Articles | Volume 11, issue 7
https://doi.org/10.5194/amt-11-4073-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-11-4073-2018
© Author(s) 2018. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Exploring systematic offsets between aerosol products from the two MODIS sensors
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Shana Mattoo
Science Systems and Applications (SSAI), Lanham, Maryland, USA
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Virginia Sawyer
Science Systems and Applications (SSAI), Lanham, Maryland, USA
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Yingxi Shi
Goddard Earth Sciences Technology And Research (GESTAR), University Space Research Association (USRA), Columbia, Maryland, USA
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Peter R. Colarco
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Alexei I. Lyapustin
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Yujie Wang
Joint Center for Earth systems Technology (JCET), University of Maryland-Baltimore County (UMBC), Baltimore, Maryland, USA
NASA-Goddard Space Flight Center (GSFC), Greenbelt, Maryland, USA
Lorraine A. Remer
Joint Center for Earth systems Technology (JCET), University of Maryland-Baltimore County (UMBC), Baltimore, Maryland, USA
Related authors
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech., 17, 5455–5476, https://doi.org/10.5194/amt-17-5455-2024, https://doi.org/10.5194/amt-17-5455-2024, 2024
Short summary
Short summary
In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models.
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024, https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Short summary
The study focused on evaluating and modifying the surface reflectance parameterization (SRP) of the Dark Target (DT) algorithm for geostationary observation. When using the DT SRP with the ABIs sensor on GOES-R, artificial diurnal signatures were present in AOD retrieval. To overcome this issue, a new SRP was developed, incorporating solar zenith angle and land cover type. The revised SRP resulted in improved AOD retrieval, demonstrating reduced bias around local noon.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Pawan Gupta, Prakash Doraiswamy, Jashwanth Reddy, Palak Balyan, Sagnik Dey, Ryan Chartier, Adeel Khan, Karmann Riter, Brandon Feenstra, Robert C. Levy, Nhu Nguyen Minh Tran, Olga Pikelnaya, Kurinji Selvaraj, Tanushree Ganguly, and Karthik Ganesan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-140, https://doi.org/10.5194/amt-2022-140, 2022
Revised manuscript not accepted
Short summary
Short summary
The use of low-cost sensors in air quality monitoring has been gaining interest across all walks of society. We present the results of evaluations of the PurpleAir against regulatory-grade PM2.5. The results indicate that with proper calibration, we can achieve bias-corrected PM2.5 data using PA sensors. Our study also suggests that pre-deployment calibrations developed at local or regional scales are required for the PA sensors to correct data from the field for scientific data analysis.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech., 14, 3449–3468, https://doi.org/10.5194/amt-14-3449-2021, https://doi.org/10.5194/amt-14-3449-2021, 2021
Short summary
Short summary
Due to fast industrialization and development, China has been experiencing haze pollution episodes with both high frequencies and severity over the last 3 decades. This study improves the accuracy and data coverage of measured aerosol from satellites, which help quantify, characterize, and understand the impact of the haze phenomena over the entire East Asia region.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Hongbin Yu, Yang Yang, Hailong Wang, Qian Tan, Mian Chin, Robert C. Levy, Lorraine A. Remer, Steven J. Smith, Tianle Yuan, and Yingxi Shi
Atmos. Chem. Phys., 20, 139–161, https://doi.org/10.5194/acp-20-139-2020, https://doi.org/10.5194/acp-20-139-2020, 2020
Short summary
Short summary
Emissions and long-range transport of mineral dust and
combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on interannual variability and possible trends in combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017).
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Short summary
Aerosol optical depth (AOD) from a geostationary satellite has been retrieved, and validated and diurnal cycles of aerosols are discussed over the eastern hemisphere and a 2-month period of May–June 2016. The new AOD product matches well with AERONET as well as with the standard MODIS product. Future work to make this algorithm operational will need to re-examine masking including snow masks, re-evaluate assumed aerosol models for geosynchronous geometry and address the surface characterization.
Yingxi R. Shi, Robert C. Levy, Thomas F. Eck, Brad Fisher, Shana Mattoo, Lorraine A. Remer, Ilya Slutsker, and Jianglong Zhang
Atmos. Chem. Phys., 19, 259–274, https://doi.org/10.5194/acp-19-259-2019, https://doi.org/10.5194/acp-19-259-2019, 2019
Short summary
Short summary
The Indonesian fire and smoke event of 2015 was an extreme episode that affected public health and caused severe economic and environmental damage. We managed to retrieve data over very thick smoke plumes and produce a lot more high aerosol loading data that were previously missed by other satellite products. These results will benefit varieties of downstream research that use the satellite aerosol data and will influence the future development of the global satellite aerosol algorithm.
Falguni Patadia, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3205–3219, https://doi.org/10.5194/amt-11-3205-2018, https://doi.org/10.5194/amt-11-3205-2018, 2018
Short summary
Short summary
Satellite-measured radiance from an Earth scene comprises light scattered and absorbed by gases, clouds and aerosols in the atmosphere and by the Earth surface. To retrieve aerosol information, the signal from clouds, gases and the surface must be separated from the aerosol signal. This paper highlights the gas absorption correction method used by the MODIS dark-target aerosol retrieval algorithm and demonstrates that aerosol retrieval accuracy depends on accurate gas absorption correction.
Pawan Gupta, Lorraine A. Remer, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3145–3159, https://doi.org/10.5194/amt-11-3145-2018, https://doi.org/10.5194/amt-11-3145-2018, 2018
Short summary
Short summary
In this study, we perform global validation of MODIS high-resolution (3 km) AOD over global land by comparing against AERONET measurements. The MODIS–AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error.
Antti Lipponen, Tero Mielonen, Mikko R. A. Pitkänen, Robert C. Levy, Virginia R. Sawyer, Sami Romakkaniemi, Ville Kolehmainen, and Antti Arola
Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, https://doi.org/10.5194/amt-11-1529-2018, 2018
Short summary
Short summary
Atmospheric aerosols are small solid or liquid particles suspended in the atmosphere and they have a significant effect on the climate. Satellite data are used to get global estimates of atmospheric aerosols. In this work, a statistics-based Bayesian aerosol retrieval algorithm was developed to improve the accuracy and quantify the uncertainties related to the aerosol estimates. The algorithm is tested with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data.
Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos A. Kourtidis, Jos Lelieveld, Prodromos Zanis, Ulrich Pöschl, Robert Levy, Vassilis Amiridis, Eleni Marinou, and Athanasios Tsikerdekis
Atmos. Chem. Phys., 16, 13853–13884, https://doi.org/10.5194/acp-16-13853-2016, https://doi.org/10.5194/acp-16-13853-2016, 2016
Short summary
Short summary
In this work, single pixel observations from MODIS Terra and Aqua are analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model to study the spatiotemporal variability of different aerosol types. The results are in accordance with previous works and are a good reference for future studies in the area focusing on aerosols, clouds, radiation and the effects of particle pollution on human health.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, and Leigh A. Munchak
Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, https://doi.org/10.5194/amt-9-3293-2016, 2016
Short summary
Short summary
A new surface scheme inside MODIS dark target aerosol retrieval algorithm has been developed to improve the accuracy of aerosol optical depth data over cities. The new scheme integrates the MODIS land surface reflectance and land cover type information into the surface parameterization for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region. The improved aerosols data sets will be useful for air quality applications over cities.
Galina Wind, Arlindo M. da Silva, Peter M. Norris, Steven Platnick, Shana Mattoo, and Robert C. Levy
Geosci. Model Dev., 9, 2377–2389, https://doi.org/10.5194/gmd-9-2377-2016, https://doi.org/10.5194/gmd-9-2377-2016, 2016
Short summary
Short summary
The MCARS code creates sensor radiances using model-generated atmospheric columns and actual sensor and solar geometry. MCARS output looks like real data, so it is usable by any code that reads MODIS data. MCARS output can be used to test remote-sensing retrieval algorithms. Users know what went into creating the radiance: atmosphere, surface, clouds, and aerosols. Models can use MCARS output to create new parameterizations of relations of atmospheric physical quantities and measured radiances.
Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu
Atmos. Chem. Phys., 16, 1255–1269, https://doi.org/10.5194/acp-16-1255-2016, https://doi.org/10.5194/acp-16-1255-2016, 2016
Short summary
Short summary
Using ground AOD measurements from AERONET, DRAGON-Asia Campaign, and handheld sunphotometers, we evaluated emerging aerosol products from VIIRS, GOCI, and Terra and Aqua MODIS (Collection 6) in East Asia in 2012–2013. We found that satellite aerosol products performed better in tracking the day-to-day variability than the high-resolution spatial variability. VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
E. Jäkel, B. Mey, R. Levy, X. Gu, T. Yu, Z. Li, D. Althausen, B. Heese, and M. Wendisch
Atmos. Meas. Tech., 8, 5237–5249, https://doi.org/10.5194/amt-8-5237-2015, https://doi.org/10.5194/amt-8-5237-2015, 2015
R. C. Levy, L. A. Munchak, S. Mattoo, F. Patadia, L. A. Remer, and R. E. Holz
Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, https://doi.org/10.5194/amt-8-4083-2015, 2015
Short summary
Short summary
Aerosol optical depth (AOD) is an essential climate variable, so we seek to create a long-term AOD record. From MODIS, we have 15+ years, which we want to continue with VIIRS. Accounting for instrumental difference, we have developed a MODIS-like algorithm for VIIRS, and applied it to overlapping 2-year time period. In general, the two data sets are similar, except for VIIRS being high-biased over ocean. We discuss the impacts of calibration, resolution, and sampling on the results.
A. Lyapustin, Y. Wang, X. Xiong, G. Meister, S. Platnick, R. Levy, B. Franz, S. Korkin, T. Hilker, J. Tucker, F. Hall, P. Sellers, A. Wu, and A. Angal
Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, https://doi.org/10.5194/amt-7-4353-2014, 2014
P. R. Colarco, R. A. Kahn, L. A. Remer, and R. C. Levy
Atmos. Meas. Tech., 7, 2313–2335, https://doi.org/10.5194/amt-7-2313-2014, https://doi.org/10.5194/amt-7-2313-2014, 2014
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
J. M. Livingston, J. Redemann, Y. Shinozuka, R. Johnson, P. B. Russell, Q. Zhang, S. Mattoo, L. Remer, R. Levy, L. Munchak, and S. Ramachandran
Atmos. Chem. Phys., 14, 2015–2038, https://doi.org/10.5194/acp-14-2015-2014, https://doi.org/10.5194/acp-14-2015-2014, 2014
R. C. Levy, S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu
Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, https://doi.org/10.5194/amt-6-2989-2013, 2013
L. A. Remer, S. Mattoo, R. C. Levy, and L. A. Munchak
Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, https://doi.org/10.5194/amt-6-1829-2013, 2013
L. A. Munchak, R. C. Levy, S. Mattoo, L. A. Remer, B. N. Holben, J. S. Schafer, C. A. Hostetler, and R. A. Ferrare
Atmos. Meas. Tech., 6, 1747–1759, https://doi.org/10.5194/amt-6-1747-2013, https://doi.org/10.5194/amt-6-1747-2013, 2013
Haihui Zhu, Randall V. Martin, Aaron van Donkelaar, Melanie S. Hammer, Chi Li, Jun Meng, Christopher R. Oxford, Xuan Liu, Yanshun Li, Dandan Zhang, Inderjeet Singh, and Alexei Lyapustin
Atmos. Chem. Phys., 24, 11565–11584, https://doi.org/10.5194/acp-24-11565-2024, https://doi.org/10.5194/acp-24-11565-2024, 2024
Short summary
Short summary
Ambient fine particulate matter (PM2.5) contributes to 4 million deaths globally each year. Satellite remote sensing of aerosol optical depth (AOD), coupled with a simulated PM2.5–AOD relationship (η), can provide global PM2.5 estimations. This study aims to understand the spatial patterns and driving factors of η to guide future measurement and modeling efforts. We quantified η globally and regionally and found that its spatial variation is strongly influenced by aerosol composition.
Myungje Choi, Alexei Lyapustin, Gregory L. Schuster, Sujung Go, Yujie Wang, Sergey Korkin, Ralph Kahn, Jeffrey S. Reid, Edward J. Hyer, Thomas F. Eck, Mian Chin, David J. Diner, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, and Hans Moosmüller
Atmos. Chem. Phys., 24, 10543–10565, https://doi.org/10.5194/acp-24-10543-2024, https://doi.org/10.5194/acp-24-10543-2024, 2024
Short summary
Short summary
This paper introduces a retrieval algorithm to estimate two key absorbing components in smoke (black carbon and brown carbon) using DSCOVR EPIC measurements. Our analysis reveals distinct smoke properties, including spectral absorption, layer height, and black carbon and brown carbon, over North America and central Africa. The retrieved smoke properties offer valuable observational constraints for modeling radiative forcing and informing health-related studies.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech., 17, 5455–5476, https://doi.org/10.5194/amt-17-5455-2024, https://doi.org/10.5194/amt-17-5455-2024, 2024
Short summary
Short summary
In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models.
Peng Xian, Jeffrey S. Reid, Melanie Ades, Angela Benedetti, Peter R. Colarco, Arlindo da Silva, Tom F. Eck, Johannes Flemming, Edward J. Hyer, Zak Kipling, Samuel Rémy, Tsuyoshi Thomas Sekiyama, Taichu Tanaka, Keiya Yumimoto, and Jianglong Zhang
Atmos. Chem. Phys., 24, 6385–6411, https://doi.org/10.5194/acp-24-6385-2024, https://doi.org/10.5194/acp-24-6385-2024, 2024
Short summary
Short summary
The study compares and evaluates monthly AOD of four reanalyses (RA) and their consensus (i.e., ensemble mean). The basic verification characteristics of these RA versus both AERONET and MODIS retrievals are presented. The study discusses the strength of each RA and identifies regions where divergence and challenges are prominent. The RA consensus usually performs very well on a global scale in terms of how well it matches the observational data, making it a good choice for various applications.
Sampa Das, Peter R. Colarco, Huisheng Bian, and Santiago Gassó
Atmos. Chem. Phys., 24, 4421–4449, https://doi.org/10.5194/acp-24-4421-2024, https://doi.org/10.5194/acp-24-4421-2024, 2024
Short summary
Short summary
The smoke aerosols emitted from vegetation burning can alter the regional energy budget via multiple pathways. We utilized detailed observations from the NASA ORACLES airborne campaign based in Namibia during September 2016 to improve the representation of smoke aerosol properties and lifetimes in our GEOS Earth system model. The improved model simulations are for the first time able to capture the observed changes in the smoke absorption during long-range plume transport.
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024, https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Short summary
The study focused on evaluating and modifying the surface reflectance parameterization (SRP) of the Dark Target (DT) algorithm for geostationary observation. When using the DT SRP with the ABIs sensor on GOES-R, artificial diurnal signatures were present in AOD retrieval. To overcome this issue, a new SRP was developed, incorporating solar zenith angle and land cover type. The revised SRP resulted in improved AOD retrieval, demonstrating reduced bias around local noon.
Adriana Rocha-Lima, Peter R. Colarco, Anton S. Darmenov, Edward P. Nowottnick, Arlindo M. da Silva, and Luke D. Oman
Atmos. Chem. Phys., 24, 2443–2464, https://doi.org/10.5194/acp-24-2443-2024, https://doi.org/10.5194/acp-24-2443-2024, 2024
Short summary
Short summary
Observations show an increasing aerosol optical depth trend in the Middle East between 2003–2012. We evaluate the NASA Goddard Earth Observing System (GEOS) model's ability to capture these trends and examine the meteorological and surface parameters driving dust emissions. Our results highlight the importance of data assimilation for long-term trends of atmospheric aerosols and support the hypothesis that vegetation cover loss may have contributed to increasing dust emissions in the period.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Allison B. Collow, Peter R. Colarco, Arlindo M. da Silva, Virginie Buchard, Huisheng Bian, Mian Chin, Sampa Das, Ravi Govindaraju, Dongchul Kim, and Valentina Aquila
Geosci. Model Dev., 17, 1443–1468, https://doi.org/10.5194/gmd-17-1443-2024, https://doi.org/10.5194/gmd-17-1443-2024, 2024
Short summary
Short summary
The GOCART aerosol module within the Goddard Earth Observing System recently underwent a major refactoring and update to the representation of physical processes. Code changes that were included in GOCART Second Generation (GOCART-2G) are documented, and we establish a benchmark simulation that is to be used for future development of the system. The 4-year benchmark simulation was evaluated using in situ and spaceborne measurements to develop a baseline and prioritize future development.
Huisheng Bian, Mian Chin, Peter R. Colarco, Eric C. Apel, Donald R. Blake, Karl Froyd, Rebecca S. Hornbrook, Jose Jimenez, Pedro Campuzano Jost, Michael Lawler, Mingxu Liu, Marianne Tronstad Lund, Hitoshi Matsui, Benjamin A. Nault, Joyce E. Penner, Andrew W. Rollins, Gregory Schill, Ragnhild B. Skeie, Hailong Wang, Lu Xu, Kai Zhang, and Jialei Zhu
Atmos. Chem. Phys., 24, 1717–1741, https://doi.org/10.5194/acp-24-1717-2024, https://doi.org/10.5194/acp-24-1717-2024, 2024
Short summary
Short summary
This work studies sulfur in the remote troposphere at global and seasonal scales using aircraft measurements and multi-model simulations. The goal is to understand the sulfur cycle over remote oceans, spread of model simulations, and observation–model discrepancies. Such an understanding and comparison with real observations are crucial to narrow down the uncertainties in model sulfur simulations and improve understanding of the sulfur cycle in atmospheric air quality, climate, and ecosystems.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Xavier Ceamanos, Bruno Six, Suman Moparthy, Dominique Carrer, Adèle Georgeot, Josef Gasteiger, Jérôme Riedi, Jean-Luc Attié, Alexei Lyapustin, and Iosif Katsev
Atmos. Meas. Tech., 16, 2575–2599, https://doi.org/10.5194/amt-16-2575-2023, https://doi.org/10.5194/amt-16-2575-2023, 2023
Short summary
Short summary
A new algorithm to retrieve the diurnal evolution of aerosol optical depth over land and ocean from geostationary meteorological satellites is proposed and successfully evaluated with reference ground-based and satellite data. The high-temporal-resolution aerosol observations that are obtained from the EUMETSAT Meteosat Second Generation mission are unprecedented and open the door to studies that cannot be conducted with the once-a-day observations available from low-Earth-orbit satellites.
Ricardo Dalagnol, Lênio Soares Galvão, Fabien Hubert Wagner, Yhasmin Mendes de Moura, Nathan Gonçalves, Yujie Wang, Alexei Lyapustin, Yan Yang, Sassan Saatchi, and Luiz Eduardo Oliveira Cruz Aragão
Earth Syst. Sci. Data, 15, 345–358, https://doi.org/10.5194/essd-15-345-2023, https://doi.org/10.5194/essd-15-345-2023, 2023
Short summary
Short summary
The AnisoVeg dataset brings 22 years of monthly satellite data from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor for South America at 1 km resolution aimed at vegetation applications. It has nadir-normalized data, which is the most traditional approach to correct satellite data but also unique anisotropy data with strong biophysical meaning, explaining 55 % of Amazon forest height. We expect this dataset to help large-scale estimates of vegetation biomass and carbon.
Allison B. Marquardt Collow, Virginie Buchard, Peter R. Colarco, Arlindo M. da Silva, Ravi Govindaraju, Edward P. Nowottnick, Sharon Burton, Richard Ferrare, Chris Hostetler, and Luke Ziemba
Atmos. Chem. Phys., 22, 16091–16109, https://doi.org/10.5194/acp-22-16091-2022, https://doi.org/10.5194/acp-22-16091-2022, 2022
Short summary
Short summary
Biomass burning aerosol impacts aspects of the atmosphere and Earth system through radiative forcing, serving as cloud condensation nuclei, and air quality. Despite its importance, the representation of biomass burning aerosol is not always accurate in models. Field campaign observations from CAMP2Ex are used to evaluate the mass and extinction of aerosols in the GEOS model. Notable biases in the model illuminate areas of future development with GEOS and the underlying GOCART aerosol module.
Gonzalo A. Ferrada, Meng Zhou, Jun Wang, Alexei Lyapustin, Yujie Wang, Saulo R. Freitas, and Gregory R. Carmichael
Geosci. Model Dev., 15, 8085–8109, https://doi.org/10.5194/gmd-15-8085-2022, https://doi.org/10.5194/gmd-15-8085-2022, 2022
Short summary
Short summary
The smoke from fires is composed of different compounds that interact with the atmosphere and can create poor air-quality episodes. Here, we present a new fire inventory based on satellite observations from the Visible Infrared Imaging Radiometer Suite (VIIRS). We named this inventory the VIIRS-based Fire Emission Inventory (VFEI). Advantages of VFEI are its high resolution (~500 m) and that it provides information for many species. VFEI is publicly available and has provided data since 2012.
Giorgio Doglioni, Valentina Aquila, Sampa Das, Peter R. Colarco, and Dino Zardi
Atmos. Chem. Phys., 22, 11049–11064, https://doi.org/10.5194/acp-22-11049-2022, https://doi.org/10.5194/acp-22-11049-2022, 2022
Short summary
Short summary
We use a global chemistry climate model to analyze the perturbations to the stratospheric dynamics caused by an injection of carbonaceous aerosol comparable to the one caused by a series of pyrocumulonimbi that formed over British Columbia, Canada on 13 August 2017. The injection of light-absorbing aerosol in an otherwise clean lower stratosphere causes the formation of long-lasting stratospheric anticyclones at the synoptic scale.
Peng Xian, Jianglong Zhang, Norm T. O'Neill, Travis D. Toth, Blake Sorenson, Peter R. Colarco, Zak Kipling, Edward J. Hyer, James R. Campbell, Jeffrey S. Reid, and Keyvan Ranjbar
Atmos. Chem. Phys., 22, 9915–9947, https://doi.org/10.5194/acp-22-9915-2022, https://doi.org/10.5194/acp-22-9915-2022, 2022
Short summary
Short summary
The study provides baseline Arctic spring and summertime aerosol optical depth climatology, trend, and extreme event statistics from 2003 to 2019 using a combination of aerosol reanalyses, remote sensing, and ground observations. Biomass burning smoke has an overwhelming contribution to black carbon (an efficient climate forcer) compared to anthropogenic sources. Burning's large interannual variability and increasing summer trend have important implications for the Arctic climate.
Pawan Gupta, Prakash Doraiswamy, Jashwanth Reddy, Palak Balyan, Sagnik Dey, Ryan Chartier, Adeel Khan, Karmann Riter, Brandon Feenstra, Robert C. Levy, Nhu Nguyen Minh Tran, Olga Pikelnaya, Kurinji Selvaraj, Tanushree Ganguly, and Karthik Ganesan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-140, https://doi.org/10.5194/amt-2022-140, 2022
Revised manuscript not accepted
Short summary
Short summary
The use of low-cost sensors in air quality monitoring has been gaining interest across all walks of society. We present the results of evaluations of the PurpleAir against regulatory-grade PM2.5. The results indicate that with proper calibration, we can achieve bias-corrected PM2.5 data using PA sensors. Our study also suggests that pre-deployment calibrations developed at local or regional scales are required for the PA sensors to correct data from the field for scientific data analysis.
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys., 22, 1395–1423, https://doi.org/10.5194/acp-22-1395-2022, https://doi.org/10.5194/acp-22-1395-2022, 2022
Short summary
Short summary
This paper presents a retrieval algorithm of iron-oxide species (hematite, goethite) content in the atmosphere from DSCOVR EPIC observations. Our results display variations within the published range of hematite and goethite over the main dust-source regions but show significant seasonal and spatial variability. This implies a single-viewing satellite instrument with UV–visible channels may provide essential information on shortwave dust direct radiative effects for climate modeling.
Nick Gorkavyi, Nickolay Krotkov, Can Li, Leslie Lait, Peter Colarco, Simon Carn, Matthew DeLand, Paul Newman, Mark Schoeberl, Ghassan Taha, Omar Torres, Alexander Vasilkov, and Joanna Joiner
Atmos. Meas. Tech., 14, 7545–7563, https://doi.org/10.5194/amt-14-7545-2021, https://doi.org/10.5194/amt-14-7545-2021, 2021
Short summary
Short summary
The 21 June 2019 eruption of the Raikoke volcano produced significant amounts of volcanic aerosols (sulfate and ash) and sulfur dioxide (SO2) gas that penetrated into the lower stratosphere. We showed that the amount of SO2 decreases with a characteristic period of 8–18 d and the peak of sulfate aerosol lags the initial peak of SO2 by 1.5 months. We also examined the dynamics of an unusual stratospheric coherent circular cloud of SO2 and aerosol observed from 18 July to 22 September 2019.
Xinxin Ye, Pargoal Arab, Ravan Ahmadov, Eric James, Georg A. Grell, Bradley Pierce, Aditya Kumar, Paul Makar, Jack Chen, Didier Davignon, Greg R. Carmichael, Gonzalo Ferrada, Jeff McQueen, Jianping Huang, Rajesh Kumar, Louisa Emmons, Farren L. Herron-Thorpe, Mark Parrington, Richard Engelen, Vincent-Henri Peuch, Arlindo da Silva, Amber Soja, Emily Gargulinski, Elizabeth Wiggins, Johnathan W. Hair, Marta Fenn, Taylor Shingler, Shobha Kondragunta, Alexei Lyapustin, Yujie Wang, Brent Holben, David M. Giles, and Pablo E. Saide
Atmos. Chem. Phys., 21, 14427–14469, https://doi.org/10.5194/acp-21-14427-2021, https://doi.org/10.5194/acp-21-14427-2021, 2021
Short summary
Short summary
Wildfire smoke has crucial impacts on air quality, while uncertainties in the numerical forecasts remain significant. We present an evaluation of 12 real-time forecasting systems. Comparison of predicted smoke emissions suggests a large spread in magnitudes, with temporal patterns deviating from satellite detections. The performance for AOD and surface PM2.5 and their discrepancies highlighted the role of accurately represented spatiotemporal emission profiles in improving smoke forecasts.
Huisheng Bian, Eunjee Lee, Randal D. Koster, Donifan Barahona, Mian Chin, Peter R. Colarco, Anton Darmenov, Sarith Mahanama, Michael Manyin, Peter Norris, John Shilling, Hongbin Yu, and Fanwei Zeng
Atmos. Chem. Phys., 21, 14177–14197, https://doi.org/10.5194/acp-21-14177-2021, https://doi.org/10.5194/acp-21-14177-2021, 2021
Short summary
Short summary
The study using the NASA Earth system model shows ~2.6 % increase in burning season gross primary production and ~1.5 % increase in annual net primary production across the Amazon Basin during 2010–2016 due to the change in surface downward direct and diffuse photosynthetically active radiation by biomass burning aerosols. Such an aerosol effect is strongly dependent on the presence of clouds. The cloud fraction at which aerosols switch from stimulating to inhibiting plant growth occurs at ~0.8.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Sampa Das, Peter R. Colarco, Luke D. Oman, Ghassan Taha, and Omar Torres
Atmos. Chem. Phys., 21, 12069–12090, https://doi.org/10.5194/acp-21-12069-2021, https://doi.org/10.5194/acp-21-12069-2021, 2021
Short summary
Short summary
Interactions of extreme fires with weather systems can produce towering smoke plumes that inject aerosols at very high altitudes (> 10 km). Three such major injections, largest at the time in terms of emitted aerosol mass, took place over British Columbia, Canada, in August 2017. We model the transport and impacts of injected aerosols on the radiation balance of the atmosphere. Our model results match the satellite-observed plume transport and residence time at these high altitudes very closely.
Jasper F. Kok, Adeyemi A. Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R. Colarco, Douglas S. Hamilton, Yue Huang, Akinori Ito, Martina Klose, Danny M. Leung, Longlei Li, Natalie M. Mahowald, Ron L. Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, Jessica S. Wan, and Chloe A. Whicker
Atmos. Chem. Phys., 21, 8127–8167, https://doi.org/10.5194/acp-21-8127-2021, https://doi.org/10.5194/acp-21-8127-2021, 2021
Short summary
Short summary
Desert dust interacts with virtually every component of the Earth system, including the climate system. We develop a new methodology to represent the global dust cycle that integrates observational constraints on the properties and abundance of desert dust with global atmospheric model simulations. We show that the resulting representation of the global dust cycle is more accurate than what can be obtained from a large number of current climate global atmospheric models.
Jasper F. Kok, Adeyemi A. Adebiyi, Samuel Albani, Yves Balkanski, Ramiro Checa-Garcia, Mian Chin, Peter R. Colarco, Douglas S. Hamilton, Yue Huang, Akinori Ito, Martina Klose, Longlei Li, Natalie M. Mahowald, Ron L. Miller, Vincenzo Obiso, Carlos Pérez García-Pando, Adriana Rocha-Lima, and Jessica S. Wan
Atmos. Chem. Phys., 21, 8169–8193, https://doi.org/10.5194/acp-21-8169-2021, https://doi.org/10.5194/acp-21-8169-2021, 2021
Short summary
Short summary
The many impacts of dust on the Earth system depend on dust mineralogy, which varies between dust source regions. We constrain the contribution of the world’s main dust source regions by integrating dust observations with global model simulations. We find that Asian dust contributes more and that North African dust contributes less than models account for. We obtain a dataset of each source region’s contribution to the dust cycle that can be used to constrain dust impacts on the Earth system.
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech., 14, 3449–3468, https://doi.org/10.5194/amt-14-3449-2021, https://doi.org/10.5194/amt-14-3449-2021, 2021
Short summary
Short summary
Due to fast industrialization and development, China has been experiencing haze pollution episodes with both high frequencies and severity over the last 3 decades. This study improves the accuracy and data coverage of measured aerosol from satellites, which help quantify, characterize, and understand the impact of the haze phenomena over the entire East Asia region.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Jianglong Zhang, Robert J. D. Spurr, Jeffrey S. Reid, Peng Xian, Peter R. Colarco, James R. Campbell, Edward J. Hyer, and Nancy L. Baker
Geosci. Model Dev., 14, 27–42, https://doi.org/10.5194/gmd-14-27-2021, https://doi.org/10.5194/gmd-14-27-2021, 2021
Short summary
Short summary
A first-of-its-kind scheme has been developed for assimilating Ozone Monitoring Instrument (OMI) aerosol index (AI) measurements into the Naval Aerosol Analysis and Predictive System. Improvements in model simulations demonstrate the utility of OMI AI data assimilation for improving the accuracy of aerosol model analysis over cloudy regions and bright surfaces. This study can be considered one of the first attempts at direct radiance assimilation in the UV spectrum for aerosol analyses.
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Peng Xian, Philip J. Klotzbach, Jason P. Dunion, Matthew A. Janiga, Jeffrey S. Reid, Peter R. Colarco, and Zak Kipling
Atmos. Chem. Phys., 20, 15357–15378, https://doi.org/10.5194/acp-20-15357-2020, https://doi.org/10.5194/acp-20-15357-2020, 2020
Short summary
Short summary
Using dust AOD (DAOD) data from three aerosol reanalyses, we explored the correlative relationships between DAOD and multiple indices representing seasonal Atlantic TC activities. A robust negative correlation with Caribbean DAOD and Atlantic TC activity was found. We documented for the first time the regional differences of this relationship for over the Caribbean and the tropical North Atlantic. We also evaluated the impacts of potential confounding climate factors in this relationship.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Anin Puthukkudy, J. Vanderlei Martins, Lorraine A. Remer, Xiaoguang Xu, Oleg Dubovik, Pavel Litvinov, Brent McBride, Sharon Burton, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 13, 5207–5236, https://doi.org/10.5194/amt-13-5207-2020, https://doi.org/10.5194/amt-13-5207-2020, 2020
Short summary
Short summary
In this work, we report the demonstration and validation of the aerosol properties retrieved using AirHARP and GRASP for data from the NASA ACEPOL campaign 2017. These results serve as a proxy for the scale and detail of aerosol retrievals that are anticipated from future space mission data, as HARP CubeSat (mission begins 2020) and HARP2 (aboard the NASA PACE mission with the launch in 2023) are near duplicates of AirHARP and are expected to provide the same level of aerosol characterization.
Allan C. Just, Yang Liu, Meytar Sorek-Hamer, Johnathan Rush, Michael Dorman, Robert Chatfield, Yujie Wang, Alexei Lyapustin, and Itai Kloog
Atmos. Meas. Tech., 13, 4669–4681, https://doi.org/10.5194/amt-13-4669-2020, https://doi.org/10.5194/amt-13-4669-2020, 2020
Short summary
Short summary
A flexible machine-learning model was fit to explain the differences between estimates of water vapor from satellites versus ground stations in Northeastern USA. We use nine variables derived from the satellite acquisition and ground characteristics to explain this measurement error. Our results showed overall good agreement, but data from the Terra satellite were drifting too high in recent summers. Our model reduces measurement error and works well in new locations in the northeast.
Samantha J. Kramer, Claudia Alvarez, Anne E. Barkley, Peter R. Colarco, Lillian Custals, Rodrigo Delgadillo, Cassandra J. Gaston, Ravi Govindaraju, and Paquita Zuidema
Atmos. Chem. Phys., 20, 10047–10062, https://doi.org/10.5194/acp-20-10047-2020, https://doi.org/10.5194/acp-20-10047-2020, 2020
Short summary
Short summary
Comparisons of sea salt and size-resolved dust mass concentration measurements over southeast Florida to those from the MERRA-2/GEOS-5 FP aerosol reanalysis show the reanalysis depicts excessive sea salt and puts too much dust in larger intermediate sizes than do the measurements. The vertical distribution of the dust mass is approximately correct. The incorrect reanalysis aerosol speciation and dust sizes have implications for the modeling of their transport, deposition, and radiative impact.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Alexander Sinyuk, Brent N. Holben, Thomas F. Eck, David M. Giles, Ilya Slutsker, Sergey Korkin, Joel S. Schafer, Alexander Smirnov, Mikhail Sorokin, and Alexei Lyapustin
Atmos. Meas. Tech., 13, 3375–3411, https://doi.org/10.5194/amt-13-3375-2020, https://doi.org/10.5194/amt-13-3375-2020, 2020
Alma Hodzic, Pedro Campuzano-Jost, Huisheng Bian, Mian Chin, Peter R. Colarco, Douglas A. Day, Karl D. Froyd, Bernd Heinold, Duseong S. Jo, Joseph M. Katich, John K. Kodros, Benjamin A. Nault, Jeffrey R. Pierce, Eric Ray, Jacob Schacht, Gregory P. Schill, Jason C. Schroder, Joshua P. Schwarz, Donna T. Sueper, Ina Tegen, Simone Tilmes, Kostas Tsigaridis, Pengfei Yu, and Jose L. Jimenez
Atmos. Chem. Phys., 20, 4607–4635, https://doi.org/10.5194/acp-20-4607-2020, https://doi.org/10.5194/acp-20-4607-2020, 2020
Short summary
Short summary
Organic aerosol (OA) is a key source of uncertainty in aerosol climate effects. We present the first pole-to-pole OA characterization during the NASA Atmospheric Tomography aircraft mission. OA has a strong seasonal and zonal variability, with the highest levels in summer and over fire-influenced regions and the lowest ones in the southern high latitudes. We show that global models predict the OA distribution well but not the relative contribution of OA emissions vs. chemical production.
Robert B. Chatfield, Meytar Sorek-Hamer, Robert F. Esswein, and Alexei Lyapustin
Atmos. Chem. Phys., 20, 4379–4397, https://doi.org/10.5194/acp-20-4379-2020, https://doi.org/10.5194/acp-20-4379-2020, 2020
Short summary
Short summary
There is a great need to define health-affecting pollution by small particles as “respirable aerosol”. The wintertime San Joaquin Valley experiences severe episodes that need full maps. A few air pollution monitors are set out by agencies in such regions. Satellite data on haziness and daily calibration using the monitors map out improved pollution estimates for the winter of 2012–2013. These show patterns of valuable empirical information about sources, transport, and cleanout of pollution.
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020, https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary
Short summary
Clouds play a large role in the way our Earth system distributes energy. The measurement of cloud droplet size distribution (DSD) is one way to connect small-scale cloud processes to scattered radiation. Our small satellite instrument, the Airborne Hyper-Angular Rainbow Polarimeter, is the first to infer DSDs over a wide spatial cloud field using polarized light. This study improves the way we interpret cloud properties and shows that high-quality science does not require a large taxpayer cost.
Jing Wei, Zhanqing Li, Maureen Cribb, Wei Huang, Wenhao Xue, Lin Sun, Jianping Guo, Yiran Peng, Jing Li, Alexei Lyapustin, Lei Liu, Hao Wu, and Yimeng Song
Atmos. Chem. Phys., 20, 3273–3289, https://doi.org/10.5194/acp-20-3273-2020, https://doi.org/10.5194/acp-20-3273-2020, 2020
Short summary
Short summary
This study introduced an enhanced space–time extremely randomized trees (STET) approach to improve the 1 km resolution ground-level PM2.5 estimates across China using the remote sensing technology. The STET model shows high accuracy and strong predictive power and appears to outperform most models reported by previous studies. Thus, it is of great importance for future air pollution studies at medium- or small-scale areas and will be applied to generate the historical PM2.5 dataset across China.
Ernest Nyaku, Robert Loughman, Pawan K. Bhartia, Terry Deshler, Zhong Chen, and Peter R. Colarco
Atmos. Meas. Tech., 13, 1071–1087, https://doi.org/10.5194/amt-13-1071-2020, https://doi.org/10.5194/amt-13-1071-2020, 2020
Short summary
Short summary
This paper shows the importance of the nature of the aerosol phase function used in the retrieval of the stratospheric aerosol extinction from limb scattering measurements. The aerosol phase function is derived from the parameters using either a unimodal lognormal or gamma aerosol size distribution. These two distributions were fitted to the same aerosol concentration measurements at two altitudes, and depending on the nature of the measurements, each distribution shows its strengths.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Ekaterina Y. Zhdanova, Natalia Y. Chubarova, and Alexei I. Lyapustin
Atmos. Meas. Tech., 13, 877–891, https://doi.org/10.5194/amt-13-877-2020, https://doi.org/10.5194/amt-13-877-2020, 2020
Short summary
Short summary
We estimated the distribution of aerosol optical thickness (AOT) with a spatial resolution of 1 km over the Moscow megacity using the MAIAC satellite aerosol product from May to September over the years 2000–2017. We revealed that the MAIAC product is a reliable instrument for assessing the spatial features of urban aerosol pollution and its temporal dynamics. The local aerosol effect is about 0.02–0.04 in AOT in the visible spectral range over the Moscow megacity.
Xiaohua Pan, Charles Ichoku, Mian Chin, Huisheng Bian, Anton Darmenov, Peter Colarco, Luke Ellison, Tom Kucsera, Arlindo da Silva, Jun Wang, Tomohiro Oda, and Ge Cui
Atmos. Chem. Phys., 20, 969–994, https://doi.org/10.5194/acp-20-969-2020, https://doi.org/10.5194/acp-20-969-2020, 2020
Short summary
Short summary
The differences between these six BB emission datasets are large. Our study found that (1) most current biomass burning (BB) aerosol emission datasets derived from satellite observations lead to the underestimation of aerosol optical depth (AOD) in this model in the biomass-burning-dominated regions and (2) it is important to accurately estimate both the magnitudes and spatial patterns of regional BB emissions in order for a model using these emissions to reproduce observed AOD levels.
Hongbin Yu, Yang Yang, Hailong Wang, Qian Tan, Mian Chin, Robert C. Levy, Lorraine A. Remer, Steven J. Smith, Tianle Yuan, and Yingxi Shi
Atmos. Chem. Phys., 20, 139–161, https://doi.org/10.5194/acp-20-139-2020, https://doi.org/10.5194/acp-20-139-2020, 2020
Short summary
Short summary
Emissions and long-range transport of mineral dust and
combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on interannual variability and possible trends in combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017).
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Short summary
Aerosol optical depth (AOD) from a geostationary satellite has been retrieved, and validated and diurnal cycles of aerosols are discussed over the eastern hemisphere and a 2-month period of May–June 2016. The new AOD product matches well with AERONET as well as with the standard MODIS product. Future work to make this algorithm operational will need to re-examine masking including snow masks, re-evaluate assumed aerosol models for geosynchronous geometry and address the surface characterization.
Huisheng Bian, Karl Froyd, Daniel M. Murphy, Jack Dibb, Anton Darmenov, Mian Chin, Peter R. Colarco, Arlindo da Silva, Tom L. Kucsera, Gregory Schill, Hongbin Yu, Paul Bui, Maximilian Dollner, Bernadett Weinzierl, and Alexander Smirnov
Atmos. Chem. Phys., 19, 10773–10785, https://doi.org/10.5194/acp-19-10773-2019, https://doi.org/10.5194/acp-19-10773-2019, 2019
Short summary
Short summary
We address the GEOS-GOCART sea salt simulations constrained by NASA EVS ATom measurements, as well as those by MODIS and the AERONET MAN. The study covers remote regions over the Pacific, Atlantic, and Southern oceans from near the surface to ~ 12 km altitude and covers both summer and winter seasons. Important sea salt fields, e.g., mass mixing ratio, vertical distribution, size distribution, and marine aerosol AOD, as well as their relationship to relative humidity and emissions, are examined.
Xiaoguang Xu, Jun Wang, Yi Wang, Jing Zeng, Omar Torres, Jeffrey S. Reid, Steven D. Miller, J. Vanderlei Martins, and Lorraine A. Remer
Atmos. Meas. Tech., 12, 3269–3288, https://doi.org/10.5194/amt-12-3269-2019, https://doi.org/10.5194/amt-12-3269-2019, 2019
Short summary
Short summary
Detecting aerosol layer height from space is challenging. The traditional method relies on active sensors such as lidar that provide the detailed vertical structure of the aerosol profile but is costly with limited spatial coverage (more than 1 year is needed for global coverage). Here we developed a passive remote sensing technique that uses backscattered sunlight to retrieve smoke aerosol layer height over both water and vegetated surfaces from a sensor 1.5 million kilometers from the Earth.
David M. Giles, Alexander Sinyuk, Mikhail G. Sorokin, Joel S. Schafer, Alexander Smirnov, Ilya Slutsker, Thomas F. Eck, Brent N. Holben, Jasper R. Lewis, James R. Campbell, Ellsworth J. Welton, Sergey V. Korkin, and Alexei I. Lyapustin
Atmos. Meas. Tech., 12, 169–209, https://doi.org/10.5194/amt-12-169-2019, https://doi.org/10.5194/amt-12-169-2019, 2019
Short summary
Short summary
Clouds or instrumental anomalies may perturb ground-based solar measurements used to calculate aerosol optical depth (AOD). This study presents a new algorithm of automated near-real-time (NRT) quality controls with improved cloud screening for AERONET AOD measurements. Results from the new and old algorithms have excellent agreement for the highest-quality AOD level, while the new algorithm provides higher-quality NRT AOD for applications such as data assimilation and satellite evaluation.
Xiaomeng Jin, Arlene M. Fiore, Gabriele Curci, Alexei Lyapustin, Kevin Civerolo, Michael Ku, Aaron van Donkelaar, and Randall V. Martin
Atmos. Chem. Phys., 19, 295–313, https://doi.org/10.5194/acp-19-295-2019, https://doi.org/10.5194/acp-19-295-2019, 2019
Short summary
Short summary
We use a forward geophysical approach to derive surface PM2.5 distribution from satellite AOD over the northeastern US by applying relationships between surface PM2.5 and column AOD from a regional air quality model (CMAQ). We use multi-platform surface, aircraft, and radiosonde measurements to quantify different sources of uncertainties. We highlight model representation of aerosol vertical distribution and speciation as major sources of uncertainties for satellite-derived PM2.5.
Yingxi R. Shi, Robert C. Levy, Thomas F. Eck, Brad Fisher, Shana Mattoo, Lorraine A. Remer, Ilya Slutsker, and Jianglong Zhang
Atmos. Chem. Phys., 19, 259–274, https://doi.org/10.5194/acp-19-259-2019, https://doi.org/10.5194/acp-19-259-2019, 2019
Short summary
Short summary
The Indonesian fire and smoke event of 2015 was an extreme episode that affected public health and caused severe economic and environmental damage. We managed to retrieve data over very thick smoke plumes and produce a lot more high aerosol loading data that were previously missed by other satellite products. These results will benefit varieties of downstream research that use the satellite aerosol data and will influence the future development of the global satellite aerosol algorithm.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, Peter Colarco, and Matthew DeLand
Atmos. Meas. Tech., 11, 6495–6509, https://doi.org/10.5194/amt-11-6495-2018, https://doi.org/10.5194/amt-11-6495-2018, 2018
Short summary
Short summary
We describe the derivation of an improved aerosol size distribution (ASD) for the OMPS/LP retrieval algorithm. The new ASD uses a gamma function distribution that is derived from CARMA-calculated results. The new ASD also explains the spectral dependence of LP-measured radiances well. Initial comparisons with collocated extinction profiles retrieved at 676 nm from the SAGE III/ISS instrument show a significant improvement in agreement for the LP retrievals.
Jingfeng Huang, Istvan Laszlo, Lorraine A. Remer, Hongqing Liu, Hai Zhang, Pubu Ciren, and Shobha Kondragunta
Atmos. Meas. Tech., 11, 5813–5825, https://doi.org/10.5194/amt-11-5813-2018, https://doi.org/10.5194/amt-11-5813-2018, 2018
Short summary
Short summary
A new snow/snowmelt screening approach – combining a normalized difference snow index (NDSI)- and brightness temperature (BT)-based snow test, snow adjacency test and spatial filter – is proposed to significantly reduce the snow/snowmelt contamination in the NOAA’s operational Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol optical depth (AOD) product, particularly over Northern Hemisphere high-latitude regions during spring thaw.
Alexei Lyapustin, Yujie Wang, Sergey Korkin, and Dong Huang
Atmos. Meas. Tech., 11, 5741–5765, https://doi.org/10.5194/amt-11-5741-2018, https://doi.org/10.5194/amt-11-5741-2018, 2018
Short summary
Short summary
MAIAC algorithm used for the MODIS C6 processing is described. MAIAC combines time series analysis and pixel/image-based processing to improve the accuracy of cloud detection, aerosol retrievals and atmospheric correction. MAIAC offers an interdisciplinary suite of atmospheric, land surface and snow products. Due to generally high quality, high resolution and high coverage, MAIAC AOD and surface reflectance/BRDF have been widely used for air quality and land research and applications.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Seiji Kato, Ping Yang, Peter Colarco, Lorraine A. Remer, and Claire L. Ryder
Atmos. Chem. Phys., 18, 11303–11322, https://doi.org/10.5194/acp-18-11303-2018, https://doi.org/10.5194/acp-18-11303-2018, 2018
Short summary
Short summary
Mineral dust is the most abundant atmospheric aerosol component in terms of dry mass. In this study, we integrate recent aircraft measurements of dust microphysical and optical properties with satellite retrievals of aerosol and radiative fluxes to quantify the dust direct radiative effects on the shortwave and longwave radiation at both the top of the atmosphere and the surface in the tropical North Atlantic during summer months.
Angela Benedetti, Jeffrey S. Reid, Peter Knippertz, John H. Marsham, Francesca Di Giuseppe, Samuel Rémy, Sara Basart, Olivier Boucher, Ian M. Brooks, Laurent Menut, Lucia Mona, Paolo Laj, Gelsomina Pappalardo, Alfred Wiedensohler, Alexander Baklanov, Malcolm Brooks, Peter R. Colarco, Emilio Cuevas, Arlindo da Silva, Jeronimo Escribano, Johannes Flemming, Nicolas Huneeus, Oriol Jorba, Stelios Kazadzis, Stefan Kinne, Thomas Popp, Patricia K. Quinn, Thomas T. Sekiyama, Taichu Tanaka, and Enric Terradellas
Atmos. Chem. Phys., 18, 10615–10643, https://doi.org/10.5194/acp-18-10615-2018, https://doi.org/10.5194/acp-18-10615-2018, 2018
Short summary
Short summary
Numerical prediction of aerosol particle properties has become an important activity at many research and operational weather centers. This development is due to growing interest from a diverse set of stakeholders, such as air quality regulatory bodies, aviation authorities, solar energy plant managers, climate service providers, and health professionals. This paper describes the advances in the field and sets out requirements for observations for the sustainability of these activities.
Falguni Patadia, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3205–3219, https://doi.org/10.5194/amt-11-3205-2018, https://doi.org/10.5194/amt-11-3205-2018, 2018
Short summary
Short summary
Satellite-measured radiance from an Earth scene comprises light scattered and absorbed by gases, clouds and aerosols in the atmosphere and by the Earth surface. To retrieve aerosol information, the signal from clouds, gases and the surface must be separated from the aerosol signal. This paper highlights the gas absorption correction method used by the MODIS dark-target aerosol retrieval algorithm and demonstrates that aerosol retrieval accuracy depends on accurate gas absorption correction.
Pawan Gupta, Lorraine A. Remer, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3145–3159, https://doi.org/10.5194/amt-11-3145-2018, https://doi.org/10.5194/amt-11-3145-2018, 2018
Short summary
Short summary
In this study, we perform global validation of MODIS high-resolution (3 km) AOD over global land by comparing against AERONET measurements. The MODIS–AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error.
Matthew J. Cooper, Randall V. Martin, Alexei I. Lyapustin, and Chris A. McLinden
Atmos. Meas. Tech., 11, 2983–2994, https://doi.org/10.5194/amt-11-2983-2018, https://doi.org/10.5194/amt-11-2983-2018, 2018
Short summary
Short summary
To accurately infer air pollutant concentrations from satellite observations, we must first know the reflectivity of the Earth’s surface. Using a model, we show that satellite observations are better able to observe NO2 near the surface if snow is present. However, knowing when snow is present is difficult due to its variability. We test seven existing snow cover data sets to assess their ability to inform future satellite observations and find that the IMS data set is best suited for this task.
Antti Lipponen, Tero Mielonen, Mikko R. A. Pitkänen, Robert C. Levy, Virginia R. Sawyer, Sami Romakkaniemi, Ville Kolehmainen, and Antti Arola
Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, https://doi.org/10.5194/amt-11-1529-2018, 2018
Short summary
Short summary
Atmospheric aerosols are small solid or liquid particles suspended in the atmosphere and they have a significant effect on the climate. Satellite data are used to get global estimates of atmospheric aerosols. In this work, a statistics-based Bayesian aerosol retrieval algorithm was developed to improve the accuracy and quantify the uncertainties related to the aerosol estimates. The algorithm is tested with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data.
W. Reed Espinosa, J. Vanderlei Martins, Lorraine A. Remer, Anin Puthukkudy, Daniel Orozco, and Gergely Dolgos
Atmos. Chem. Phys., 18, 3737–3754, https://doi.org/10.5194/acp-18-3737-2018, https://doi.org/10.5194/acp-18-3737-2018, 2018
Short summary
Short summary
This work presents airborne, angularly resolved measurements of light scattered by atmospheric aerosols. A classification scheme, making use of optically independent ancillary data, is developed and used to categorize each of the individual light-scattering measurements. This classification is shown to correlate very strongly with the measured aerosol scattering properties demonstrating that in situ angular light-scattering measurements alone are sufficient to identify many major aerosol types.
Igor Veselovskii, Philippe Goloub, Thierry Podvin, Didier Tanre, Arlindo da Silva, Peter Colarco, Patricia Castellanos, Mikhail Korenskiy, Qiaoyun Hu, David N. Whiteman, Daniel Pérez-Ramírez, Patrick Augustin, Marc Fourmentin, and Alexei Kolgotin
Atmos. Meas. Tech., 11, 949–969, https://doi.org/10.5194/amt-11-949-2018, https://doi.org/10.5194/amt-11-949-2018, 2018
Short summary
Short summary
Observations of multiwavelength Mie–Raman lidar during smoke episode over West Africa are compared with the vertical distribution of aerosol parameters provided by the MERRA-2 model. The values of modeled and observed extinctions at both 355 nm and 532 nm are also rather close. The model predicts significant concentration of dust particles inside the smoke layer. This is supported by a high depolarization ratio of 15 % observed in the center of this layer.
Zhong Chen, Pawan K. Bhartia, Robert Loughman, and Peter Colarco
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-4, https://doi.org/10.5194/amt-2018-4, 2018
Revised manuscript has not been submitted
Adriana Rocha-Lima, J. Vanderlei Martins, Lorraine A. Remer, Martin Todd, John H. Marsham, Sebastian Engelstaedter, Claire L. Ryder, Carolina Cavazos-Guerra, Paulo Artaxo, Peter Colarco, and Richard Washington
Atmos. Chem. Phys., 18, 1023–1043, https://doi.org/10.5194/acp-18-1023-2018, https://doi.org/10.5194/acp-18-1023-2018, 2018
Short summary
Short summary
We present results of ground-based measurements and subsequent laboratory analysis of Sahara dust samples collected in Algeria and Mauritania during the Fennec campaign in 2011. The results show that the sampled dust has low absorption characteristics and exhibits a distinct spectral bow-like shape. We find distinctive differences in the composition and optical characteristics of the dust from the two sites, corroborating with other studies that not all Saharan dust is the same.
Peter R. Colarco, Santiago Gassó, Changwoo Ahn, Virginie Buchard, Arlindo M. da Silva, and Omar Torres
Atmos. Meas. Tech., 10, 4121–4134, https://doi.org/10.5194/amt-10-4121-2017, https://doi.org/10.5194/amt-10-4121-2017, 2017
Short summary
Short summary
We need satellite observations to characterize the properties of atmospheric aerosols. Those observations have uncertainties associated with them because of assumptions made in their algorithms. We test the assumptions on a part of the aerosol algorithms used with the Ozone Monitoring Instrument (OMI) flying on the NASA Aura spacecraft. We simulate the OMI observations using a global aerosol model, and then compare what OMI tells us about the simulated aerosols with the model results directly.
W. Reed Espinosa, Lorraine A. Remer, Oleg Dubovik, Luke Ziemba, Andreas Beyersdorf, Daniel Orozco, Gregory Schuster, Tatyana Lapyonok, David Fuertes, and J. Vanderlei Martins
Atmos. Meas. Tech., 10, 811–824, https://doi.org/10.5194/amt-10-811-2017, https://doi.org/10.5194/amt-10-811-2017, 2017
Short summary
Short summary
Aerosols, and their interaction with clouds, play a key role in the climate of our planet but many of their properties are poorly understood. We present a new method for estimating the size, shape and optical constants of atmospheric particles from light-scattering measurements made both in the laboratory and aboard an aircraft. This method is shown to have sufficient accuracy to potentially reduce existing uncertainties, particularly in airborne measurements.
Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos A. Kourtidis, Jos Lelieveld, Prodromos Zanis, Ulrich Pöschl, Robert Levy, Vassilis Amiridis, Eleni Marinou, and Athanasios Tsikerdekis
Atmos. Chem. Phys., 16, 13853–13884, https://doi.org/10.5194/acp-16-13853-2016, https://doi.org/10.5194/acp-16-13853-2016, 2016
Short summary
Short summary
In this work, single pixel observations from MODIS Terra and Aqua are analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model to study the spatiotemporal variability of different aerosol types. The results are in accordance with previous works and are a good reference for future studies in the area focusing on aerosols, clouds, radiation and the effects of particle pollution on human health.
Hiren Jethva, Omar Torres, Lorraine Remer, Jens Redemann, John Livingston, Stephen Dunagan, Yohei Shinozuka, Meloe Kacenelenbogen, Michal Segal Rosenheimer, and Rob Spurr
Atmos. Meas. Tech., 9, 5053–5062, https://doi.org/10.5194/amt-9-5053-2016, https://doi.org/10.5194/amt-9-5053-2016, 2016
Short summary
Short summary
Validation of the above-cloud aerosol optical depth retrieved using the "color ratio" method applied to MODIS cloudy-sky
measurements against airborne direct measurements made by NASA’s AATS and 4STAR sun photometers during SAFARI-2000,
ACE-ASIA 2001, and SEAC4RS 2013 reveals a good level of agreement (difference < 0.1), in which most matchups are found
be constrained within the estimated uncertainties associated with the MODIS retrievals (-10 % to +50 %).
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, and Leigh A. Munchak
Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, https://doi.org/10.5194/amt-9-3293-2016, 2016
Short summary
Short summary
A new surface scheme inside MODIS dark target aerosol retrieval algorithm has been developed to improve the accuracy of aerosol optical depth data over cities. The new scheme integrates the MODIS land surface reflectance and land cover type information into the surface parameterization for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region. The improved aerosols data sets will be useful for air quality applications over cities.
Galina Wind, Arlindo M. da Silva, Peter M. Norris, Steven Platnick, Shana Mattoo, and Robert C. Levy
Geosci. Model Dev., 9, 2377–2389, https://doi.org/10.5194/gmd-9-2377-2016, https://doi.org/10.5194/gmd-9-2377-2016, 2016
Short summary
Short summary
The MCARS code creates sensor radiances using model-generated atmospheric columns and actual sensor and solar geometry. MCARS output looks like real data, so it is usable by any code that reads MODIS data. MCARS output can be used to test remote-sensing retrieval algorithms. Users know what went into creating the radiance: atmosphere, surface, clouds, and aerosols. Models can use MCARS output to create new parameterizations of relations of atmospheric physical quantities and measured radiances.
David N. Whiteman, Daniel Perez-Ramirez, Igor Veselovskii, Peter Colarco, and Virginie Buchard
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2016-174, https://doi.org/10.5194/amt-2016-174, 2016
Revised manuscript not accepted
Cheng-Hsuan Lu, Arlindo da Silva, Jun Wang, Shrinivas Moorthi, Mian Chin, Peter Colarco, Youhua Tang, Partha S. Bhattacharjee, Shen-Po Chen, Hui-Ya Chuang, Hann-Ming Henry Juang, Jeffery McQueen, and Mark Iredell
Geosci. Model Dev., 9, 1905–1919, https://doi.org/10.5194/gmd-9-1905-2016, https://doi.org/10.5194/gmd-9-1905-2016, 2016
Short summary
Short summary
Aerosols have an important effect on the Earth's climate and implications for public health. NASA has partnered with NOAA to transfer GOCART aerosol model to NCEP, enabling the first global aerosol forecasting system at NOAA/NCEP. This collaboration reflects an effective research-to-operation transition, paving the way for NCEP to provide global aerosol products serving a wide range of stakeholders and to allow the effects of aerosols on weather and climate prediction to be considered.
Peng Lynch, Jeffrey S. Reid, Douglas L. Westphal, Jianglong Zhang, Timothy F. Hogan, Edward J. Hyer, Cynthia A. Curtis, Dean A. Hegg, Yingxi Shi, James R. Campbell, Juli I. Rubin, Walter R. Sessions, F. Joseph Turk, and Annette L. Walker
Geosci. Model Dev., 9, 1489–1522, https://doi.org/10.5194/gmd-9-1489-2016, https://doi.org/10.5194/gmd-9-1489-2016, 2016
Short summary
Short summary
An 11-year, 1-degree aerosol reanalysis is presented for use in studies of aerosol effects on climate and atmospheric processes. The reanalysis uses the Navy Aerosol Analysis and Prediction System, constrained by aerosol optical thickness (AOT) data from NASA sensors. Fine and coarse mode AOT at 550 nm agrees well with ground-based measurements, and reproduces the decadal AOT trends found using standalone satellite products. This dataset is a resource for basic and applied science research.
Zhibo Zhang, Kerry Meyer, Hongbin Yu, Steven Platnick, Peter Colarco, Zhaoyan Liu, and Lazaros Oreopoulos
Atmos. Chem. Phys., 16, 2877–2900, https://doi.org/10.5194/acp-16-2877-2016, https://doi.org/10.5194/acp-16-2877-2016, 2016
Short summary
Short summary
The frequency of occurrence and shortwave direct radiative effects (DRE) of above-cloud aerosols (ACAs) over global oceans are investigated using 8 years of collocated CALIOP and MODIS observations. We estimated that ACAs have a global ocean annual mean diurnally averaged cloudy-sky DRE of 0.015 W m−2 (range of −0.03 to 0.06 W m−2) at TOA. The DREs at surface and within atmosphere are −0.15 W m−2 (range of −0.09 to −0.21 W m−2), and 0.17 W m−2 (range of 0.11 to 0.24 W m−2), respectively.
Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu
Atmos. Chem. Phys., 16, 1255–1269, https://doi.org/10.5194/acp-16-1255-2016, https://doi.org/10.5194/acp-16-1255-2016, 2016
Short summary
Short summary
Using ground AOD measurements from AERONET, DRAGON-Asia Campaign, and handheld sunphotometers, we evaluated emerging aerosol products from VIIRS, GOCI, and Terra and Aqua MODIS (Collection 6) in East Asia in 2012–2013. We found that satellite aerosol products performed better in tracking the day-to-day variability than the high-resolution spatial variability. VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
E. Jäkel, B. Mey, R. Levy, X. Gu, T. Yu, Z. Li, D. Althausen, B. Heese, and M. Wendisch
Atmos. Meas. Tech., 8, 5237–5249, https://doi.org/10.5194/amt-8-5237-2015, https://doi.org/10.5194/amt-8-5237-2015, 2015
R. C. Levy, L. A. Munchak, S. Mattoo, F. Patadia, L. A. Remer, and R. E. Holz
Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, https://doi.org/10.5194/amt-8-4083-2015, 2015
Short summary
Short summary
Aerosol optical depth (AOD) is an essential climate variable, so we seek to create a long-term AOD record. From MODIS, we have 15+ years, which we want to continue with VIIRS. Accounting for instrumental difference, we have developed a MODIS-like algorithm for VIIRS, and applied it to overlapping 2-year time period. In general, the two data sets are similar, except for VIIRS being high-biased over ocean. We discuss the impacts of calibration, resolution, and sampling on the results.
E. P. Nowottnick, P. R. Colarco, E. J. Welton, and A. da Silva
Atmos. Meas. Tech., 8, 3647–3669, https://doi.org/10.5194/amt-8-3647-2015, https://doi.org/10.5194/amt-8-3647-2015, 2015
X. Pan, M. Chin, R. Gautam, H. Bian, D. Kim, P. R. Colarco, T. L. Diehl, T. Takemura, L. Pozzoli, K. Tsigaridis, S. Bauer, and N. Bellouin
Atmos. Chem. Phys., 15, 5903–5928, https://doi.org/10.5194/acp-15-5903-2015, https://doi.org/10.5194/acp-15-5903-2015, 2015
V. Buchard, A. M. da Silva, P. R. Colarco, A. Darmenov, C. A. Randles, R. Govindaraju, O. Torres, J. Campbell, and R. Spurr
Atmos. Chem. Phys., 15, 5743–5760, https://doi.org/10.5194/acp-15-5743-2015, https://doi.org/10.5194/acp-15-5743-2015, 2015
Short summary
Short summary
MERRAero is an aerosol reanalysis based on the GEOS-5 earth system model that incorporates an online aerosol module and assimilation of AOD from MODIS sensors. This study assesses the quality of MERRAero absorption using independent OMI observations. In addition to comparisons to OMI absorption AOD, we have developed a radiative transfer interface to simulate the UV aerosol index from assimilated aerosol fields at OMI footprint. Also, we fully diagnose the model using MISR, AERONET and CALIPSO.
I. Veselovskii, D. N Whiteman, M. Korenskiy, A. Suvorina, A. Kolgotin, A. Lyapustin, Y. Wang, M. Chin, H. Bian, T. L. Kucsera, D. Pérez-Ramírez, and B. Holben
Atmos. Chem. Phys., 15, 1647–1660, https://doi.org/10.5194/acp-15-1647-2015, https://doi.org/10.5194/acp-15-1647-2015, 2015
Short summary
Short summary
The multi-wavelength lidar technique was applied to the study of a smoke event near Washington, DC on 26-28 August 2013. Satellite observations combined with transport model predictions imply that the smoke plume originated mainly from Wyoming/Idaho forest fires. The NASA GSFC multi-wavelength Mie-Raman lidar was used to profile the smoke particle parameters such as volume density, effective radius and the real part of the refractive index.
W. R. Sessions, J. S. Reid, A. Benedetti, P. R. Colarco, A. da Silva, S. Lu, T. Sekiyama, T. Y. Tanaka, J. M. Baldasano, S. Basart, M. E. Brooks, T. F. Eck, M. Iredell, J. A. Hansen, O. C. Jorba, H.-M. H. Juang, P. Lynch, J.-J. Morcrette, S. Moorthi, J. Mulcahy, Y. Pradhan, M. Razinger, C. B. Sampson, J. Wang, and D. L. Westphal
Atmos. Chem. Phys., 15, 335–362, https://doi.org/10.5194/acp-15-335-2015, https://doi.org/10.5194/acp-15-335-2015, 2015
Short summary
B. Arvani, R. B. Pierce, A. I. Lyapustin, Y. Wang, G. Ghermandi, and S. Teggi
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-123-2015, https://doi.org/10.5194/acpd-15-123-2015, 2015
Revised manuscript not accepted
Short summary
Short summary
The manuscript compares 10km Moderate Resolution Imaging Spectroradiometer (MODIS) Collection 5.1 and new 1 km Multi-Angle Implementation of Atmospheric Correction (MAIAC) Aerosol Optical Depth (AOD) retrievals to small (<10 micron) particulate matter (PM10) surface measurements from monitoring stations within the Po Valley in Northern Italy during 2012. When the depth of the planetary boundary layer (PBL) is used to normalize the AOD, we find PM – AOD correlations of 0.98 for both retrievals.
A. Lyapustin, Y. Wang, X. Xiong, G. Meister, S. Platnick, R. Levy, B. Franz, S. Korkin, T. Hilker, J. Tucker, F. Hall, P. Sellers, A. Wu, and A. Angal
Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, https://doi.org/10.5194/amt-7-4353-2014, 2014
T. F. Eck, B. N. Holben, J. S. Reid, A. Arola, R. A. Ferrare, C. A. Hostetler, S. N. Crumeyrolle, T. A. Berkoff, E. J. Welton, S. Lolli, A. Lyapustin, Y. Wang, J. S. Schafer, D. M. Giles, B. E. Anderson, K. L. Thornhill, P. Minnis, K. E. Pickering, C. P. Loughner, A. Smirnov, and A. Sinyuk
Atmos. Chem. Phys., 14, 11633–11656, https://doi.org/10.5194/acp-14-11633-2014, https://doi.org/10.5194/acp-14-11633-2014, 2014
J. Strandgren, L. Mei, M. Vountas, J. P. Burrows, A. Lyapustin, and Y. Wang
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-14-25869-2014, https://doi.org/10.5194/acpd-14-25869-2014, 2014
Revised manuscript not accepted
A. Rocha-Lima, J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. Artaxo
Atmos. Chem. Phys., 14, 10649–10661, https://doi.org/10.5194/acp-14-10649-2014, https://doi.org/10.5194/acp-14-10649-2014, 2014
P. R. Colarco, R. A. Kahn, L. A. Remer, and R. C. Levy
Atmos. Meas. Tech., 7, 2313–2335, https://doi.org/10.5194/amt-7-2313-2014, https://doi.org/10.5194/amt-7-2313-2014, 2014
X. Hu, L. A. Waller, A. Lyapustin, Y. Wang, and Y. Liu
Atmos. Chem. Phys., 14, 6301–6314, https://doi.org/10.5194/acp-14-6301-2014, https://doi.org/10.5194/acp-14-6301-2014, 2014
Y. Shi, J. Zhang, J. S. Reid, B. Liu, and E. J. Hyer
Atmos. Meas. Tech., 7, 1791–1801, https://doi.org/10.5194/amt-7-1791-2014, https://doi.org/10.5194/amt-7-1791-2014, 2014
T. D. Toth, J. Zhang, J. R. Campbell, E. J. Hyer, J. S. Reid, Y. Shi, and D. L. Westphal
Atmos. Chem. Phys., 14, 6049–6062, https://doi.org/10.5194/acp-14-6049-2014, https://doi.org/10.5194/acp-14-6049-2014, 2014
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
J. M. Livingston, J. Redemann, Y. Shinozuka, R. Johnson, P. B. Russell, Q. Zhang, S. Mattoo, L. Remer, R. Levy, L. Munchak, and S. Ramachandran
Atmos. Chem. Phys., 14, 2015–2038, https://doi.org/10.5194/acp-14-2015-2014, https://doi.org/10.5194/acp-14-2015-2014, 2014
V. Buchard, A. M. da Silva, P. Colarco, N. Krotkov, R. R. Dickerson, J. W. Stehr, G. Mount, E. Spinei, H. L. Arkinson, and H. He
Atmos. Chem. Phys., 14, 1929–1941, https://doi.org/10.5194/acp-14-1929-2014, https://doi.org/10.5194/acp-14-1929-2014, 2014
A. Chudnovsky, C. Tang, A. Lyapustin, Y. Wang, J. Schwartz, and P. Koutrakis
Atmos. Chem. Phys., 13, 10907–10917, https://doi.org/10.5194/acp-13-10907-2013, https://doi.org/10.5194/acp-13-10907-2013, 2013
R. C. Levy, S. Mattoo, L. A. Munchak, L. A. Remer, A. M. Sayer, F. Patadia, and N. C. Hsu
Atmos. Meas. Tech., 6, 2989–3034, https://doi.org/10.5194/amt-6-2989-2013, https://doi.org/10.5194/amt-6-2989-2013, 2013
L. A. Remer, S. Mattoo, R. C. Levy, and L. A. Munchak
Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, https://doi.org/10.5194/amt-6-1829-2013, 2013
L. A. Munchak, R. C. Levy, S. Mattoo, L. A. Remer, B. N. Holben, J. S. Schafer, C. A. Hostetler, and R. A. Ferrare
Atmos. Meas. Tech., 6, 1747–1759, https://doi.org/10.5194/amt-6-1747-2013, https://doi.org/10.5194/amt-6-1747-2013, 2013
Y. Shi, J. Zhang, J. S. Reid, E. J. Hyer, and N. C. Hsu
Atmos. Meas. Tech., 6, 949–969, https://doi.org/10.5194/amt-6-949-2013, https://doi.org/10.5194/amt-6-949-2013, 2013
H. Zhang, R. M. Hoff, S. Kondragunta, I. Laszlo, and A. Lyapustin
Atmos. Meas. Tech., 6, 471–486, https://doi.org/10.5194/amt-6-471-2013, https://doi.org/10.5194/amt-6-471-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Assessment of the impact of NO2 contribution on aerosol-optical-depth measurements at several sites worldwide
Improved mean field estimates from the Geostationary Environment Monitoring Spectrometer (GEMS) Level-3 aerosol optical depth (L3 AOD) product: using spatiotemporal variability
Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers
Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: retrieval and validation
Regional validation of the solar irradiance tool SolaRes in clear-sky conditions, with a focus on the aerosol module
An empirical characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS data
Intercomparison of AOD retrievals from GAW-PFR and SKYNET sun photometer networks and the effect of calibration
Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE
Characterization of dust aerosols from ALADIN and CALIOP measurements
Lidar depolarization characterization using a reference system
Algorithm evaluation for polarimetric remote sensing of atmospheric aerosols
Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network
Ozone and aerosol optical depth retrievals using the ultraviolet multi-filter rotating shadow-band radiometer
Expanding the coverage of Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrievals over shallow, turbid, and eutrophic waters
Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network
Spectral aerosol optical depth from SI-traceable spectral solar irradiance measurements
Quality assessment of aerosol lidars at 1064 nm in the framework of the MEMO campaign
Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy
Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity
First assessment of Aeolus Standard Correct Algorithm particle backscatter coefficient retrievals in the eastern Mediterranean
Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry
Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation
Sensitivity of aerosol optical depth trends using long-term measurements of different sun photometers
Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3
Performance evaluation for retrieving aerosol optical depth from the Directional Polarimetric Camera (DPC) based on the GRASP algorithm
Assessment of tropospheric CALIPSO Version 4.2 aerosol types over the ocean using independent CALIPSO–SODA lidar ratios
Real-time UV index retrieval in Europe using Earth observation-based techniques: system description and quality assessment
Evaluation of UV–visible MAX-DOAS aerosol profiling products by comparison with ceilometer, sun photometer, and in situ observations in Vienna, Austria
Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval
Characterization of aerosol size properties from measurements of spectral optical depth: a global validation of the GRASP-AOD code using long-term AERONET data
Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: validation and comparison
Retrieval and evaluation of tropospheric-aerosol extinction profiles using multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements over Athens, Greece
Empirically derived parameterizations of the direct aerosol radiative effect based on ORACLES aircraft observations
TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018)
Evaluation of UV aerosol retrievals from an ozone lidar
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa
Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations
A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling
A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data
The 2018 fire season in North America as seen by TROPOMI: aerosol layer height intercomparisons and evaluation of model-derived plume heights
Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations
Aerosol and cloud top height information of Envisat MIPAS measurements
Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product
Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm
A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing
Analysis of global three-dimensional aerosol structure with spectral radiance matching
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024, https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
Short summary
We describe the new feature mask (AEL-FM) and aerosol profile retrieval (AEL-PRO) algorithms developed for Aeolus lidar and present the evaluation of the Aeolus products using CALIPSO data for dust aerosols over Africa. We have found that Aeolus and CALIPSO show similar aerosol patterns in the collocated orbits and have good agreement for the extinction coefficients for the dust aerosols, especially for the cloud-free scenes. The finding is applicable to Aeolus L2A product Baseline 17.
Akriti Masoom, Stelios Kazadzis, Masimo Valeri, Ioannis-Panagiotis Raptis, Gabrielle Brizzi, Kyriakoula Papachristopoulou, Francesca Barnaba, Stefano Casadio, Axel Kreuter, and Fabrizio Niro
Atmos. Meas. Tech., 17, 5525–5549, https://doi.org/10.5194/amt-17-5525-2024, https://doi.org/10.5194/amt-17-5525-2024, 2024
Short summary
Short summary
Aerosols, which have a wide impact on climate, radiative forcing, and human health, are widely represented by aerosol optical depth (AOD). AOD retrievals require Rayleigh scattering and atmospheric absorption (ozone, NO2, etc.) corrections. We analysed the NO2 (which has a high spatiotemporal variation) uncertainty impact on AOD retrievals using the synergy of co-located ground-based instruments with a long-term dataset at worldwide sites and found significant AOD over- or underestimations.
Sooyon Kim, Yeseul Cho, Hanjeong Ki, Seyoung Park, Dagun Oh, Seungjun Lee, Yeonghye Cho, Jhoon Kim, Wonjin Lee, Jaewoo Park, Ick Hoon Jin, and Sangwook Kang
Atmos. Meas. Tech., 17, 5221–5241, https://doi.org/10.5194/amt-17-5221-2024, https://doi.org/10.5194/amt-17-5221-2024, 2024
Short summary
Short summary
This paper describes new work that improves the processing of GEMS AOD data. First, we enhance the inverse-distance-weighting algorithm by incorporating quality flag information, assigning weights that are inversely proportional to the number of unreliable grids. Second, we leverage a spatiotemporal merging method to address both spatial and temporal variability. Finally, we estimate the mean field values for GEMS AOD data, enhancing our understanding of the impact of aerosols on climate change.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Chenxing Zha, Lingbing Bu, Zhi Li, Qin Wang, Ahmad Mubarak, Pasindu Liyanage, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 17, 4425–4443, https://doi.org/10.5194/amt-17-4425-2024, https://doi.org/10.5194/amt-17-4425-2024, 2024
Short summary
Short summary
China has launched the atmospheric environment monitoring satellite DQ-1, which consists of an advanced lidar system. Our research presents a retrieval algorithm of the DQ-1 lidar system, and the retrieval results are consistent with other datasets. We also use the DQ-1 dataset to investigate dust and volcanic aerosols. This research shows that the DQ-1 lidar system can accurately measure the Earth's atmosphere and has potential for scientific applications.
Thierry Elias, Nicolas Ferlay, Gabriel Chesnoiu, Isabelle Chiapello, and Mustapha Moulana
Atmos. Meas. Tech., 17, 4041–4063, https://doi.org/10.5194/amt-17-4041-2024, https://doi.org/10.5194/amt-17-4041-2024, 2024
Short summary
Short summary
In the solar energy application field, it is key to simulate solar resources anywhere on the globe. We conceived the Solar Resource estimate (SolaRes) tool to provide precise and accurate estimates of solar resources for any solar plant technology. We present the validation of SolaRes by comparing estimates with measurements made on two ground-based platforms in northern France for 2 years at 1 min resolution. Validation is done in clear-sky conditions where aerosols are the main factors.
Robert P. Damadeo, Viktoria F. Sofieva, Alexei Rozanov, and Larry W. Thomason
Atmos. Meas. Tech., 17, 3669–3678, https://doi.org/10.5194/amt-17-3669-2024, https://doi.org/10.5194/amt-17-3669-2024, 2024
Short summary
Short summary
Comparing different aerosol data sets for scientific studies often requires converting aerosol extinction data between different wavelengths. A common approximation for the spectral behavior of aerosol is the Ångström formula; however, this introduces biases. Using measurements across many different wavelengths from a single instrument, we derive an empirical relationship to both characterize this bias and offer a correction for other studies that may employ this analysis approach.
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, and Stelios Kazadzis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-84, https://doi.org/10.5194/amt-2024-84, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Different sun photometer networks use different instruments, post processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET analysing common measurements during 3 campaigns between 2017–2021 and investigate the main cause of the differences.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Rui Song, Adam Povey, and Roy G. Grainger
Atmos. Meas. Tech., 17, 2521–2538, https://doi.org/10.5194/amt-17-2521-2024, https://doi.org/10.5194/amt-17-2521-2024, 2024
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting the Earth's climate. Using data from two lidar-equipped satellites, ALADIN and CALIOP, we examined a 2020 Saharan dust event. The newer ALADIN's results aligned with CALIOP's. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Otto Hasekamp, Pavel Litvinov, Guangliang Fu, Cheng Chen, and Oleg Dubovik
Atmos. Meas. Tech., 17, 1497–1525, https://doi.org/10.5194/amt-17-1497-2024, https://doi.org/10.5194/amt-17-1497-2024, 2024
Short summary
Short summary
Aerosols are particles in the atmosphere that cool the climate by reflecting and absorbing sunlight (direct effect) and changing cloud properties (indirect effect). The scale of aerosol cooling is uncertain, hampering accurate climate predictions. We compare two algorithms for the retrieval of aerosol properties from multi-angle polarimetric measurements: Generalized Retrieval of Atmosphere and Surface Properties (GRASP) and Remote sensing of Trace gas and Aerosol Products (RemoTAP).
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech., 17, 1403–1417, https://doi.org/10.5194/amt-17-1403-2024, https://doi.org/10.5194/amt-17-1403-2024, 2024
Short summary
Short summary
The achieved results revealed that the ACDL observations were in good agreement with the ground-based lidar measurements during dust events. The heights of cloud top and bottom from these two measurements were well matched and comparable. This study proves that the ACDL provides reliable observations of aerosol and cloud in the presence of various climatic conditions, which helps to further evaluate the impacts of aerosol on climate and the environment, as well as on the ecosystem in the future.
Joseph Michalsky and Glen McConville
Atmos. Meas. Tech., 17, 1017–1022, https://doi.org/10.5194/amt-17-1017-2024, https://doi.org/10.5194/amt-17-1017-2024, 2024
Short summary
Short summary
The ozone in the atmosphere is measured by looking at the sun and measuring how diminished the light in the ultraviolet is relative to how bright it is above the Earth's atmosphere. This typically uses spectral instruments that are either costly or no longer manufactured. This paper uses a relatively inexpensive interference filter instrument to perform the same task. Daily ozone measurements with the latter and this filter instrument are compared. Aerosols are calculated as a by-product.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Jincheol Park, Jia Jung, Yunsoo Choi, Hyunkwang Lim, Minseok Kim, Kyunghwa Lee, Yun Gon Lee, and Jhoon Kim
Atmos. Meas. Tech., 16, 3039–3057, https://doi.org/10.5194/amt-16-3039-2023, https://doi.org/10.5194/amt-16-3039-2023, 2023
Short summary
Short summary
In response to the recent release of new geostationary platform-derived observational data generated by the Geostationary Environment Monitoring Spectrometer (GEMS) and its sister instruments, this study utilized the GEMS data fusion product and its proxy data in adjusting aerosol precursor emissions over East Asia. The use of spatiotemporally more complete observation references in updating the emissions resulted in more promising model performances in estimating aerosol loadings in East Asia.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Bastiaan van Diedenhoven, Otto P. Hasekamp, Brian Cairns, Gregory L. Schuster, Snorre Stamnes, Michael Shook, and Luke Ziemba
Atmos. Meas. Tech., 15, 7411–7434, https://doi.org/10.5194/amt-15-7411-2022, https://doi.org/10.5194/amt-15-7411-2022, 2022
Short summary
Short summary
The strong variability in the chemistry of atmospheric particulate matter affects the amount of water aerosols absorb and their effect on climate. We present a remote sensing method to determine the amount of water in particulate matter. Its application to airborne instruments indicates that the observed aerosols have rather low water contents and low fractions of soluble particles. Future satellites will be able to yield global aerosol water uptake data.
Milagros E. Herrera, Oleg Dubovik, Benjamin Torres, Tatyana Lapyonok, David Fuertes, Anton Lopatin, Pavel Litvinov, Cheng Chen, Jose Antonio Benavent-Oltra, Juan L. Bali, and Pablo R. Ristori
Atmos. Meas. Tech., 15, 6075–6126, https://doi.org/10.5194/amt-15-6075-2022, https://doi.org/10.5194/amt-15-6075-2022, 2022
Short summary
Short summary
This study deals with the dynamic error estimates of the aerosol-retrieved properties by the GRASP algorithm, which are provided for directly retrieved and derived parameters. Moreover, GRASP provides full covariance matrices that appear to be a useful approach for optimizing observation schemes and retrieval set-ups. The validation of the retrieved dynamic error estimates is done through real and synthetic measurements using sun photometer and lidar observations.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Larisa Sogacheva, Matthieu Denisselle, Pekka Kolmonen, Timo H. Virtanen, Peter North, Claire Henocq, Silvia Scifoni, and Steffen Dransfeld
Atmos. Meas. Tech., 15, 5289–5322, https://doi.org/10.5194/amt-15-5289-2022, https://doi.org/10.5194/amt-15-5289-2022, 2022
Short summary
Short summary
The aim of this study was to provide global characterisation of a new SYNERGY aerosol product derived from the data from the OLCI and SLSTR sensors aboard the Sentinel-3A and Sentinel-3B satellites. Over ocean, the performance of SYNERGY-retrieved AOD is good. Reduced performance over land was expected since the surface reflectance and angular distribution of scattering are more difficult to treat. Validation statistics are often slightly better for S3B and in the Southern Hemisphere.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Stefan F. Schreier, Tim Bösch, Andreas Richter, Kezia Lange, Michael Revesz, Philipp Weihs, Mihalis Vrekoussis, and Christoph Lotteraner
Atmos. Meas. Tech., 14, 5299–5318, https://doi.org/10.5194/amt-14-5299-2021, https://doi.org/10.5194/amt-14-5299-2021, 2021
Short summary
Short summary
This paper reports on the evaluation of aerosol profiling products retrieved from ground-based MAX-DOAS instruments using the BOREAS algorithm. Aerosol extinction profiles, near-surface aerosol extinction, and aerosol optical depth are compared to measurements collected with ceilometer, sun photometer, and in situ instruments. We show that these MAX-DOAS aerosol profiling products provide useful information to study spatial and temporal variations above the urban area of Vienna.
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Short summary
An experimental assessment of a polarized micro-pulse lidar (P-MPL) in comparison to reference lidars is presented regarding the retrieval of aerosol optical properties. The evaluation is focused on both the optimally determined overlap function and volume linear depolarization ratio. A P-MPL overlap must be regularly estimated to derive suitable aerosol products (backscatter, extinction, and particle depolarization ratio). This methodology can be easily applied to other P-MPL systems.
Benjamin Torres and David Fuertes
Atmos. Meas. Tech., 14, 4471–4506, https://doi.org/10.5194/amt-14-4471-2021, https://doi.org/10.5194/amt-14-4471-2021, 2021
Short summary
Short summary
The article shows the capacity of the new GRASP-AOD approach to be used for large datasets of aerosol optical depth from ground-based observations, through a comparison with standard AERONET codes. This new approach reduces the requirements in terms of measurements (no need of scattering information) to derive some basic aerosol size and optical properties. A broad use of this algorithm would increase the datasets of aerosol properties from ground-based observations.
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary
Short summary
The aerosol fine-mode fraction (FMF) is an important parameter reflecting the content of man-made aerosols. This study carried out the retrieval of FMF in China based on multi-angle polarization data and validated the results. The results of this study can contribute to the FMF retrieval algorithm of multi-angle polarization sensors. At the same time, a high-precision FMF dataset of China was obtained, which can provide basic data for atmospheric environment research.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020, https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary
Short summary
This paper presents a novel method to constrain the size distribution derived from low-cost optical particle counters (OPCs) using satellite data to develop higher-quality particulate matter (PM) estimates. Such estimates can enable cities that do not have access to expensive reference air quality monitors, especially those in the global south, to develop effective air quality management plans.
Dmitry M. Kabanov, Christoph Ritter, and Sergey M. Sakerin
Atmos. Meas. Tech., 13, 5303–5317, https://doi.org/10.5194/amt-13-5303-2020, https://doi.org/10.5194/amt-13-5303-2020, 2020
Short summary
Short summary
Long-term photometer measurements of two sites on Spitsbergen, Barentsburg and Ny-Ålesund, in the European Arctic are presented and compared. We find slightly higher aerosol optical depths at Barentsburg and attribute this to a higher concentration of small particles.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Carl Malings, Daniel M. Westervelt, Aliaksei Hauryliuk, Albert A. Presto, Andrew Grieshop, Ashley Bittner, Matthias Beekmann, and R. Subramanian
Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020, https://doi.org/10.5194/amt-13-3873-2020, 2020
Short summary
Short summary
Most air quality information comes from accurate but expensive instruments. These can be supplemented by lower-cost sensors to increase the density of ground data and expand monitoring into less well-instrumented areas, like sub-Saharan Africa. In this paper, we look at how low-cost sensor data can be combined with satellite information on air quality (which requires ground data to properly calibrate measurements) and assess the benefits these low-cost sensors provide in this context.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Jonas Witthuhn, Anja Hünerbein, and Hartwig Deneke
Atmos. Meas. Tech., 13, 1387–1412, https://doi.org/10.5194/amt-13-1387-2020, https://doi.org/10.5194/amt-13-1387-2020, 2020
Short summary
Short summary
Reliable reference measurements over ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Here, a uniqe set of shipborne reference aerosol products obtained from Microtops sunphotometer and GUVis-3511 shadowband radiometer observations are compared to aerosol products from the MODIS and SEVIRI satellite sensors, and the CAMS reanalysis over the Atlantic Ocean. The present evaluation highlights the importance of an aerosol-type based analysis.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Ekaterina Y. Zhdanova, Natalia Y. Chubarova, and Alexei I. Lyapustin
Atmos. Meas. Tech., 13, 877–891, https://doi.org/10.5194/amt-13-877-2020, https://doi.org/10.5194/amt-13-877-2020, 2020
Short summary
Short summary
We estimated the distribution of aerosol optical thickness (AOT) with a spatial resolution of 1 km over the Moscow megacity using the MAIAC satellite aerosol product from May to September over the years 2000–2017. We revealed that the MAIAC product is a reliable instrument for assessing the spatial features of urban aerosol pollution and its temporal dynamics. The local aerosol effect is about 0.02–0.04 in AOT in the visible spectral range over the Moscow megacity.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Dong Liu, Sijie Chen, Chonghui Cheng, Howard W. Barker, Changzhe Dong, Ju Ke, Shuaibo Wang, and Zhuofan Zheng
Atmos. Meas. Tech., 12, 6541–6556, https://doi.org/10.5194/amt-12-6541-2019, https://doi.org/10.5194/amt-12-6541-2019, 2019
Short summary
Short summary
Aerosols are one of the drivers of climate change, and more information about aerosol vertical distribution is needed to analyze the role of aerosols in the atmosphere. In this work, we match and substitute a pixel along the lidar ground track for every pixel that is not on the track based on the radiance measured by a passive imager, therefore expanding the atmosphere profiles to a nearby region. The accuracy of the construction is confirmed through a procedure mimicking the construction.
Cited articles
Adler, R. F., Sapiano, M., Huffman, G. J., Wang, J.-J., Gu, G., Bolvin, D.,
Chiu, L., Schneider, U., Becker, A., Nelkin, E., Xie, P., Ferraro, R., and
Shin, D.-B.: The Global Precipitation Climatology Project (GPCP) Monthly
Analysis (New Version 2.3) and a Review of 2017 Global Precipitation,
Atmosphere, 9, 138, https://doi.org/10.3390/atmos9040138, 2018.
Ahmad, Z. and Fraser, R. S.: An Iterative Radiative Transfer Code For
Ocean-Atmosphere Systems, J. Atmos. Sci., 39, 656–665,
https://doi.org/10.1175/1520-0469(1982)039<0656:AIRTCF>2.0.CO;2, 1982.
Ahmad, Z., Franz, B. A., McClain, C. R., Kwiatkowska, E. J., Werdell, J.,
Shettle, E. P., and Holben, B. N.: New aerosol models for the retrieval of
aerosol optical thickness and normalized water-leaving radiances from the
SeaWiFS and MODIS sensors over coastal regions and open oceans, Appl. Optics,
49, 5545–5560, https://doi.org/10.1364/AO.49.005545, 2010.
Alfaro-Contreras, R., Zhang, J., Reid, J. S., and Christopher, S.: A study of
15-year aerosol optical thickness and direct shortwave aerosol radiative
effect trends using MODIS, MISR, CALIOP and CERES, Atmos. Chem. Phys., 17,
13849–13868, https://doi.org/10.5194/acp-17-13849-2017, 2017.
Bellouin, N., Boucher, O., Haywood, J., and Reddy, M.: Global estimate of
aerosol direct radiative forcing from satellite measurements, Nature, 438,
1138–1141, 2005.
Boschetti, L. and Roy, D. P.: Strategies for the fusion of satellite fire
radiative power with burned area data for fire radiative energy derivation,
J. Geophys. Res.-Atmos., 114, D20302, https://doi.org/10.1029/2008JD011645, 2009.
Boucher, O., Randall, D., Artaxo, P., Bretherton, C., Feingold, G., Forster,
P. M., Kerminen, V.-M., Kondo, Y., Liao, H., Lohmann, U., Rasch, P. J.,
Satheesh, S. K., Sherwood, S., Stevens, B., and Zhang, X. Y.: Clouds and
Aerosols, in: Climate Change 2013: The Physical Science Basis. Contribution
of Working Group I to the Fifth Assessment Report of the Intergovernmental
Panel on Climate Change, edited by: Stocker, T. F., Qin, D., Plattner, G. K.,
Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, X., Bex, V., and
Midgley, P. M., Cambridge University Press, Cambridge, UK and New York, NY,
USA, 2013.
Boys, B., Martin, R., van Donkelaar, A., MacDonell, R., Hsu, C., Cooper, M.,
Yantosca, R., Lu, Z., Streets, D. G., Zhang, Q., and Wang, S.: Fifteen-year
global time series of satellite-derived fine particulate matter, Environ.
Sci. Technol., 48, 11109–11118, https://doi.org/10.1021/es502113p, 2014.
Chin, M., Diehl, T., Tan, Q., Prospero, J. M., Kahn, R. A., Remer, L. A., Yu,
H., Sayer, A. M., Bian, H., Geogdzhayev, I. V., Holben, B. N., Howell, S. G.,
Huebert, B. J., Hsu, N. C., Kim, D., Kucsera, T. L., Levy, R. C., Mishchenko,
M. I., Pan, X., Quinn, P. K., Schuster, G. L., Streets, D. G., Strode, S. A.,
Torres, O., and Zhao, X.-P.: Multi-decadal aerosol variations from 1980 to
2009: a perspective from observations and a global model, Atmos. Chem. Phys.,
14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, 2014.
Chung, C. E., Ramanathan, V., Kim, D., and Podgorny, I. A.: Global
anthropogenic aerosol direct forcing derived from satellite and ground-based
observations, J. Geophys. Res., 110, D24207, https://doi.org/10.1029/2005JD006356, 2005.
Colarco, P., da Silva, A., Chin, M., and Diehl, T.: Online simulations of
global aerosol distributions in the NASA GEOS-4 model and comparisons to
satellite and ground-based aerosol optical depth, J. Geophys. Res.-Atmos.,
115, D14207, https://doi.org/10.1029/2009JD012820, 2010.
Colarco, P. R., Kahn, R. A., Remer, L. A., and Levy, R. C.: Impact of
satellite viewing-swath width on global and regional aerosol optical
thickness statistics and trends, Atmos. Meas. Tech., 7, 2313–2335,
https://doi.org/10.5194/amt-7-2313-2014, 2014.
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from
Photographs of the Sun's Glitter, J. Opt. Soc. Am., 44, 838–850,
https://doi.org/10.1364/JOSA.44.000838, 1954.
Croft, B., Pierce, J. R., and Martin, R. V.: Interpreting aerosol lifetimes
using the GEOS-Chem model and constraints from radionuclide measurements,
Atmos. Chem. Phys., 14, 4313–4325, https://doi.org/10.5194/acp-14-4313-2014,
2014.
Doelling, D. R., Wu, A., Xiong, X., Scarino, B. R., Bhatt, R., Haney, C. O.,
Morstad, D., and Gopalan, A.: The Radiometric Stability and Scaling of
Collection 6 Terra-and Aqua-MODIS VIS, NIR, and SWIR Spectral Bands, IEEE T.
Geosci. Remote, 53, 4520–4535, https://doi.org/10.1109/TGRS.2015.2400928, 2015.
Dubovik, O., Holben, B., Lapyonok, T., Sinyuk, A., Mishchenko, M., Yang, P.,
and Slutsker, I.: Non-spherical aerosol retrieval method employing light
scattering by spheroids, Geophys. Res. Lett., 29, 1415,
https://doi.org/10.1029/2001GL014506, 2002.
Eastman, R. and Warren, S. G.: Diurnal Cycles of Cumulus, Cumulonimbus,
Stratus, Stratocumulus, and Fog from Surface Observations over Land and
Ocean, J. Climate, 27, 2386–2404, https://doi.org/10.1175/jcli-d-13-00352.1, 2014.
Eck, T. F., Holben, B. N., Reid, J. S., Giles, D. M., Rivas, M. A., Singh, R.
P., Tripathi, S. N., Bruegge, C. J., Platnick, S., Arnold, G. T., Krotkov, N.
A., Carn, S. A., Sinyuk, A., Dubovik, O., Arola, A., Schafer, J. S., Artaxo,
P., Smirnov, A., Chen, H., and Goloub, P.: Fog- and cloud-induced aerosol
modification observed by the Aerosol Robotic Network (AERONET), J. Geophys.
Res.-Atmos., 117, D07206, https://doi.org/10.1029/2011jd016839, 2012.
Eck, T. F., Holben, B. N., Reid, J. S., Mukelabai, M. M., Piketh, S. J.,
Torres, O., Jethva, H. T., Hyer, E. J., Ward, D. E., Dubovik, O., Sinyuk, A.,
Schafer, J. S., Giles, D. M., Sorokin, M., Smirnov, A., and Slutsker, I.: A
seasonal trend of single scattering albedo in southern African
biomass-burning particles: Implications for satellite products and estimates
of emissions for the world's largest biomass- burning source, J. Geophys.
Res.-Atmos., 118, 6414–6432, https://doi.org/10.1002/jgrd.50500, 2013.
Evans, J., van Donkelaar, A., Martin, R. V., Burnett, R., Rainham, D. G.,
Birkett, N. J., and Krewski, D.: Estimates of global mortality attributable
to particulate air pollution using satellite imagery, Environ. Res., 120,
33–42, https://doi.org/10.1016/j.envres.2012.08.005, 2012.
Evans, K. F. and Stephens, G. L.: A new polarized atmospheric radiative
transfer model, J. Quant. Spectrosc. Ra., 46, 413–423, 1991.
Frey, R. A., Ackerman, S. A., Liu, Y., Strabala, K. I., Zhang, H., Key, J.
R., and Wang, X.: Cloud Detection with MODIS. Part I: Improvements in the
MODIS Cloud Mask for Collection 5, J. Atmos. Ocean. Tech., 25, 1057–1072,
https://doi.org/10.1175/2008JTECHA1052.1, 2008.
GCOS: Systematic Observation Requirements For Satellite-Based Data Products
For Climate: 2011 Update, World Meteorological Organization, online,
available at:
http://www.wmo.int/pages/prog/gcos/Publications/gcos-154.pdf (last
access: 5 July 2018), 2011.
GCOS: The Global Observing System For Climate: Implementation Needs, WMO,
online, available at:
https://library.wmo.int/opac/doc_num.php?explnum_id=3417 (last access:
5 July 2018), 2016.
Gelaro, R., McCarty, W., Suarez, M. J., Todling, R., Molod, A., Takacs, L.,
Randles, C. A., Darmenov, A., Bosilovich, M. G., Reichle, R., Wargan, K.,
Coy, L., Cullather, R., Draper, C., Akella, S., Buchard, V., Conaty, A., da
Silva, A. M., Gu, W., Kim, G.-K., Koster, R., Lucchesi, R., Merkova, D.,
Nielsen, J. E., Partyka, G., Pawson, S., Putman, W., Rienecker, M., Schubert,
S. D., Sienkiewicz, M., and Zhao, B.: The Modern-Era Retrospective Analysis
for Research and Applications, Version 2 (MERRA-2), J. Climate, 30,
5419–5454, https://doi.org/10.1175/JCLI-D-16-0758.1, 2017.
Gupta, P., Levy, R. C., Mattoo, S., Remer, L. A., and Munchak, L. A.: A
surface reflectance scheme for retrieving aerosol optical depth over urban
surfaces in MODIS Dark Target retrieval algorithm, Atmos. Meas. Tech., 9,
3293–3308, https://doi.org/10.5194/amt-9-3293-2016, 2016.
Gupta, P., Remer, L. A., Levy, R. C., and Mattoo, S.: Validation of MODIS
3 km land aerosol optical depth from NASA's EOS Terra and Aqua missions,
Atmos. Meas. Tech., 11, 3145–3159, https://doi.org/10.5194/amt-11-3145-2018,
2018.
Haywood, J. and Boucher, O.: Estimates of the direct and indirect radiative
forcing due to tropospheric aerosols: A review, Rev. Geophys., 38, 513–543,
2000.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A.,
Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F.,
Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and
data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16,
https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol Properties
Over Bright-Reflecting Source Regions, IEEE T. Geosci. Remote, 42, 557–569,
https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J.,
Tsay, S.-C., and Holben, B. N.: Global and regional trends of aerosol optical
depth over land and ocean using SeaWiFS measurements from 1997 to 2010,
Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012,
2012.
Hsu, N. C., Jeong, M. J., Bettenhausen, C., Sayer, A. M., Hansell, R.,
Seftor, C. S., Huang, J., and Tsay, S. C.: Enhanced Deep Blue aerosol
retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118,
9296–9315, 2013.
Hyer, E. J., Reid, J. S., and Zhang, J.: An over-land aerosol optical depth
data set for data assimilation by filtering, correction, and aggregation of
MODIS Collection 5 optical depth retrievals, Atmos. Meas. Tech., 4, 379–408,
https://doi.org/10.5194/amt-4-379-2011, 2011.
Ichoku, C., Chu, D., Mattoo, S., Kaufman, Y., Remer, L., Tanre, D., Slutsker,
I., and Holben, B.: A spatio-temporal approach for global validation and
analysis of MODIS aerosol products, Geophys. Res. Lett., 29, 1616,
https://doi.org/10.1029/2001GL013206, 2002.
Ichoku, C., Remer, L., Kaufman, Y., Levy, R., Chu, D., Tanre, D., and Holben,
B.: MODIS observation of aerosols and estimation of aerosol radiative forcing
over southern Africa during SAFARI 2000, J. Geophys. Res.-Atmos., 108,
8499–8499, https://doi.org/10.1029/2002JD002366, 2003.
Kahn, R. A.: Reducing the Uncertainties in Direct Aerosol Radiative Forcing,
Surv. Geophys., 33, 701–721, https://doi.org/10.1007/s10712-011-9153-z, 2011.
Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben,
B. N.: Operational remote sensing of tropospheric aerosol over land from EOS
moderate resolution imaging spectroradiometer, J. Geophys. Res., 102,
17051–17068, https://doi.org/10.1029/96JD03988, 1997.
Kaufman, Y. J., Holben, B. N., Tanré, D., Slutsker, I., Smirnov, A., and
Eck, T. F.: Will aerosol measurements from Terra and Aqua Polar Orbiting
satellites represent the daily aerosol abundance and properties?, Geophys.
Res. Lett., 27, 3861–3864, https://doi.org/10.1029/2000GL011968, 2000.
Kaufman, Y. J., Tanre, D., and Boucher, O.: A satellite view of aerosols in
the climate system, Nature, 419, 215–223, 2002.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P.
A.: Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the
Terra and Aqua Satellites, IEEE T. Geosci. Remote, 51, 3826–3852,
https://doi.org/10.1109/TGRS.2012.2227333, 2013.
Koepke, P.: Effective reflectance of oceanic whitecaps, Appl. Optics, 23,
1816–1824, 1984.
Koren, I., Martins, J. V., Remer, L. A., and Afargan, H.: Smoke Invigoration
Versus Inhibition of Clouds over the Amazon, Science, 321, 946–949,
https://doi.org/10.1126/science.1159185, 2008.
Koren, I., Altaratz, O., Remer, L. A., Feingold, G., Martins, J. V., and
Heiblum, R. H.: Aerosol-induced intensification of rain from the tropics to
the mid-latitudes, Nat. Geosci., 5, 118–122, https://doi.org/10.1038/ngeo1364, 2012.
Kwiatkowska, E. J., Franz, B. A., Meister, G., McClain, C. R., and Xiong, X.:
Cross calibration of ocean-color bands from Moderate Resolution Imaging
Spectroradiometer on Terra platform, Appl. Optics, 47, 6796–6810,
https://doi.org/10.1364/AO.47.006796, 2008.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties
and application to Moderate Resolution Imaging Spectroradiometer aerosol
retrieval over land, J. Geophys. Res., 112, D13210,
https://doi.org/10.1029/2006JD007815, 2007a.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.:
Second?generation operational algorithm: Retrieval of aerosol properties over
land from inversion of Moderate Resolution Imaging Spectroradiometer spectral
reflectance, J. Geophys. Res.-Atmos., 112, D13211,
https://doi.org/10.1029/2006JD007811, 2007b.
Levy, R. C., Leptoukh, G. Kahn, R. A., Zubko, V., Gopalan, A., and Remer, L.
A.: A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite
Data, IEEE T. Geosci. Remote, 47, 2942–2956,
https://doi.org/10.1109/TGRS.2009.2013842, 2009.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R.,
and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target
aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420,
https://doi.org/10.5194/acp-10-10399-2010, 2010.
Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia,
F., and Hsu, N. C.: The Collection 6 MODIS aerosol products over land and
ocean, Atmos. Meas. Tech., 6, 2989–3034,
https://doi.org/10.5194/amt-6-2989-2013, 2013.
Levy, R. C., Hsu, N.-C., and the Collection 6 Aerosol Retrieval Team:
MODIS/Terra Aerosol 5-Min L2 Swath 10km, MODIS Atmosphere L2 Aerosol Product.
NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA,
https://doi.org/10.5067/MODIS/MOD04_L2.006, 2015a.
Levy, R. C., Hsu, N.-C., and the Collection 6 Aerosol Retrieval Team:
MODIS/Aqua Aerosol 5-Min L2 Swath 10km, MODIS Atmosphere L2 Aerosol Product.
NASA MODIS Adaptive Processing System, Goddard Space Flight Center, USA,
https://doi.org/10.5067/MODIS/MYD04_L2.006, 2015b.
Lohmann, U. and Feichter, J.: Global indirect aerosol effects: a review,
Atmos. Chem. Phys., 5, 715–737, https://doi.org/10.5194/acp-5-715-2005,
2005.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy,
R., and Reid, J. S.: Multiangle implementation of atmospheric correction
(MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos., 116, D03211,
https://doi.org/10.1029/2010JD014986, 2011.
Lyapustin, A., Wang, Y., Xiong, X., Meister, G., Platnick, S., Levy, R.,
Franz, B., Korkin, S., Hilker, T., Tucker, J., Hall, F., Sellers, P., Wu, A.,
and Angal, A.: Scientific impact of MODIS C5 calibration degradation and
C6+ improvements, Atmos. Meas. Tech., 7, 4353–4365,
https://doi.org/10.5194/amt-7-4353-2014, 2014.
Ma, Z., Hu, X., Sayer, A. M., Levy, R., Zhang, Q., Xue, Y., Tong, S., Bi, J.,
Huang, L., and Liu, Y.: Satellite-Based Spatiotemporal Trends in PM2.5
Concentrations: China, 2004–2013, Environ. Health Persp., 124, 184–192,
https://doi.org/10.1289/ehp.1409481, 2016.
Meister, G., Kwiatkowska, E. J., Franz, B. A., Patt, F. S., Feldman, G. C.,
and McClain, C. R.: Moderate-Resolution Imaging Spectroradiometer ocean color
polarization correction, Appl. Optics, 44, 5524–5535,
https://doi.org/10.1364/AO.44.005524, 2005.
Meister, G., Eplee, R. E., and Franz, B. A.: Corrections to MODIS Terra
calibration and polarization trending derived from ocean color products,
edited by: Butler, J. J., Xiong, X. J., and Gu, X., Proc. SPIE., 9218,
92180V, https://doi.org/10.1117/12.2062714, 2014.
Meyer, K., Platnick, S., Oreopoulos, L., and Lee, D.: Estimating the direct
radiative effect of absorbing aerosols overlying marine boundary layer clouds
in the southeast Atlantic using MODIS and CALIOP, J. Geophys. Res.-Atmos.,
118, 4801–4815, https://doi.org/10.1002/jgrd.50449, 2013.
Molod, A., Takacs, L., Suarez, M., and Bacmeister, J.: Development of the
GEOS-5 atmospheric general circulation model: evolution from MERRA to MERRA2,
Geosci. Model Dev., 8, 1339–1356, https://doi.org/10.5194/gmd-8-1339-2015, 2015.
Nakajima, T., Higurashi, A., Kawamoto, K., and Penner, J. E.: A possible
correlation between satellite-derived cloud and aerosol microphysical
parameters, Geophys. Res. Lett., 28, 1171–1174, https://doi.org/10.1029/2000GL012186,
2001.
Niu, F. and Li, Z.: Systematic variations of cloud top temperature and
precipitation rate with aerosols over the global tropics, Atmos. Chem. Phys.,
12, 8491–8498, https://doi.org/10.5194/acp-12-8491-2012, 2012.
Patadia, F., Levy, R. C., and Mattoo, S.: Correcting for trace gas absorption
when retrieving aerosol optical depth from satellite observations of
reflected shortwave radiation, Atmos. Meas. Tech., 11, 3205–3219,
https://doi.org/10.5194/amt-11-3205-2018, 2018.
Petrenko, M., Ichoku, C., and Leptoukh, G.: Multi-sensor Aerosol Products
Sampling System (MAPSS), Atmos. Meas. Tech., 5, 913–926,
https://doi.org/10.5194/amt-5-913-2012, 2012.
Platnick, S., Hubanks, P., Meyer, K., and King, M. D.: MODIS/Terra Aerosol
Cloud Water Vapor Ozone Monthly L3 Global 1Deg CMG, MODIS Atmosphere L3
Monthly Product (08_L3). NASA MODIS Adaptive Processing System, Goddard
Space Flight Center, USA, https://doi.org/10.5067/MODIS/MOD08_M3.006, 2015a.
Platnick, S., Hubanks, P., Meyer, K., and King, M. D.: MODIS/Aqua Aerosol
Cloud Water Vapor Ozone Monthly L3 Global 1Deg CMG, MODIS Atmosphere L3
Monthly Product (08_L3). NASA MODIS Adaptive Processing System, Goddard
Space Flight Center, USA, https://doi.org/10.5067/MODIS/MYD08_M3.006, 2015b.
Popp, T., de Leeuw, G., Bingen, C., Bruehl, C., Capelle, V., Chedin, A.,
Clarisse, L., Dubovik, O., Grainger, R., Griesfeller, J., Heckel, A., Kinne,
S., Klueser, L., Kosmale, M., Kolmonen, P., Lelli, L., Litvinov, P., Mei, L.,
North, P., Pinnock, S., Povey, A., Robert, C., Schulz, M., Sogacheva, L.,
Stebel, K., Zweers, D. S., Thomas, G., Tilstra, L. G., Vandenbussche, S.,
Veefkind, P., Vountas, M., and Xue, Y.: Development, Production and
Evaluation of Aerosol Climate Data Records from European Satellite
Observations (Aerosol_cci), Remote Sens., 8, 421, https://doi.org/10.3390/rs8050421,
2016.
Randles, C. A., da Silva, A. M., Buchard, V., Colarco, P. R., Darmenov, A.,
Govindaraju, R., Smirnov, A., Holben, B., Ferrare, R., Hair, J., Shinozuka,
Y., and Flynn, C. J.: The MERRA-2 Aerosol Reanalysis, 1980 Onward. Part I:
System Description and Data Assimilation Evaluation, J. Climate, 30,
6823–6850, https://doi.org/10.1175/JCLI-D-16-0609.1, 2017.
Remer, L. A. and Kaufman, Y. J.: Aerosol direct radiative effect at the top
of the atmosphere over cloud free ocean derived from four years of MODIS
data, Atmos. Chem. Phys., 6, 237–253, https://doi.org/10.5194/acp-6-237-2006, 2006.
Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., Chu, D. A., Martins, J.
V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote,
E., and Holben, B. N.: The MODIS aerosol algorithm, products, and validation,
J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005.
Remer, L. A., Kaufman, Y. J., and Kleidman, R. G.: Comparison of three years
of Terra and Aqua MODIS aerosol optical thickness over the global oceans,
IEEE Geosci. Remote S., 3, 537–540, https://doi.org/10.1109/LGRS.2006.879562, 2006.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D.,
Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H., and Holben, B. N.:
Global aerosol climatology from the MODIS satellite sensors, J. Geophys.
Res.-Atmos., 113, D14S07, https://doi.org/10.1029/2007JD009661, 2008.
Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km
aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6,
1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013.
Schutgens, N. A. J., Partridge, D. G., and Stier, P.: The importance of
temporal collocation for the evaluation of aerosol models with observations,
Atmos. Chem. Phys., 16, 1065–1079, https://doi.org/10.5194/acp-16-1065-2016,
2016.
Smirnov, A., Holben, B. N., Eck, T. F., Slutsker, I., Chatenet, B., and
Pinker, R. T.: Diurnal variability of aerosol optical depth observed at
AERONET (Aerosol Robotic Network) sites, Geophys. Res. Lett., 29, 30-1–30-4,
https://doi.org/10.1029/2002gl016305, 2002.
Sun, J., Xiong, X., Angal, A., Chen, H., Geng, X., and Wu, A.: On-orbit
performance of the MODIS reflective solar bands time-dependent response
versus scan angle algorithm, edited by: Butler, J. J., Xiong, X. J., and Gu,
X., Proc. SPIE, 8510, 85100J, https://doi.org/10.1117/12.930021, 2012.
Tanre, D., Kaufman, Y. J., Herman, M., and Mattoo, S.: Remote sensing of
aerosol properties over oceans using the MODIS/EOS spectral radiances, J.
Geophys. Res., 102, 16971–16988, 1997.
Toller, G., Xiong, X., Sun, J., Wenny, B. N., Geng, X., Kuyper, J., Angal,
A., Chen, H., Madhavan, S., and Wu, A.: Terra and Aqua moderate-resolution
imaging spectroradiometer collection 6 level 1B algorithm, J. Appl. Remote
Sens., 7, 3557, https://doi.org/10.1117/1.JRS.7.073557, 2013.
van Donkelaar, A., Martin, R. V., Brauer, M., Kahn, R., Levy, R., Verduzco,
C., and Villeneuve, P. J.: Global Estimates of Ambient Fine Particulate
Matter Concentrations from Satellite-Based Aerosol Optical Depth: Development
and Application, Environ. Health Persp., 118, 847–855,
https://doi.org/10.1289/ehp.0901623, 2010.
Vermote, E. F. and Kotchenova, S.: Atmospheric correction for the monitoring
of land surfaces, J. Geophys. Res., 113, D23S90, https://doi.org/10.1029/2007JD009662,
2008.
Wang, K. C., Dickinson, R. E., Su, L., and Trenberth, K. E.: Contrasting
trends of mass and optical properties of aerosols over the Northern
Hemisphere from 1992 to 2011, Atmos. Chem. Phys., 12, 9387–9398,
https://doi.org/10.5194/acp-12-9387-2012, 2012.
Wiscombe, W. J.: Improved Mie scattering algorithms, Appl. Optics, 19,
1505–1509, https://doi.org/10.1364/AO.19.001505, 1980.
Wu, A., Xiong, X., Doelling, D. R., Morstad, D., Angal, A., and Bhatt, R.:
Characterization of Terra and Aqua MODIS VIS, NIR, and SWIR Spectral Bands'
Calibration Stability, IEEE T. Geosci. Remote, 51, 4330–4338,
https://doi.org/10.1109/TGRS.2012.2226588, 2011.
Xiong, X. and Barnes, W.: An overview of MODIS radiometric calibration and
characterization, Adv. Atmos. Sci., 23, 69–79,
https://doi.org/10.1007/s00376-006-0008-3, 2006.
Yoon, J., von Hoyningen-Huene, W., Kokhanovsky, A. A., Vountas, M., and
Burrows, J. P.: Trend analysis of aerosol optical thickness and
Ångström exponent derived from the global AERONET spectral
observations, Atmos. Meas. Tech., 5, 1271–1299,
https://doi.org/10.5194/amt-5-1271-2012, 2012.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T.
L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P.,
Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and
Zhou, M.: A review of measurement-based assessments of the aerosol direct
radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666,
https://doi.org/10.5194/acp-6-613-2006, 2006.
Zhang, J. and Reid, J. S.: A decadal regional and global trend analysis of
the aerosol optical depth using a data-assimilation grade over-water MODIS
and Level 2 MISR aerosol products, Atmos. Chem. Phys., 10, 10949–10963,
https://doi.org/10.5194/acp-10-10949-2010, 2010.
Zhang, Y., Yu, H., Eck, T. F., Smirnov, A., Chin, M., Remer, L. A., Bian, H.,
Tan, Q., Levy, R., Holben, B. N., and Piazzolla, S.: Aerosol daytime
variations over North and South America derived from multiyear AERONET
measurements, J. Geophys. Res., 117, D05211, https://doi.org/10.1029/2011JD017242,
2012.
Short summary
Global aerosol data sets are essential for assessing climate-related questions. When comparing data sets derived from twin satellite sensors, we find consistent global offsets between morning and afternoon observations. Applying satellite-like sampling to a global model derives much weaker morning/afternoon offsets, suggesting that the observational differences are due to calibration. However, applying additional calibration corrections appears to reduce (but not remove) the global offsets.
Global aerosol data sets are essential for assessing climate-related questions. When comparing...