Articles | Volume 11, issue 7
Atmos. Meas. Tech., 11, 4373–4388, 2018
https://doi.org/10.5194/amt-11-4373-2018
Atmos. Meas. Tech., 11, 4373–4388, 2018
https://doi.org/10.5194/amt-11-4373-2018

Research article 25 Jul 2018

Research article | 25 Jul 2018

Reduction in 317–780 nm radiance reflected from the sunlit Earth during the eclipse of 21 August 2017

Jay Herman et al.

Related authors

Comprehensive evaluations of diurnal NO2 measurements during DISCOVER-AQ 2011: Effects of resolution dependent representation of NOx emissions
Jianfeng Li, Yuhang Wang, Ruixiong Zhang, Charles Smeltzer, Andrew Weinheimer, Jay Herman, K. Folkert Boersma, Edward A. Celarier, Russell W. Long, James J. Szykman, Ruben Delgado, Anne M. Thompson, Travis N. Knepp, Lok N. Lamsal, Scott J. Janz, Matthew G. Kowalewski, Xiong Liu, and Caroline R. Nowlan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1193,https://doi.org/10.5194/acp-2020-1193, 2021
Revised manuscript under review for ACP
Short summary
Validation of tropospheric NO2 column measurements of GOME-2A and OMI using MAX-DOAS and direct sun network observations
Gaia Pinardi, Michel Van Roozendael, François Hendrick, Nicolas Theys, Nader Abuhassan, Alkiviadis Bais, Folkert Boersma, Alexander Cede, Jihyo Chong, Sebastian Donner, Theano Drosoglou, Anatoly Dzhola, Henk Eskes, Udo Frieß, José Granville, Jay R. Herman, Robert Holla, Jari Hovila, Hitoshi Irie, Yugo Kanaya, Dimitris Karagkiozidis, Natalia Kouremeti, Jean-Christopher Lambert, Jianzhong Ma, Enno Peters, Ankie Piters, Oleg Postylyakov, Andreas Richter, Julia Remmers, Hisahiro Takashima, Martin Tiefengraber, Pieter Valks, Tim Vlemmix, Thomas Wagner, and Folkard Wittrock
Atmos. Meas. Tech., 13, 6141–6174, https://doi.org/10.5194/amt-13-6141-2020,https://doi.org/10.5194/amt-13-6141-2020, 2020
Short summary
Changes in the surface broadband shortwave radiation budget during the 2017 eclipse
Guoyong Wen, Alexander Marshak, Si-Chee Tsay, Jay Herman, Ukkyo Jeong, Nader Abuhassan, Robert Swap, and Dong Wu
Atmos. Chem. Phys., 20, 10477–10491, https://doi.org/10.5194/acp-20-10477-2020,https://doi.org/10.5194/acp-20-10477-2020, 2020
Short summary
Global distribution and 14-year changes in erythemal irradiance, UV atmospheric transmission, and total column ozone for2005–2018 estimated from OMI and EPIC observations
Jay Herman, Alexander Cede, Liang Huang, Jerald Ziemke, Omar Torres, Nickolay Krotkov, Matthew Kowalewski, and Karin Blank
Atmos. Chem. Phys., 20, 8351–8380, https://doi.org/10.5194/acp-20-8351-2020,https://doi.org/10.5194/acp-20-8351-2020, 2020
Short summary
Assessment of NO2 observations during DISCOVER-AQ and KORUS-AQ field campaigns
Sungyeon Choi, Lok N. Lamsal, Melanie Follette-Cook, Joanna Joiner, Nickolay A. Krotkov, William H. Swartz, Kenneth E. Pickering, Christopher P. Loughner, Wyat Appel, Gabriele Pfister, Pablo E. Saide, Ronald C. Cohen, Andrew J. Weinheimer, and Jay R. Herman
Atmos. Meas. Tech., 13, 2523–2546, https://doi.org/10.5194/amt-13-2523-2020,https://doi.org/10.5194/amt-13-2523-2020, 2020

Related subject area

Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021,https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Measurement characteristics of an airborne microwave temperature profiler (MTP)
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021,https://doi.org/10.5194/amt-14-1689-2021, 2021
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm
Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021,https://doi.org/10.5194/amt-14-1303-2021, 2021
Short summary
VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2021-33,https://doi.org/10.5194/amt-2021-33, 2021
Revised manuscript accepted for AMT
Short summary
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2020-487,https://doi.org/10.5194/amt-2020-487, 2020
Revised manuscript accepted for AMT
Short summary

Cited articles

Cescatti, A.: Indirect estimates of canopy gap fraction based on the linear conversion of hemispherical photographs: Methodology and comparison with standard thresholding techniques, Agr. Forest Meteorol., 143, 1–12, 2007. 
Emde, C. and Mayer, B.: Simulation of solar radiation during a total eclipse: a challenge for radiative transfer, Atmos. Chem. Phys., 7, 2259–2270, https://doi.org/10.5194/acp-7-2259-2007, 2007. 
Geogdzhayev, I. V. and Marshak, A.: Calibration of the DSCOVR EPIC visible and NIR channels using MODIS Terra and Aqua data and EPIC lunar observations, Atmos. Meas. Tech., 11, 359–368, https://doi.org/10.5194/amt-11-359-2018, 2018. 
Gerasopoulos, E., Zerefos, C. S., Tsagouri, I., Founda, D., Amiridis, V., Bais, A. F., Belehaki, A., Christou, N., Economou, G., Kanakidou, M., Karamanos, A., Petrakis, M., and Zanis, P.: The total solar eclipse of March 2006: overview, Atmos. Chem. Phys., 8, 5205–5220, https://doi.org/10.5194/acp-8-5205-2008, 2008. 
Herman, J. R., Cede, A., Spinei, E., Mount, G., Tzortziou M., and Abuhassan, N.: NO2 Column Amounts from Ground-based Pandora and MFDOAS Spectrometers using the Direct-Sun DOAS Technique: Intercomparisons and Application to OMI Validation, J. Geophys. Res., 114, D13307, https://doi.org/10.1029/2009JD011848, 2009.  
Short summary
The DSCOVR/EPIC instrument located near the Lagrange 1 Earth–Sun gravitational balance point is able to view the entire sunlit disk of the Earth. This means that during the eclipse of 21 August 2017 EPIC was able to see the region of totality and the much larger region of partial eclipse. Because of this, EPIC is able to measure the global reduction of reflected solar flux. For the wavelength range 388 to 780 nm, we estimated a 10 % reduction in reflected radiation.