Articles | Volume 16, issue 8
https://doi.org/10.5194/amt-16-2237-2023
https://doi.org/10.5194/amt-16-2237-2023
Research article
 | 
26 Apr 2023
Research article |  | 26 Apr 2023

Estimation of NO2 emission strengths over Riyadh and Madrid from space from a combination of wind-assigned anomalies and a machine learning technique

Qiansi Tu, Frank Hase, Zihan Chen, Matthias Schneider, Omaira García, Farahnaz Khosrawi, Shuo Chen, Thomas Blumenstock, Fang Liu, Kai Qin, Jason Cohen, Qin He, Song Lin, Hongyan Jiang, and Dianjun Fang

Related authors

Emission characteristics of greenhouse gases and air pollutants in a Qinghai-Tibetan Plateau city using a portable Fourier transform spectrometer and TROPOMI observations
Qiansi Tu, Frank Hase, Ying Zhang, Jiaxin Fang, Yanwu Jiang, Xiaofan Li, Matthias Schneider, Zhuolin Yang, Xin Zhang, and Zhengqiang Li
EGUsphere, https://doi.org/10.5194/egusphere-2025-966,https://doi.org/10.5194/egusphere-2025-966, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Surface Observation Constrained High Frequency Coal Mine Methane Emissions in Shanxi China Reveal More Emissions than Inventories, Consistency with Satellite Inversion
Fan Lu, Kai Qin, Jason Blake Cohen, Qin He, Pravash Tiwari, Wei Hu, Chang Ye, Yanan Shan, Qing Xu, Shuo Wang, and Qiansi Tu
EGUsphere, https://doi.org/10.5194/egusphere-2024-1784,https://doi.org/10.5194/egusphere-2024-1784, 2024
Short summary
Quantifying CH4 emissions from coal mine aggregation areas in Shanxi, China, using TROPOMI observations and the wind-assigned anomaly method
Qiansi Tu, Frank Hase, Kai Qin, Jason Blake Cohen, Farahnaz Khosrawi, Xinrui Zou, Matthias Schneider, and Fan Lu
Atmos. Chem. Phys., 24, 4875–4894, https://doi.org/10.5194/acp-24-4875-2024,https://doi.org/10.5194/acp-24-4875-2024, 2024
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Data Processing and Information Retrieval
Predictions of failed satellite retrieval of air quality using machine learning
Edward Malina, Jure Brence, Jennifer Adams, Jovan Tanevski, Sašo Džeroski, Valentin Kantchev, and Kevin W. Bowman
Atmos. Meas. Tech., 18, 1689–1715, https://doi.org/10.5194/amt-18-1689-2025,https://doi.org/10.5194/amt-18-1689-2025, 2025
Short summary
Deep transfer learning method for seasonal TROPOMI XCH4 albedo correction
Alexander C. Bradley, Barbara Dix, Fergus Mackenzie, J. Pepijn Veefkind, and Joost A. de Gouw
Atmos. Meas. Tech., 18, 1675–1687, https://doi.org/10.5194/amt-18-1675-2025,https://doi.org/10.5194/amt-18-1675-2025, 2025
Short summary
Global retrieval of TROPOMI tropospheric HCHO and NO2 columns with improved consistency based on the updated Peking University OMI NO2 algorithm
Yuhang Zhang, Huan Yu, Isabelle De Smedt, Jintai Lin, Nicolas Theys, Michel Van Roozendael, Gaia Pinardi, Steven Compernolle, Ruijing Ni, Fangxuan Ren, Sijie Wang, Lulu Chen, Jos Van Geffen, Mengyao Liu, Alexander M. Cede, Martin Tiefengraber, Alexis Merlaud, Martina M. Friedrich, Andreas Richter, Ankie Piters, Vinod Kumar, Vinayak Sinha, Thomas Wagner, Yongjoo Choi, Hisahiro Takashima, Yugo Kanaya, Hitoshi Irie, Robert Spurr, Wenfu Sun, and Lorenzo Fabris
Atmos. Meas. Tech., 18, 1561–1589, https://doi.org/10.5194/amt-18-1561-2025,https://doi.org/10.5194/amt-18-1561-2025, 2025
Short summary
Quantitative estimate of several sources of uncertainty in drone-based methane emission measurements
Tannaz H. Mohammadloo, Matthew Jones, Bas van de Kerkhof, Kyle Dawson, Brendan J. Smith, Stephen Conley, Abigail Corbett, and Rutger IJzermans
Atmos. Meas. Tech., 18, 1301–1324, https://doi.org/10.5194/amt-18-1301-2025,https://doi.org/10.5194/amt-18-1301-2025, 2025
Short summary
Implementation and application of an improved phase spectrum determination scheme for Fourier transform spectrometry
Frank Hase, Paolo Castracane, Angelika Dehn, Omaira Elena García, David W. T. Griffith, Lukas Heizmann, Nicholas B. Jones, Tomi Karppinen, Rigel Kivi, Martine de Mazière, Justus Notholt, and Mahesh Kumar Sha
Atmos. Meas. Tech., 18, 1257–1267, https://doi.org/10.5194/amt-18-1257-2025,https://doi.org/10.5194/amt-18-1257-2025, 2025
Short summary

Cited articles

Abdelsattar, A., Nadhairi, R. A., and Hassan, A. N.: Space-based monitoring of NO2 levels during COVID-19 lockdown in Cairo, Egypt and Riyadh, Saudi Arabia, The Egyptian Journal of Remote Sensing and Space Science, 24, 659–664, https://doi.org/10.1016/j.ejrs.2021.03.004, 2021. 
Baldasano, J. M.: COVID-19 lockdown effects on air quality by NO2 in the cities of Barcelona and Madrid (Spain), Sci. Total Environ., 741, 140353. https://doi.org/10.1016/j.scitotenv.2020.140353, 2020. 
Bauwens, M., Compernolle, S., Stavrakou, T., Müller, J. F., van Gent, J., Eskes, H., Levelt, P. F., van der A, R., Veefkind, J. P., Vlietinck, J., Yu, H., and Zehner, C.: Impact of Coronavirus Outbreak on NO2 Pollution Assessed Using TROPOMI and OMI Observations, Geophys. Res. Lett., 47, e2020GL08797, https://doi.org/10.1029/2020GL087978, 2020. 
Beirle, S., Platt, U., Wenig, M., and Wagner, T.: Weekly cycle of NO2 by GOME measurements: a signature of anthropogenic sources, Atmos. Chem. Phys., 3, 2225–2232, https://doi.org/10.5194/acp-3-2225-2003, 2003. 
Download
Short summary
Four-year TROPOMI observations are used to derive tropospheric NO2 emissions in two mega(cities) with high anthropogenic activity. Wind-assigned anomalies are calculated, and the emission rates and spatial patterns are estimated based on a machine learning algorithm. The results are in reasonable agreement with previous studies and the inventory. Our method is quite robust and can be used as a simple method to estimate the emissions of NO2 as well as other gases in other regions.
Share