Articles | Volume 9, issue 1
https://doi.org/10.5194/amt-9-9-2016
https://doi.org/10.5194/amt-9-9-2016
Research article
 | 
15 Jan 2016
Research article |  | 15 Jan 2016

The microwave properties of simulated melting precipitation particles: sensitivity to initial melting

B. T. Johnson, W. S. Olson, and G. Skofronick-Jackson

Related authors

Development of the Community Active Sensor Module (CASM): Forward Simulation
B. T. Johnson and S. A. Boukabara
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-154,https://doi.org/10.5194/amt-2016-154, 2016
Revised manuscript has not been submitted
Short summary

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of the Aeolus L2B wind product with airborne wind lidar measurements in the polar North Atlantic region and in the tropics
Benjamin Witschas, Christian Lemmerz, Alexander Geiß, Oliver Lux, Uwe Marksteiner, Stephan Rahm, Oliver Reitebuch, Andreas Schäfler, and Fabian Weiler
Atmos. Meas. Tech., 15, 7049–7070, https://doi.org/10.5194/amt-15-7049-2022,https://doi.org/10.5194/amt-15-7049-2022, 2022
Short summary
An improved vertical correction method for the inter-comparison and inter-validation of integrated water vapour measurements
Olivier Bock, Pierre Bosser, and Carl Mears
Atmos. Meas. Tech., 15, 5643–5665, https://doi.org/10.5194/amt-15-5643-2022,https://doi.org/10.5194/amt-15-5643-2022, 2022
Short summary
An assessment of reprocessed GPS/MET observations spanning 1995–1997
Anthony J. Mannucci, Chi O. Ao, Byron A. Iijima, Thomas K. Meehan, Panagiotis Vergados, E. Robert Kursinski, and William S. Schreiner
Atmos. Meas. Tech., 15, 4971–4987, https://doi.org/10.5194/amt-15-4971-2022,https://doi.org/10.5194/amt-15-4971-2022, 2022
Short summary
Evaluation of tropospheric water vapour and temperature profiles retrieved from Metop-A by the Infrared and Microwave Sounding scheme
Tim Trent, Richard Siddens, Brian Kerridge, Marc Schroeder, Noëlle A. Scott, and John Remedios
EGUsphere, https://doi.org/10.5194/egusphere-2022-757,https://doi.org/10.5194/egusphere-2022-757, 2022
Short summary
Turbulence parameters measured by the Beijing mesosphere–stratosphere–troposphere radar in the troposphere and lower stratosphere with three models: comparison and analyses
Ze Chen, Yufang Tian, Yinan Wang, Yongheng Bi, Xue Wu, Juan Huo, Linjun Pan, Yong Wang, and Daren Lü
Atmos. Meas. Tech., 15, 4785–4800, https://doi.org/10.5194/amt-15-4785-2022,https://doi.org/10.5194/amt-15-4785-2022, 2022
Short summary

Cited articles

Barros, A. P.: NASA GPM-Ground Validation: Integrated Precipitation and Hydrology Experiment 2014 Science Plan., Tech. rep., Duke University, Durham, NC, 64 pp., 2014.
Bohren, C. F. and Huffman, D. R.: Absorption and Scattering of Light by Small Particles, Wiley-Interscience, New York, 530 pp., 1983.
Bohren, C. F. and Battan, L. J.: Radar backscattering of microwaves by spongy ice spheres, J. Atmos. Sci., 39, 2623–2628, 1982.
Botta, G., Aydin, K., and Verlinde, J.: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: a new approach, IEEE Geosci. Remote S., 7, 572–576, 2010.
Draine, B. T. and Flatau, P. J.: Modeling of microwave scattering from cloud ice crystal aggregates and melting aggregates: a new approach, J. Opt. Soc. Am. A, 11, 1491–1499, 1994.
Download
Short summary
This research explores, through simulations, how a realistically shaped snowflake aggregate begins the melting process and how microwave-based satellite observations are sensitive to those initial stages of melting. Using highly detailed physical models, and high-precision numerical models, we can accurately simulate the sensitivity of observations to this critical transition from dry snow to melting snow. This research improves on existing models, providing an accurate measurement basis.