech., 9, 9–21, 2016
https://doi.org/10.5194/amt-9-9-2016
Atmos. Meas. Tech., 9, 9–21, 2016
https://doi.org/10.5194/amt-9-9-2016
Research article
15 Jan 2016
Research article | 15 Jan 2016

The microwave properties of simulated melting precipitation particles: sensitivity to initial melting

B. T. Johnson et al.

Related authors

Development of the Community Active Sensor Module (CASM): Forward Simulation
B. T. Johnson and S. A. Boukabara
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-154,https://doi.org/10.5194/amt-2016-154, 2016
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Evaluation of Aeolus L2B wind product with wind profiling radar measurements and numerical weather prediction model equivalents over Australia
Haichen Zuo, Charlotte Bay Hasager, Ioanna Karagali, Ad Stoffelen, Gert-Jan Marseille, and Jos de Kloe
Atmos. Meas. Tech., 15, 4107–4124, https://doi.org/10.5194/amt-15-4107-2022,https://doi.org/10.5194/amt-15-4107-2022, 2022
Short summary
Comparison of global UV spectral irradiance measurements between a BTS CCD-array and a Brewer spectroradiometer
Carmen González, José M. Vilaplana, José A. Bogeat, and Antonio Serrano
Atmos. Meas. Tech., 15, 4125–4133, https://doi.org/10.5194/amt-15-4125-2022,https://doi.org/10.5194/amt-15-4125-2022, 2022
Short summary
Scan strategies for wind profiling with Doppler lidar – an large-eddy simulation (LES)-based evaluation
Charlotte Rahlves, Frank Beyrich, and Siegfried Raasch
Atmos. Meas. Tech., 15, 2839–2856, https://doi.org/10.5194/amt-15-2839-2022,https://doi.org/10.5194/amt-15-2839-2022, 2022
Short summary
Exploiting Aeolus level-2b winds to better characterize atmospheric motion vector bias and uncertainty
Katherine E. Lukens, Kayo Ide, Kevin Garrett, Hui Liu, David Santek, Brett Hoover, and Ross N. Hoffman
Atmos. Meas. Tech., 15, 2719–2743, https://doi.org/10.5194/amt-15-2719-2022,https://doi.org/10.5194/amt-15-2719-2022, 2022
Short summary
Modelling the spectral shape of continuous-wave lidar measurements in a turbulent wind tunnel
Marijn Floris van Dooren, Anantha Padmanabhan Kidambi Sekar, Lars Neuhaus, Torben Mikkelsen, Michael Hölling, and Martin Kühn
Atmos. Meas. Tech., 15, 1355–1372, https://doi.org/10.5194/amt-15-1355-2022,https://doi.org/10.5194/amt-15-1355-2022, 2022
Short summary

Cited articles

Barros, A. P.: NASA GPM-Ground Validation: Integrated Precipitation and Hydrology Experiment 2014 Science Plan., Tech. rep., Duke University, Durham, NC, 64 pp., 2014.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 530 pp., 1983.
Bohren, C. F. and Battan, L. J.: Radar backscattering of microwaves by spongy ice spheres, J. Atmos. Sci., 39, 2623–2628, 1982.
Botta, G., Aydin, K., and Verlinde, J.: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: a new approach, IEEE Geosci. Remote S., 7, 572–576, 2010.
Draine, B. T. and Flatau, P. J.: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: a new approach, J. Opt. Soc. Am. A, 11, 1491–1499, 1994.
Download
Short summary
This research explores, through simulations, how a realistically shaped snowflake aggregate begins the melting process and how microwave-based satellite observations are sensitive to those initial stages of melting. Using highly detailed physical models, and high-precision numerical models, we can accurately simulate the sensitivity of observations to this critical transition from dry snow to melting snow. This research improves on existing models, providing an accurate measurement basis.