Articles | Volume 16, issue 12
https://doi.org/10.5194/amt-16-3273-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-3273-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Generalized Kendrick analysis for improved visualization of atmospheric mass spectral data
Mitchell W. Alton
Department of Chemistry and Cooperative Institute for Research in
Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
80309, USA
now at: Aerodyne Research Inc., Billerica, Massachusetts 01821, USA
Harald J. Stark
Department of Chemistry and Cooperative Institute for Research in
Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
80309, USA
Aerodyne Research Inc., Billerica, Massachusetts 01821, USA
Manjula R. Canagaratna
Aerodyne Research Inc., Billerica, Massachusetts 01821, USA
Eleanor C. Browne
CORRESPONDING AUTHOR
Department of Chemistry and Cooperative Institute for Research in
Environmental Sciences, University of Colorado Boulder, Boulder, Colorado
80309, USA
Related authors
No articles found.
Andre Schaum, Kelvin Bates, Kyung-Eun Min, Faith Myers, Emmaline Longnecker, Manjula Canagaratna, Mitchell Alton, and Paul Ziemann
Aerosol Research Discuss., https://doi.org/10.5194/ar-2025-23, https://doi.org/10.5194/ar-2025-23, 2025
Preprint under review for AR
Short summary
Short summary
Organic aerosols consist of complex chemical mixtures that are challenging to characterize using chemical ionization mass spectrometry alone. This study presents a method for coupling liquid chromatography and chemical ionization mass spectrometry for offline analysis of organic aerosols. Evaluation of the method using standards and laboratory-generated and field-collected organic aerosols showed that it can provide detailed characterization of environmentally relevant mixtures.
Benjamin C. Sapper, Sean Youn, Daven K. Henze, Manjula Canagaratna, Harald Stark, and Jose L. Jimenez
Geosci. Model Dev., 18, 2891–2919, https://doi.org/10.5194/gmd-18-2891-2025, https://doi.org/10.5194/gmd-18-2891-2025, 2025
Short summary
Short summary
Positive matrix factorization (PMF) has been used by atmospheric scientists to extract underlying factors present in large datasets. This paper presents a new technique for error-weighted PMF that drastically reduces the computational costs of previously developed algorithms. We use this technique to deliver interpretable factors and solution diagnostics from an atmospheric chemistry dataset.
Mahen Konwar, Benjamin Werden, Edward C. Fortner, Sudarsan Bera, Mercy Varghese, Subharthi Chowdhuri, Kurt Hibert, Philip Croteau, John Jayne, Manjula Canagaratna, Neelam Malap, Sandeep Jayakumar, Shivsai A. Dixit, Palani Murugavel, Duncan Axisa, Darrel Baumgardner, Peter F. DeCarlo, Doug R. Worsnop, and Thara Prabhakaran
Atmos. Meas. Tech., 17, 2387–2400, https://doi.org/10.5194/amt-17-2387-2024, https://doi.org/10.5194/amt-17-2387-2024, 2024
Short summary
Short summary
In a warm cloud seeding experiment hygroscopic particles are released to alter cloud processes to induce early raindrops. During the Cloud–Aerosol Interaction and Precipitation Enhancement Experiment, airborne mini aerosol mass spectrometers analyse the particles on which clouds form. The seeded clouds showed higher concentrations of chlorine and potassium, the oxidizing agents of flares. Small cloud droplet concentrations increased, and seeding particles were detected in deep cloud depths.
Jian Zhao, Valter Mickwitz, Yuanyuan Luo, Ella Häkkinen, Frans Graeffe, Jiangyi Zhang, Hilkka Timonen, Manjula Canagaratna, Jordan E. Krechmer, Qi Zhang, Markku Kulmala, Juha Kangasluoma, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 17, 1527–1543, https://doi.org/10.5194/amt-17-1527-2024, https://doi.org/10.5194/amt-17-1527-2024, 2024
Short summary
Short summary
Organic aerosol constitutes a significant portion of atmospheric fine particles but is less characterized due to its vast number of constituents. Recently, we developed a system for online measurements of particle-phase highly oxygenated organic molecules (HOMs). In this work, we systematically characterized the system, developed a new unit to enhance its performance, and demonstrated the essential role of thermograms in inferring volatility and quantifying HOMs in organic aerosols.
Matthew M. Coggon, Chelsea E. Stockwell, Megan S. Claflin, Eva Y. Pfannerstill, Lu Xu, Jessica B. Gilman, Julia Marcantonio, Cong Cao, Kelvin Bates, Georgios I. Gkatzelis, Aaron Lamplugh, Erin F. Katz, Caleb Arata, Eric C. Apel, Rebecca S. Hornbrook, Felix Piel, Francesca Majluf, Donald R. Blake, Armin Wisthaler, Manjula Canagaratna, Brian M. Lerner, Allen H. Goldstein, John E. Mak, and Carsten Warneke
Atmos. Meas. Tech., 17, 801–825, https://doi.org/10.5194/amt-17-801-2024, https://doi.org/10.5194/amt-17-801-2024, 2024
Short summary
Short summary
Mass spectrometry is a tool commonly used to measure air pollutants. This study evaluates measurement artifacts produced in the proton-transfer-reaction mass spectrometer. We provide methods to correct these biases and better measure compounds that degrade air quality.
Daniel John Katz, Aroob Abdelhamid, Harald Stark, Manjula R. Canagaratna, Douglas R. Worsnop, and Eleanor C. Browne
Atmos. Chem. Phys., 23, 5567–5585, https://doi.org/10.5194/acp-23-5567-2023, https://doi.org/10.5194/acp-23-5567-2023, 2023
Short summary
Short summary
Ambient ion chemical composition measurements provide insight into trace gases that are precursors for the formation and growth of new aerosol particles. We use a new data analysis approach to increase the chemical information from these measurements. We analyze results from an agricultural region, a little studied land use type that is ~41 % of global land use, and find that the composition of gases important for aerosol formation and growth differs significantly from that in other ecosystems.
Jian Zhao, Ella Häkkinen, Frans Graeffe, Jordan E. Krechmer, Manjula R. Canagaratna, Douglas R. Worsnop, Juha Kangasluoma, and Mikael Ehn
Atmos. Chem. Phys., 23, 3707–3730, https://doi.org/10.5194/acp-23-3707-2023, https://doi.org/10.5194/acp-23-3707-2023, 2023
Short summary
Short summary
Based on the combined measurements of gas- and particle-phase highly oxygenated organic molecules (HOMs) from α-pinene ozonolysis, enhancement of dimers in particles was observed. We conducted experiments wherein the dimer to monomer (D / M) ratios of HOMs in the gas phase were modified (adding CO / NO) to investigate the effects of the corresponding D / M ratios in the particles. These results are important for a better understanding of secondary organic aerosol formation in the atmosphere.
Qing Ye, Matthew B. Goss, Jordan E. Krechmer, Francesca Majluf, Alexander Zaytsev, Yaowei Li, Joseph R. Roscioli, Manjula Canagaratna, Frank N. Keutsch, Colette L. Heald, and Jesse H. Kroll
Atmos. Chem. Phys., 22, 16003–16015, https://doi.org/10.5194/acp-22-16003-2022, https://doi.org/10.5194/acp-22-16003-2022, 2022
Short summary
Short summary
The atmospheric oxidation of dimethyl sulfide (DMS) is a major natural source of sulfate particles in the atmosphere. However, its mechanism is poorly constrained. In our work, laboratory measurements and mechanistic modeling were conducted to comprehensively investigate DMS oxidation products and key reaction rates. We find that the peroxy radical (RO2) has a controlling effect on product distribution and aerosol yield, with the isomerization of RO2 leading to the suppression of aerosol yield.
Dongyu S. Wang, Chuan Ping Lee, Jordan E. Krechmer, Francesca Majluf, Yandong Tong, Manjula R. Canagaratna, Julia Schmale, André S. H. Prévôt, Urs Baltensperger, Josef Dommen, Imad El Haddad, Jay G. Slowik, and David M. Bell
Atmos. Meas. Tech., 14, 6955–6972, https://doi.org/10.5194/amt-14-6955-2021, https://doi.org/10.5194/amt-14-6955-2021, 2021
Short summary
Short summary
To understand the sources and fate of particulate matter in the atmosphere, the ability to quantitatively describe its chemical composition is essential. In this work, we developed a calibration method for a state-of-the-art measurement technique without the need for chemical standards. Statistical analyses identified the driving factors behind instrument sensitivity variability towards individual components of particulate matter.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6835–6850, https://doi.org/10.5194/amt-14-6835-2021, https://doi.org/10.5194/amt-14-6835-2021, 2021
Short summary
Short summary
Iodide-adduct chemical ionization mass spectrometry (I-CIMS) has been widely used to analyze airborne organics. In this study, I-CIMS sensitivities of isomers within a formula are found to generally vary by 1 and up to 2 orders of magnitude. Comparisons between measured and predicted moles, obtained using a voltage-scanning calibration approach, show that predictions for individual compounds or formulas might carry high uncertainty, yet the summed moles of analytes agree reasonably well.
Chenyang Bi, Jordan E. Krechmer, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 6551–6560, https://doi.org/10.5194/amt-14-6551-2021, https://doi.org/10.5194/amt-14-6551-2021, 2021
Short summary
Short summary
Calibration techniques have been recently developed to log-linearly correlate analyte sensitivity with CIMS operating conditions particularly for compounds without authentic standards. In this work, we examine the previously ignored bias in the log-linear-based calibration method and estimate an average bias of 30 %, with 1 order of magnitude for less sensitive compounds in some circumstances. A step-by-step guide was provided to reduce and even remove the bias.
Louise N. Jensen, Manjula R. Canagaratna, Kasper Kristensen, Lauriane L. J. Quéléver, Bernadette Rosati, Ricky Teiwes, Marianne Glasius, Henrik B. Pedersen, Mikael Ehn, and Merete Bilde
Atmos. Chem. Phys., 21, 11545–11562, https://doi.org/10.5194/acp-21-11545-2021, https://doi.org/10.5194/acp-21-11545-2021, 2021
Short summary
Short summary
This work targets the chemical composition of α-pinene-derived secondary organic aerosol (SOA) formed in the temperature range from -15 to 20°C. Experiments were conducted in an atmospheric simulation chamber. Positive matrix factorization analysis of data obtained by a high-resolution time-of-flight aerosol mass spectrometer shows that the elemental aerosol composition is controlled by the initial α-pinene concentration and temperature during SOA formation.
Benjamin A. Nault, Duseong S. Jo, Brian C. McDonald, Pedro Campuzano-Jost, Douglas A. Day, Weiwei Hu, Jason C. Schroder, James Allan, Donald R. Blake, Manjula R. Canagaratna, Hugh Coe, Matthew M. Coggon, Peter F. DeCarlo, Glenn S. Diskin, Rachel Dunmore, Frank Flocke, Alan Fried, Jessica B. Gilman, Georgios Gkatzelis, Jacqui F. Hamilton, Thomas F. Hanisco, Patrick L. Hayes, Daven K. Henze, Alma Hodzic, James Hopkins, Min Hu, L. Greggory Huey, B. Thomas Jobson, William C. Kuster, Alastair Lewis, Meng Li, Jin Liao, M. Omar Nawaz, Ilana B. Pollack, Jeffrey Peischl, Bernhard Rappenglück, Claire E. Reeves, Dirk Richter, James M. Roberts, Thomas B. Ryerson, Min Shao, Jacob M. Sommers, James Walega, Carsten Warneke, Petter Weibring, Glenn M. Wolfe, Dominique E. Young, Bin Yuan, Qiang Zhang, Joost A. de Gouw, and Jose L. Jimenez
Atmos. Chem. Phys., 21, 11201–11224, https://doi.org/10.5194/acp-21-11201-2021, https://doi.org/10.5194/acp-21-11201-2021, 2021
Short summary
Short summary
Secondary organic aerosol (SOA) is an important aspect of poor air quality for urban regions around the world, where a large fraction of the population lives. However, there is still large uncertainty in predicting SOA in urban regions. Here, we used data from 11 urban campaigns and show that the variability in SOA production in these regions is predictable and is explained by key emissions. These results are used to estimate the premature mortality associated with SOA in urban regions.
Chenyang Bi, Jordan E. Krechmer, Graham O. Frazier, Wen Xu, Andrew T. Lambe, Megan S. Claflin, Brian M. Lerner, John T. Jayne, Douglas R. Worsnop, Manjula R. Canagaratna, and Gabriel Isaacman-VanWertz
Atmos. Meas. Tech., 14, 3895–3907, https://doi.org/10.5194/amt-14-3895-2021, https://doi.org/10.5194/amt-14-3895-2021, 2021
Short summary
Short summary
Measurement techniques that can achieve molecular characterizations are necessary to understand the differences of fate and transport within isomers produced in the atmospheric oxidation process. In this work, we develop an instrument to conduct isomer-resolved measurements of particle-phase organics. We assess the number of isomers per chemical formula in atmospherically relevant samples and examine the feasibility of extending the use of an existing instrument to a broader range of analytes.
Mutian Ma, Laura-Hélèna Rivellini, YuXi Cui, Megan D. Willis, Rio Wilkie, Jonathan P. D. Abbatt, Manjula R. Canagaratna, Junfeng Wang, Xinlei Ge, and Alex K. Y. Lee
Atmos. Meas. Tech., 14, 2799–2812, https://doi.org/10.5194/amt-14-2799-2021, https://doi.org/10.5194/amt-14-2799-2021, 2021
Short summary
Short summary
Chemical characterization of organic coatings is important to advance our understanding of the physio-chemical properties and atmospheric processing of black carbon (BC) particles. This work develops two approaches to improve the elemental analysis of oxygenated organic coatings using a soot-particle aerosol mass spectrometer. Analyzing ambient data with the new approaches indicated that secondary organics that coated on BC were likely less oxygenated compared to those externally mixed with BC.
Haiyan Li, Manjula R. Canagaratna, Matthieu Riva, Pekka Rantala, Yanjun Zhang, Steven Thomas, Liine Heikkinen, Pierre-Marie Flaud, Eric Villenave, Emilie Perraudin, Douglas Worsnop, Markku Kulmala, Mikael Ehn, and Federico Bianchi
Atmos. Chem. Phys., 21, 4123–4147, https://doi.org/10.5194/acp-21-4123-2021, https://doi.org/10.5194/acp-21-4123-2021, 2021
Short summary
Short summary
For the first time, we performed binPMF analysis on the complex mass spectra acquired with the Vocus PTR-TOF in two European pine forests and identified various primary emission sources and secondary oxidation processes of atmospheric organic vapors, i.e., terpenes and their oxidation products, with varying oxidation degrees. Further insights were gained regarding monoterpene and sesquiterpene reactions based on the interpretation results.
Archit Mehra, Jordan E. Krechmer, Andrew Lambe, Chinmoy Sarkar, Leah Williams, Farzaneh Khalaj, Alex Guenther, John Jayne, Hugh Coe, Douglas Worsnop, Celia Faiola, and Manjula Canagaratna
Atmos. Chem. Phys., 20, 10953–10965, https://doi.org/10.5194/acp-20-10953-2020, https://doi.org/10.5194/acp-20-10953-2020, 2020
Short summary
Short summary
Emissions of volatile organic compounds (VOCs) from plants are important for tropospheric ozone and secondary organic aerosol (SOA) formation. Real plant emissions are much more diverse than the few proxies widely used for studies of plant SOA. Here we present the first study of SOA from Californian sage plants and the oxygenated monoterpenes representing their major emissions. We identify SOA products and show the importance of the formation of highly oxygenated organic molecules and oligomers.
Cited articles
Alton, M., Stark, H., and Browne, E.: GKA panel, GeneralizedKendrickAnalysis_Panel, GitHub [code], https://github.com/BrowneLab/GeneralizedKendrickAnalysis_Panel (last access: 23 March 2023), 2023a.
Alton, M. W., Stark, H. J., Canagaratna, M. R., Browne, E. C.: GKA Data Availability, Open Science Foundation [data set], https://doi.org/10.17605/OSF.IO/WC2KM, 2023b.
Craig, R. D. and Errock, G. A.: Design and performance of a double-focusing mass spectrometer for analytical work, in: Advances in Mass Spectrometry, edited by: Waldron, J. D., Pergamon, 66–85, https://doi.org/10.1016/B978-0-08-009210-2.50011-0, 1959.
Cubison, M. J. and Jimenez, J. L.: Statistical precision of the intensities retrieved from constrained fitting of overlapping peaks in high-resolution mass spectra, Atmos. Meas. Tech., 8, 2333–2345, https://doi.org/10.5194/amt-8-2333-2015, 2015.
Fouquet, T. N. J.: The Kendrick analysis for polymer mass spectrometry, J.
Mass Spectrom, 54, 933–947, https://doi.org/10.1002/jms.4480, 2019.
Fouquet, T. and Sato, H.: Extension of the Kendrick Mass Defect Analysis of
Homopolymers to Low Resolution and High Mass Range Mass Spectra Using
Fractional Base Units, Anal. Chem., 89, 2682–2686,
https://doi.org/10.1021/acs.analchem.6b05136, 2017a.
Fouquet, T. and Sato, H.: How to choose the best fractional base unit for a
high-resolution Kendrick mass defect analysis of polymer ions,
Rapid Commun. Mass Sp., 31, 1067–1072,
https://doi.org/10.1002/rcm.7868, 2017b.
Fouquet, T. and Sato, H.: Improving the Resolution of Kendrick Mass Defect
Analysis for Polymer Ions with Fractional Base Units, Mass Spectrom., 6,
A0055–A0055, https://doi.org/10.5702/massspectrometry.A0055, 2017c.
Fouquet, T., Satoh, T., and Sato, H.: First Gut Instincts Are Always Right:
The Resolution Required for a Mass Defect Analysis of Polymer Ions Can Be as
Low as Oligomeric, Anal. Chem., 90, 2404–2408,
https://doi.org/10.1021/acs.analchem.7b04518, 2018.
Hughey, C. A., Hendrickson, C. L., Rodgers, R. P., Marshall, A. G., and
Qian, K.: Kendrick Mass Defect Spectrum: A Compact Visual Analysis for
Ultrahigh-Resolution Broadband Mass Spectra, Anal. Chem., 73,
4676–4681, https://doi.org/10.1021/ac010560w, 2001.
Junninen, H., Ehn, M., Petäjä, T., Luosujärvi, L., Kotiaho, T., Kostiainen, R., Rohner, U., Gonin, M., Fuhrer, K., Kulmala, M., and Worsnop, D. R.: A high-resolution mass spectrometer to measure atmospheric ion composition, Atmos. Meas. Tech., 3, 1039–1053, https://doi.org/10.5194/amt-3-1039-2010, 2010.
Kendrick, E.: A Mass Scale Based on CH2 = 14.0000 for High Resolution
Mass Spectrometry of Organic Compounds, Anal. Chem., 35,
2146–2154, https://doi.org/10.1021/ac60206a048, 1963.
Krechmer, J., Lopez-Hilfiker, F., Koss, A., Hutterli, M., Stoermer, C.,
Deming, B., Kimmel, J., Warneke, C., Holzinger, R., Jayne, J., Worsnop, D.,
Fuhrer, K., Gonin, M., and De Gouw, J.: Evaluation of a New Reagent-Ion
Source and Focusing Ion-Molecule Reactor for Use in Proton-Transfer-Reaction
Mass Spectrometry, Anal. Chem., 90, 12011–12018,
https://doi.org/10.1021/acs.analchem.8b02641, 2018.
Kroll, J. H., Donahue, N. M., Jimenez, J. L., Kessler, S. H., Canagaratna,
M. R., Wilson, K. R., Altieri, K. E., Mazzoleni, L. R., Wozniak, A. S.,
Bluhm, H., Mysak, E. R., Smith, J. D., Kolb, C. E., and Worsnop, D. R.:
Carbon oxidation state as a metric for describing the chemistry of
atmospheric organic aerosol, Nat. Chem., 3, 133–139,
https://doi.org/10.1038/nchem.948, 2011.
Marshall, A. G. and Rodgers, R. P.: Petroleomics: The Next Grand Challenge
for Chemical Analysis, Accounts Chem. Res., 37, 53–59,
https://doi.org/10.1021/ar020177t, 2004.
Nakamura, S., Cody, R. B., Sato, H., and Fouquet, T.: Graphical Ranking of
Divisors to Get the Most out of a Resolution-Enhanced Kendrick Mass Defect
Plot, Anal. Chem., 91, 2004–2012,
https://doi.org/10.1021/acs.analchem.8b04371, 2019.
Pourshahian, S.: Mass Defect from Nuclear Physics to Mass Spectral Analysis, J. Am. Soc. Mass Spectrom., 28, 1836–1843, https://doi.org/10.1007/s13361-017-1741-9, 2017.
Sekimoto, K., Li, S.-M., Yuan, B., Koss, A., Coggon, M., Warneke, C., and de
Gouw, J.: Calculation of the sensitivity of proton-transfer-reaction mass
spectrometry (PTR-MS) for organic trace gases using molecular properties,
Int. J. Mass Spectrom., 421, 71–94,
https://doi.org/10.1016/j.ijms.2017.04.006, 2017.
Sleno, L.: The use of mass defect in modern mass spectrometry, J.
Mass Spectrom., 47, 226–236, https://doi.org/10.1002/jms.2953, 2012.
Stark, H., Yatavelli, R. L. N., Thompson, S. L., Kimmel, J. R., Cubison, M.
J., Chhabra, P. S., Canagaratna, M. R., Jayne, J. T., Worsnop, D. R., and
Jimenez, J. L.: Methods to extract molecular and bulk chemical information
from series of complex mass spectra with limited mass resolution,
Int. J. Mass Spectrom., 389, 26–38,
https://doi.org/10.1016/j.ijms.2015.08.011, 2015.
Taguchi, V. Y., Nieckarz, R. J., Clement, R. E., Krolik, S., and Williams,
R.: Dioxin analysis by gas chromatography-fourier transform ion cyclotron
resonance mass spectrometry (GC-FTICRMS), J. Am. Soc. Mass Spectrom., 21, 1918–1921,
https://doi.org/10.1016/j.jasms.2010.07.010, 2010.
Timonen, H., Cubison, M., Aurela, M., Brus, D., Lihavainen, H., Hillamo, R., Canagaratna, M., Nekat, B., Weller, R., Worsnop, D., and Saarikoski, S.: Applications and limitations of constrained high-resolution peak fitting on low resolving power mass spectra from the ToF-ACSM, Atmos. Meas. Tech., 9, 3263–3281, https://doi.org/10.5194/amt-9-3263-2016, 2016.
Van Krevelen, D.: Graphical statistical method for the study of structure
and reaction processes of coal, Fuel, 29, 269–284, 1950.
Zheng, Q., Morimoto, M., Sato, H., and Fouquet, T.: Resolution-enhanced
Kendrick mass defect plots for the data processing of mass spectra from wood
and coal hydrothermal extracts, Fuel, 235, 944–953,
https://doi.org/10.1016/j.fuel.2018.08.085, 2019.
Short summary
Mass spectrometric measurements of atmospheric composition routinely detect hundreds of different ions of varying chemical composition, creating challenges for visualization and data interpretation. We present a new analysis technique to facilitate visualization, while providing greater chemical insight. Additionally, it can aid in identifying the chemical composition of ions. A graphical user interface for performing the analysis is introduced and freely available, enabling broad applications.
Mass spectrometric measurements of atmospheric composition routinely detect hundreds of...