Articles | Volume 6, issue 11
https://doi.org/10.5194/amt-6-2989-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
Special issue:
https://doi.org/10.5194/amt-6-2989-2013
© Author(s) 2013. This work is distributed under
the Creative Commons Attribution 3.0 License.
the Creative Commons Attribution 3.0 License.
The Collection 6 MODIS aerosol products over land and ocean
R. C. Levy
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
S. Mattoo
Science Systems and Applications, Inc, Lanham, MD 20709, USA
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
L. A. Munchak
Science Systems and Applications, Inc, Lanham, MD 20709, USA
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
L. A. Remer
JCET, University of Maryland – Baltimore County, Baltimore, MD 21228, USA
A. M. Sayer
Goddard Earth Sciences Technology And Research (GESTAR), Universities Space Research Association (USRA), Columbia, MD, USA
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
F. Patadia
Goddard Earth Sciences Technology And Research (GESTAR), Morgan State University (MSU), Baltimore, MD, USA
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
N. C. Hsu
Climate and Radiation Laboratory, NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
Related authors
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech., 17, 5455–5476, https://doi.org/10.5194/amt-17-5455-2024, https://doi.org/10.5194/amt-17-5455-2024, 2024
Short summary
Short summary
In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models.
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024, https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Short summary
The study focused on evaluating and modifying the surface reflectance parameterization (SRP) of the Dark Target (DT) algorithm for geostationary observation. When using the DT SRP with the ABIs sensor on GOES-R, artificial diurnal signatures were present in AOD retrieval. To overcome this issue, a new SRP was developed, incorporating solar zenith angle and land cover type. The revised SRP resulted in improved AOD retrieval, demonstrating reduced bias around local noon.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Pawan Gupta, Prakash Doraiswamy, Jashwanth Reddy, Palak Balyan, Sagnik Dey, Ryan Chartier, Adeel Khan, Karmann Riter, Brandon Feenstra, Robert C. Levy, Nhu Nguyen Minh Tran, Olga Pikelnaya, Kurinji Selvaraj, Tanushree Ganguly, and Karthik Ganesan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-140, https://doi.org/10.5194/amt-2022-140, 2022
Revised manuscript not accepted
Short summary
Short summary
The use of low-cost sensors in air quality monitoring has been gaining interest across all walks of society. We present the results of evaluations of the PurpleAir against regulatory-grade PM2.5. The results indicate that with proper calibration, we can achieve bias-corrected PM2.5 data using PA sensors. Our study also suggests that pre-deployment calibrations developed at local or regional scales are required for the PA sensors to correct data from the field for scientific data analysis.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech., 14, 3449–3468, https://doi.org/10.5194/amt-14-3449-2021, https://doi.org/10.5194/amt-14-3449-2021, 2021
Short summary
Short summary
Due to fast industrialization and development, China has been experiencing haze pollution episodes with both high frequencies and severity over the last 3 decades. This study improves the accuracy and data coverage of measured aerosol from satellites, which help quantify, characterize, and understand the impact of the haze phenomena over the entire East Asia region.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Hongbin Yu, Yang Yang, Hailong Wang, Qian Tan, Mian Chin, Robert C. Levy, Lorraine A. Remer, Steven J. Smith, Tianle Yuan, and Yingxi Shi
Atmos. Chem. Phys., 20, 139–161, https://doi.org/10.5194/acp-20-139-2020, https://doi.org/10.5194/acp-20-139-2020, 2020
Short summary
Short summary
Emissions and long-range transport of mineral dust and
combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on interannual variability and possible trends in combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017).
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Short summary
Aerosol optical depth (AOD) from a geostationary satellite has been retrieved, and validated and diurnal cycles of aerosols are discussed over the eastern hemisphere and a 2-month period of May–June 2016. The new AOD product matches well with AERONET as well as with the standard MODIS product. Future work to make this algorithm operational will need to re-examine masking including snow masks, re-evaluate assumed aerosol models for geosynchronous geometry and address the surface characterization.
Yingxi R. Shi, Robert C. Levy, Thomas F. Eck, Brad Fisher, Shana Mattoo, Lorraine A. Remer, Ilya Slutsker, and Jianglong Zhang
Atmos. Chem. Phys., 19, 259–274, https://doi.org/10.5194/acp-19-259-2019, https://doi.org/10.5194/acp-19-259-2019, 2019
Short summary
Short summary
The Indonesian fire and smoke event of 2015 was an extreme episode that affected public health and caused severe economic and environmental damage. We managed to retrieve data over very thick smoke plumes and produce a lot more high aerosol loading data that were previously missed by other satellite products. These results will benefit varieties of downstream research that use the satellite aerosol data and will influence the future development of the global satellite aerosol algorithm.
Robert C. Levy, Shana Mattoo, Virginia Sawyer, Yingxi Shi, Peter R. Colarco, Alexei I. Lyapustin, Yujie Wang, and Lorraine A. Remer
Atmos. Meas. Tech., 11, 4073–4092, https://doi.org/10.5194/amt-11-4073-2018, https://doi.org/10.5194/amt-11-4073-2018, 2018
Short summary
Short summary
Global aerosol data sets are essential for assessing climate-related questions. When comparing data sets derived from twin satellite sensors, we find consistent global offsets between morning and afternoon observations. Applying satellite-like sampling to a global model derives much weaker morning/afternoon offsets, suggesting that the observational differences are due to calibration. However, applying additional calibration corrections appears to reduce (but not remove) the global offsets.
Falguni Patadia, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3205–3219, https://doi.org/10.5194/amt-11-3205-2018, https://doi.org/10.5194/amt-11-3205-2018, 2018
Short summary
Short summary
Satellite-measured radiance from an Earth scene comprises light scattered and absorbed by gases, clouds and aerosols in the atmosphere and by the Earth surface. To retrieve aerosol information, the signal from clouds, gases and the surface must be separated from the aerosol signal. This paper highlights the gas absorption correction method used by the MODIS dark-target aerosol retrieval algorithm and demonstrates that aerosol retrieval accuracy depends on accurate gas absorption correction.
Pawan Gupta, Lorraine A. Remer, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3145–3159, https://doi.org/10.5194/amt-11-3145-2018, https://doi.org/10.5194/amt-11-3145-2018, 2018
Short summary
Short summary
In this study, we perform global validation of MODIS high-resolution (3 km) AOD over global land by comparing against AERONET measurements. The MODIS–AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error.
Antti Lipponen, Tero Mielonen, Mikko R. A. Pitkänen, Robert C. Levy, Virginia R. Sawyer, Sami Romakkaniemi, Ville Kolehmainen, and Antti Arola
Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, https://doi.org/10.5194/amt-11-1529-2018, 2018
Short summary
Short summary
Atmospheric aerosols are small solid or liquid particles suspended in the atmosphere and they have a significant effect on the climate. Satellite data are used to get global estimates of atmospheric aerosols. In this work, a statistics-based Bayesian aerosol retrieval algorithm was developed to improve the accuracy and quantify the uncertainties related to the aerosol estimates. The algorithm is tested with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data.
Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos A. Kourtidis, Jos Lelieveld, Prodromos Zanis, Ulrich Pöschl, Robert Levy, Vassilis Amiridis, Eleni Marinou, and Athanasios Tsikerdekis
Atmos. Chem. Phys., 16, 13853–13884, https://doi.org/10.5194/acp-16-13853-2016, https://doi.org/10.5194/acp-16-13853-2016, 2016
Short summary
Short summary
In this work, single pixel observations from MODIS Terra and Aqua are analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model to study the spatiotemporal variability of different aerosol types. The results are in accordance with previous works and are a good reference for future studies in the area focusing on aerosols, clouds, radiation and the effects of particle pollution on human health.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, and Leigh A. Munchak
Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, https://doi.org/10.5194/amt-9-3293-2016, 2016
Short summary
Short summary
A new surface scheme inside MODIS dark target aerosol retrieval algorithm has been developed to improve the accuracy of aerosol optical depth data over cities. The new scheme integrates the MODIS land surface reflectance and land cover type information into the surface parameterization for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region. The improved aerosols data sets will be useful for air quality applications over cities.
Galina Wind, Arlindo M. da Silva, Peter M. Norris, Steven Platnick, Shana Mattoo, and Robert C. Levy
Geosci. Model Dev., 9, 2377–2389, https://doi.org/10.5194/gmd-9-2377-2016, https://doi.org/10.5194/gmd-9-2377-2016, 2016
Short summary
Short summary
The MCARS code creates sensor radiances using model-generated atmospheric columns and actual sensor and solar geometry. MCARS output looks like real data, so it is usable by any code that reads MODIS data. MCARS output can be used to test remote-sensing retrieval algorithms. Users know what went into creating the radiance: atmosphere, surface, clouds, and aerosols. Models can use MCARS output to create new parameterizations of relations of atmospheric physical quantities and measured radiances.
Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu
Atmos. Chem. Phys., 16, 1255–1269, https://doi.org/10.5194/acp-16-1255-2016, https://doi.org/10.5194/acp-16-1255-2016, 2016
Short summary
Short summary
Using ground AOD measurements from AERONET, DRAGON-Asia Campaign, and handheld sunphotometers, we evaluated emerging aerosol products from VIIRS, GOCI, and Terra and Aqua MODIS (Collection 6) in East Asia in 2012–2013. We found that satellite aerosol products performed better in tracking the day-to-day variability than the high-resolution spatial variability. VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
E. Jäkel, B. Mey, R. Levy, X. Gu, T. Yu, Z. Li, D. Althausen, B. Heese, and M. Wendisch
Atmos. Meas. Tech., 8, 5237–5249, https://doi.org/10.5194/amt-8-5237-2015, https://doi.org/10.5194/amt-8-5237-2015, 2015
R. C. Levy, L. A. Munchak, S. Mattoo, F. Patadia, L. A. Remer, and R. E. Holz
Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, https://doi.org/10.5194/amt-8-4083-2015, 2015
Short summary
Short summary
Aerosol optical depth (AOD) is an essential climate variable, so we seek to create a long-term AOD record. From MODIS, we have 15+ years, which we want to continue with VIIRS. Accounting for instrumental difference, we have developed a MODIS-like algorithm for VIIRS, and applied it to overlapping 2-year time period. In general, the two data sets are similar, except for VIIRS being high-biased over ocean. We discuss the impacts of calibration, resolution, and sampling on the results.
A. Lyapustin, Y. Wang, X. Xiong, G. Meister, S. Platnick, R. Levy, B. Franz, S. Korkin, T. Hilker, J. Tucker, F. Hall, P. Sellers, A. Wu, and A. Angal
Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, https://doi.org/10.5194/amt-7-4353-2014, 2014
P. R. Colarco, R. A. Kahn, L. A. Remer, and R. C. Levy
Atmos. Meas. Tech., 7, 2313–2335, https://doi.org/10.5194/amt-7-2313-2014, https://doi.org/10.5194/amt-7-2313-2014, 2014
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
J. M. Livingston, J. Redemann, Y. Shinozuka, R. Johnson, P. B. Russell, Q. Zhang, S. Mattoo, L. Remer, R. Levy, L. Munchak, and S. Ramachandran
Atmos. Chem. Phys., 14, 2015–2038, https://doi.org/10.5194/acp-14-2015-2014, https://doi.org/10.5194/acp-14-2015-2014, 2014
L. A. Remer, S. Mattoo, R. C. Levy, and L. A. Munchak
Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, https://doi.org/10.5194/amt-6-1829-2013, 2013
L. A. Munchak, R. C. Levy, S. Mattoo, L. A. Remer, B. N. Holben, J. S. Schafer, C. A. Hostetler, and R. A. Ferrare
Atmos. Meas. Tech., 6, 1747–1759, https://doi.org/10.5194/amt-6-1747-2013, https://doi.org/10.5194/amt-6-1747-2013, 2013
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Zhaohui Zhang, Virginia Sawyer, Jennifer Wei, Sally Zhao, Min Oo, V. Praju Kiliyanpilakkil, and Xiaohua Pan
Atmos. Meas. Tech., 17, 5455–5476, https://doi.org/10.5194/amt-17-5455-2024, https://doi.org/10.5194/amt-17-5455-2024, 2024
Short summary
Short summary
In this study, for the first time, we combined aerosol data from six satellites using a unified algorithm. The global datasets are generated at a high spatial resolution of about 25 km with an interval of 30 min. The new datasets are compared against ground truth and verified. They will be useful for various applications such as air quality monitoring, climate research, pollution diurnal variability, long-range smoke and dust transport, and evaluation of regional and global models.
Mijin Kim, Robert C. Levy, Lorraine A. Remer, Shana Mattoo, and Pawan Gupta
Atmos. Meas. Tech., 17, 1913–1939, https://doi.org/10.5194/amt-17-1913-2024, https://doi.org/10.5194/amt-17-1913-2024, 2024
Short summary
Short summary
The study focused on evaluating and modifying the surface reflectance parameterization (SRP) of the Dark Target (DT) algorithm for geostationary observation. When using the DT SRP with the ABIs sensor on GOES-R, artificial diurnal signatures were present in AOD retrieval. To overcome this issue, a new SRP was developed, incorporating solar zenith angle and land cover type. The revised SRP resulted in improved AOD retrieval, demonstrating reduced bias around local noon.
Lorraine A. Remer, Robert C. Levy, and J. Vanderlei Martins
Atmos. Chem. Phys., 24, 2113–2127, https://doi.org/10.5194/acp-24-2113-2024, https://doi.org/10.5194/acp-24-2113-2024, 2024
Short summary
Short summary
Aerosols are small liquid or solid particles suspended in the atmosphere, including smoke, particulate pollution, dust, and sea salt. Today, we rely on satellites viewing Earth's atmosphere to learn about these particles. Here, we speculate on the future to imagine how satellite viewing of aerosols will change. We expect more public and private satellites with greater capabilities, better ways to infer information from satellites, and merging of data with models.
Sean R. Foley, Kirk D. Knobelspiesse, Andrew M. Sayer, Meng Gao, James Hays, and Judy Hoffman
EGUsphere, https://doi.org/10.5194/egusphere-2023-2392, https://doi.org/10.5194/egusphere-2023-2392, 2024
Short summary
Short summary
Measuring the shape of clouds helps scientists understand how the Earth will continue to respond to climate change. Satellites measure clouds in different ways. One way is to take pictures of clouds from multiple angles, and to use the differences between the pictures to measure cloud structure. However, doing this accurately can be challenging. We propose a way to use machine learning to recover the shape of clouds from multi-angle satellite data.
Meng Gao, Bryan A. Franz, Peng-Wang Zhai, Kirk Knobelspiesse, Andrew M. Sayer, Xiaoguang Xu, J. Vanderlei Martins, Brian Cairns, Patricia Castellanos, Guangliang Fu, Neranga Hannadige, Otto Hasekamp, Yongxiang Hu, Amir Ibrahim, Frederick Patt, Anin Puthukkudy, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 5863–5881, https://doi.org/10.5194/amt-16-5863-2023, https://doi.org/10.5194/amt-16-5863-2023, 2023
Short summary
Short summary
This study evaluated the retrievability and uncertainty of aerosol and ocean properties from PACE's HARP2 instrument using enhanced neural network models with the FastMAPOL algorithm. A cascading retrieval method is developed to improve retrieval performance. A global set of simulated HARP2 data is generated and used for uncertainty evaluations. The performance assessment demonstrates that the FastMAPOL algorithm is a viable approach for operational application to HARP2 data after PACE launch.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Edward Gryspeerdt, Adam C. Povey, Roy G. Grainger, Otto Hasekamp, N. Christina Hsu, Jane P. Mulcahy, Andrew M. Sayer, and Armin Sorooshian
Atmos. Chem. Phys., 23, 4115–4122, https://doi.org/10.5194/acp-23-4115-2023, https://doi.org/10.5194/acp-23-4115-2023, 2023
Short summary
Short summary
The impact of aerosols on clouds is one of the largest uncertainties in the human forcing of the climate. Aerosol can increase the concentrations of droplets in clouds, but observational and model studies produce widely varying estimates of this effect. We show that these estimates can be reconciled if only polluted clouds are studied, but this is insufficient to constrain the climate impact of aerosol. The uncertainty in aerosol impact on clouds is currently driven by cases with little aerosol.
Andrew M. Sayer, Luca Lelli, Brian Cairns, Bastiaan van Diedenhoven, Amir Ibrahim, Kirk D. Knobelspiesse, Sergey Korkin, and P. Jeremy Werdell
Atmos. Meas. Tech., 16, 969–996, https://doi.org/10.5194/amt-16-969-2023, https://doi.org/10.5194/amt-16-969-2023, 2023
Short summary
Short summary
This paper presents a method to estimate the height of the top of clouds above Earth's surface using satellite measurements. It is based on light absorption by oxygen in Earth's atmosphere, which darkens the signal that a satellite will see at certain wavelengths of light. Clouds "shield" the satellite from some of this darkening, dependent on cloud height (and other factors), because clouds scatter light at these wavelengths. The method will be applied to the future NASA PACE mission.
Meng Gao, Kirk Knobelspiesse, Bryan A. Franz, Peng-Wang Zhai, Andrew M. Sayer, Amir Ibrahim, Brian Cairns, Otto Hasekamp, Yongxiang Hu, Vanderlei Martins, P. Jeremy Werdell, and Xiaoguang Xu
Atmos. Meas. Tech., 15, 4859–4879, https://doi.org/10.5194/amt-15-4859-2022, https://doi.org/10.5194/amt-15-4859-2022, 2022
Short summary
Short summary
In this work, we assessed the pixel-wise retrieval uncertainties on aerosol and ocean color derived from multi-angle polarimetric measurements. Standard error propagation methods are used to compute the uncertainties. A flexible framework is proposed to evaluate how representative these uncertainties are compared with real retrieval errors. Meanwhile, to assist operational data processing, we optimized the computational speed to evaluate the retrieval uncertainties based on neural networks.
Pawan Gupta, Prakash Doraiswamy, Jashwanth Reddy, Palak Balyan, Sagnik Dey, Ryan Chartier, Adeel Khan, Karmann Riter, Brandon Feenstra, Robert C. Levy, Nhu Nguyen Minh Tran, Olga Pikelnaya, Kurinji Selvaraj, Tanushree Ganguly, and Karthik Ganesan
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2022-140, https://doi.org/10.5194/amt-2022-140, 2022
Revised manuscript not accepted
Short summary
Short summary
The use of low-cost sensors in air quality monitoring has been gaining interest across all walks of society. We present the results of evaluations of the PurpleAir against regulatory-grade PM2.5. The results indicate that with proper calibration, we can achieve bias-corrected PM2.5 data using PA sensors. Our study also suggests that pre-deployment calibrations developed at local or regional scales are required for the PA sensors to correct data from the field for scientific data analysis.
Hongbin Yu, Qian Tan, Lillian Zhou, Yaping Zhou, Huisheng Bian, Mian Chin, Claire L. Ryder, Robert C. Levy, Yaswant Pradhan, Yingxi Shi, Qianqian Song, Zhibo Zhang, Peter R. Colarco, Dongchul Kim, Lorraine A. Remer, Tianle Yuan, Olga Mayol-Bracero, and Brent N. Holben
Atmos. Chem. Phys., 21, 12359–12383, https://doi.org/10.5194/acp-21-12359-2021, https://doi.org/10.5194/acp-21-12359-2021, 2021
Short summary
Short summary
This study characterizes a historic African dust intrusion into the Caribbean Basin in June 2020 using satellites and NASA GEOS. Dust emissions in West Africa were large albeit not extreme. However, a unique synoptic system accumulated the dust near the coast for about 4 d before it was ventilated. Although GEOS reproduced satellite-observed plume tracks well, it substantially underestimated dust emissions and did not lift up dust high enough for ensuing long-range transport.
Yingxi R. Shi, Robert C. Levy, Leiku Yang, Lorraine A. Remer, Shana Mattoo, and Oleg Dubovik
Atmos. Meas. Tech., 14, 3449–3468, https://doi.org/10.5194/amt-14-3449-2021, https://doi.org/10.5194/amt-14-3449-2021, 2021
Short summary
Short summary
Due to fast industrialization and development, China has been experiencing haze pollution episodes with both high frequencies and severity over the last 3 decades. This study improves the accuracy and data coverage of measured aerosol from satellites, which help quantify, characterize, and understand the impact of the haze phenomena over the entire East Asia region.
Kirk Knobelspiesse, Amir Ibrahim, Bryan Franz, Sean Bailey, Robert Levy, Ziauddin Ahmad, Joel Gales, Meng Gao, Michael Garay, Samuel Anderson, and Olga Kalashnikova
Atmos. Meas. Tech., 14, 3233–3252, https://doi.org/10.5194/amt-14-3233-2021, https://doi.org/10.5194/amt-14-3233-2021, 2021
Short summary
Short summary
We assessed atmospheric aerosol and ocean surface wind speed remote sensing capability with NASA's Multi-angle Imaging SpectroRadiometer (MISR), using synthetic data and a Bayesian inference technique called generalized nonlinear retrieval analysis (GENRA). We found success using three aerosol parameters plus wind speed. This shows that MISR can perform an atmospheric correction for the Moderate Resolution Imaging Spectroradiometer (MODIS) on the same spacecraft (Terra).
Cheng Chen, Oleg Dubovik, David Fuertes, Pavel Litvinov, Tatyana Lapyonok, Anton Lopatin, Fabrice Ducos, Yevgeny Derimian, Maurice Herman, Didier Tanré, Lorraine A. Remer, Alexei Lyapustin, Andrew M. Sayer, Robert C. Levy, N. Christina Hsu, Jacques Descloitres, Lei Li, Benjamin Torres, Yana Karol, Milagros Herrera, Marcos Herreras, Michael Aspetsberger, Moritz Wanzenboeck, Lukas Bindreiter, Daniel Marth, Andreas Hangler, and Christian Federspiel
Earth Syst. Sci. Data, 12, 3573–3620, https://doi.org/10.5194/essd-12-3573-2020, https://doi.org/10.5194/essd-12-3573-2020, 2020
Short summary
Short summary
Aerosol products obtained from POLDER/PARASOL processed by the GRASP algorithm have been released. The entire archive of PARASOL/GRASP aerosol products is evaluated against AERONET and compared with MODIS (DT, DB and MAIAC), as well as PARASOL/Operational products. PARASOL/GRASP aerosol products provide spectral 443–1020 nm AOD correlating well with AERONET with a maximum bias of 0.02. Finally, GRASP shows capability to derive detailed spectral properties, including aerosol absorption.
Marc Mallet, Fabien Solmon, Pierre Nabat, Nellie Elguindi, Fabien Waquet, Dominique Bouniol, Andrew Mark Sayer, Kerry Meyer, Romain Roehrig, Martine Michou, Paquita Zuidema, Cyrille Flamant, Jens Redemann, and Paola Formenti
Atmos. Chem. Phys., 20, 13191–13216, https://doi.org/10.5194/acp-20-13191-2020, https://doi.org/10.5194/acp-20-13191-2020, 2020
Short summary
Short summary
This paper presents numerical simulations using two regional climate models to study the impact of biomass fire plumes from central Africa on the radiative balance of this region. The results indicate that biomass fires can either warm the regional climate when they are located above low clouds or cool it when they are located above land. They can also alter sea and land surface temperatures by decreasing solar radiation at the surface. Finally, they can also modify the atmospheric dynamics.
Nick Schutgens, Andrew M. Sayer, Andreas Heckel, Christina Hsu, Hiren Jethva, Gerrit de Leeuw, Peter J. T. Leonard, Robert C. Levy, Antti Lipponen, Alexei Lyapustin, Peter North, Thomas Popp, Caroline Poulsen, Virginia Sawyer, Larisa Sogacheva, Gareth Thomas, Omar Torres, Yujie Wang, Stefan Kinne, Michael Schulz, and Philip Stier
Atmos. Chem. Phys., 20, 12431–12457, https://doi.org/10.5194/acp-20-12431-2020, https://doi.org/10.5194/acp-20-12431-2020, 2020
Short summary
Short summary
We intercompare 14 different datasets of satellite observations of aerosol. Such measurements are challenging but also provide the best opportunity to globally observe an atmospheric component strongly related to air pollution and climate change. Our study shows that most datasets perform similarly well on a global scale but that locally errors can be quite different. We develop a technique to estimate satellite errors everywhere, even in the absence of surface reference data.
Anin Puthukkudy, J. Vanderlei Martins, Lorraine A. Remer, Xiaoguang Xu, Oleg Dubovik, Pavel Litvinov, Brent McBride, Sharon Burton, and Henrique M. J. Barbosa
Atmos. Meas. Tech., 13, 5207–5236, https://doi.org/10.5194/amt-13-5207-2020, https://doi.org/10.5194/amt-13-5207-2020, 2020
Short summary
Short summary
In this work, we report the demonstration and validation of the aerosol properties retrieved using AirHARP and GRASP for data from the NASA ACEPOL campaign 2017. These results serve as a proxy for the scale and detail of aerosol retrievals that are anticipated from future space mission data, as HARP CubeSat (mission begins 2020) and HARP2 (aboard the NASA PACE mission with the launch in 2023) are near duplicates of AirHARP and are expected to provide the same level of aerosol characterization.
Brent A. McBride, J. Vanderlei Martins, Henrique M. J. Barbosa, William Birmingham, and Lorraine A. Remer
Atmos. Meas. Tech., 13, 1777–1796, https://doi.org/10.5194/amt-13-1777-2020, https://doi.org/10.5194/amt-13-1777-2020, 2020
Short summary
Short summary
Clouds play a large role in the way our Earth system distributes energy. The measurement of cloud droplet size distribution (DSD) is one way to connect small-scale cloud processes to scattered radiation. Our small satellite instrument, the Airborne Hyper-Angular Rainbow Polarimeter, is the first to infer DSDs over a wide spatial cloud field using polarized light. This study improves the way we interpret cloud properties and shows that high-quality science does not require a large taxpayer cost.
Larisa Sogacheva, Thomas Popp, Andrew M. Sayer, Oleg Dubovik, Michael J. Garay, Andreas Heckel, N. Christina Hsu, Hiren Jethva, Ralph A. Kahn, Pekka Kolmonen, Miriam Kosmale, Gerrit de Leeuw, Robert C. Levy, Pavel Litvinov, Alexei Lyapustin, Peter North, Omar Torres, and Antti Arola
Atmos. Chem. Phys., 20, 2031–2056, https://doi.org/10.5194/acp-20-2031-2020, https://doi.org/10.5194/acp-20-2031-2020, 2020
Short summary
Short summary
The typical lifetime of a single satellite platform is on the order of 5–15 years; thus, for climate studies the usage of multiple satellite sensors should be considered.
Here we introduce and evaluate a monthly AOD merged product and AOD global and regional time series for the period 1995–2017 created from 12 individual satellite AOD products, which provide a long-term perspective on AOD changes over different regions of the globe.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Bing Pu, Paul Ginoux, Huan Guo, N. Christina Hsu, John Kimball, Beatrice Marticorena, Sergey Malyshev, Vaishali Naik, Norman T. O'Neill, Carlos Pérez García-Pando, Juliette Paireau, Joseph M. Prospero, Elena Shevliakova, and Ming Zhao
Atmos. Chem. Phys., 20, 55–81, https://doi.org/10.5194/acp-20-55-2020, https://doi.org/10.5194/acp-20-55-2020, 2020
Short summary
Short summary
Dust emission initiates when surface wind velocities exceed a threshold depending on soil and surface characteristics and varying spatially and temporally. Climate models widely use wind erosion thresholds. The climatological monthly global distribution of the wind erosion threshold, Vthreshold, is retrieved using satellite and reanalysis products and improves the simulation of dust frequency, magnitude, and the seasonal cycle in the Geophysical Fluid Dynamics Laboratory land–atmosphere model.
Hongbin Yu, Yang Yang, Hailong Wang, Qian Tan, Mian Chin, Robert C. Levy, Lorraine A. Remer, Steven J. Smith, Tianle Yuan, and Yingxi Shi
Atmos. Chem. Phys., 20, 139–161, https://doi.org/10.5194/acp-20-139-2020, https://doi.org/10.5194/acp-20-139-2020, 2020
Short summary
Short summary
Emissions and long-range transport of mineral dust and
combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on interannual variability and possible trends in combustion aerosol and dust in major continental outflow regions over the past 15 years (2003–2017).
Zachary Fasnacht, Alexander Vasilkov, David Haffner, Wenhan Qin, Joanna Joiner, Nickolay Krotkov, Andrew M. Sayer, and Robert Spurr
Atmos. Meas. Tech., 12, 6749–6769, https://doi.org/10.5194/amt-12-6749-2019, https://doi.org/10.5194/amt-12-6749-2019, 2019
Short summary
Short summary
The anisotropy of Earth's surface reflection plays an important role in satellite-based retrievals of cloud, aerosol, and trace gases. Most current ultraviolet and visible satellite retrievals utilize climatological surface reflectivity databases that do not account for surface anisotropy. The GLER concept was introduced to account for such features. Here we evaluate GLER for water surfaces by comparing with OMI measurements and show that it captures these surface anisotropy features.
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, Robert E. Holz, and Andrew K. Heidinger
Atmos. Meas. Tech., 12, 6557–6577, https://doi.org/10.5194/amt-12-6557-2019, https://doi.org/10.5194/amt-12-6557-2019, 2019
Short summary
Short summary
Aerosol optical depth (AOD) from a geostationary satellite has been retrieved, and validated and diurnal cycles of aerosols are discussed over the eastern hemisphere and a 2-month period of May–June 2016. The new AOD product matches well with AERONET as well as with the standard MODIS product. Future work to make this algorithm operational will need to re-examine masking including snow masks, re-evaluate assumed aerosol models for geosynchronous geometry and address the surface characterization.
Andrew M. Sayer and Kirk D. Knobelspiesse
Atmos. Chem. Phys., 19, 15023–15048, https://doi.org/10.5194/acp-19-15023-2019, https://doi.org/10.5194/acp-19-15023-2019, 2019
Short summary
Short summary
Data about the Earth are routinely obtained from satellite observations, model simulations, and ground-based or other measurements. These are at different space and timescales, and it is common to average them to reduce gaps and increase ease of use. The question of how the data should be averaged depends on the underlying distribution of the quantity. This study presents a method for determining how to appropriately aggregate data and applies it to data sets about atmospheric aerosol levels.
Andrew M. Sayer, N. Christina Hsu, Jaehwa Lee, Woogyung V. Kim, Sharon Burton, Marta A. Fenn, Richard A. Ferrare, Meloë Kacenelenbogen, Samuel LeBlanc, Kristina Pistone, Jens Redemann, Michal Segal-Rozenhaimer, Yohei Shinozuka, and Si-Chee Tsay
Atmos. Meas. Tech., 12, 3595–3627, https://doi.org/10.5194/amt-12-3595-2019, https://doi.org/10.5194/amt-12-3595-2019, 2019
Short summary
Short summary
Aerosols are small particles in the atmosphere such as dust or smoke. They are routinely monitored by satellites due to their importance for climate and air quality. However aerosols above clouds are more difficult to monitor. This study describes an improvement to a technique to monitor light-absorbing aerosols above clouds from four Earth-orbiting satellite instruments. The improved method is evaluated using data from the ORACLES field campaign, which measured these aerosols from aircraft.
Xiaoguang Xu, Jun Wang, Yi Wang, Jing Zeng, Omar Torres, Jeffrey S. Reid, Steven D. Miller, J. Vanderlei Martins, and Lorraine A. Remer
Atmos. Meas. Tech., 12, 3269–3288, https://doi.org/10.5194/amt-12-3269-2019, https://doi.org/10.5194/amt-12-3269-2019, 2019
Short summary
Short summary
Detecting aerosol layer height from space is challenging. The traditional method relies on active sensors such as lidar that provide the detailed vertical structure of the aerosol profile but is costly with limited spatial coverage (more than 1 year is needed for global coverage). Here we developed a passive remote sensing technique that uses backscattered sunlight to retrieve smoke aerosol layer height over both water and vegetated surfaces from a sensor 1.5 million kilometers from the Earth.
Marc Mallet, Pierre Nabat, Paquita Zuidema, Jens Redemann, Andrew Mark Sayer, Martin Stengel, Sebastian Schmidt, Sabrina Cochrane, Sharon Burton, Richard Ferrare, Kerry Meyer, Pablo Saide, Hiren Jethva, Omar Torres, Robert Wood, David Saint Martin, Romain Roehrig, Christina Hsu, and Paola Formenti
Atmos. Chem. Phys., 19, 4963–4990, https://doi.org/10.5194/acp-19-4963-2019, https://doi.org/10.5194/acp-19-4963-2019, 2019
Short summary
Short summary
The model is able to represent LWP but not the LCF. AOD is consistent over the continent but also over ocean (ACAOD). Differences are observed in SSA due to the absence of internal mixing in ALADIN-Climate. A significant regional gradient of the forcing at TOA is observed. An intense positive forcing is simulated over Gabon. Results highlight the significant effect of enhanced moisture on BBA extinction. The surface dimming modifies the energy budget.
Yingxi R. Shi, Robert C. Levy, Thomas F. Eck, Brad Fisher, Shana Mattoo, Lorraine A. Remer, Ilya Slutsker, and Jianglong Zhang
Atmos. Chem. Phys., 19, 259–274, https://doi.org/10.5194/acp-19-259-2019, https://doi.org/10.5194/acp-19-259-2019, 2019
Short summary
Short summary
The Indonesian fire and smoke event of 2015 was an extreme episode that affected public health and caused severe economic and environmental damage. We managed to retrieve data over very thick smoke plumes and produce a lot more high aerosol loading data that were previously missed by other satellite products. These results will benefit varieties of downstream research that use the satellite aerosol data and will influence the future development of the global satellite aerosol algorithm.
Jingfeng Huang, Istvan Laszlo, Lorraine A. Remer, Hongqing Liu, Hai Zhang, Pubu Ciren, and Shobha Kondragunta
Atmos. Meas. Tech., 11, 5813–5825, https://doi.org/10.5194/amt-11-5813-2018, https://doi.org/10.5194/amt-11-5813-2018, 2018
Short summary
Short summary
A new snow/snowmelt screening approach – combining a normalized difference snow index (NDSI)- and brightness temperature (BT)-based snow test, snow adjacency test and spatial filter – is proposed to significantly reduce the snow/snowmelt contamination in the NOAA’s operational Visible Infrared Imaging Radiometer Suite (VIIRS) aerosol optical depth (AOD) product, particularly over Northern Hemisphere high-latitude regions during spring thaw.
Qianqian Song, Zhibo Zhang, Hongbin Yu, Seiji Kato, Ping Yang, Peter Colarco, Lorraine A. Remer, and Claire L. Ryder
Atmos. Chem. Phys., 18, 11303–11322, https://doi.org/10.5194/acp-18-11303-2018, https://doi.org/10.5194/acp-18-11303-2018, 2018
Short summary
Short summary
Mineral dust is the most abundant atmospheric aerosol component in terms of dry mass. In this study, we integrate recent aircraft measurements of dust microphysical and optical properties with satellite retrievals of aerosol and radiative fluxes to quantify the dust direct radiative effects on the shortwave and longwave radiation at both the top of the atmosphere and the surface in the tropical North Atlantic during summer months.
Robert C. Levy, Shana Mattoo, Virginia Sawyer, Yingxi Shi, Peter R. Colarco, Alexei I. Lyapustin, Yujie Wang, and Lorraine A. Remer
Atmos. Meas. Tech., 11, 4073–4092, https://doi.org/10.5194/amt-11-4073-2018, https://doi.org/10.5194/amt-11-4073-2018, 2018
Short summary
Short summary
Global aerosol data sets are essential for assessing climate-related questions. When comparing data sets derived from twin satellite sensors, we find consistent global offsets between morning and afternoon observations. Applying satellite-like sampling to a global model derives much weaker morning/afternoon offsets, suggesting that the observational differences are due to calibration. However, applying additional calibration corrections appears to reduce (but not remove) the global offsets.
Falguni Patadia, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3205–3219, https://doi.org/10.5194/amt-11-3205-2018, https://doi.org/10.5194/amt-11-3205-2018, 2018
Short summary
Short summary
Satellite-measured radiance from an Earth scene comprises light scattered and absorbed by gases, clouds and aerosols in the atmosphere and by the Earth surface. To retrieve aerosol information, the signal from clouds, gases and the surface must be separated from the aerosol signal. This paper highlights the gas absorption correction method used by the MODIS dark-target aerosol retrieval algorithm and demonstrates that aerosol retrieval accuracy depends on accurate gas absorption correction.
Pawan Gupta, Lorraine A. Remer, Robert C. Levy, and Shana Mattoo
Atmos. Meas. Tech., 11, 3145–3159, https://doi.org/10.5194/amt-11-3145-2018, https://doi.org/10.5194/amt-11-3145-2018, 2018
Short summary
Short summary
In this study, we perform global validation of MODIS high-resolution (3 km) AOD over global land by comparing against AERONET measurements. The MODIS–AERONET collocated data sets consist of 161 410 high-confidence AOD pairs from 2000 to 2015 for Terra MODIS and 2003 to 2015 for Aqua MODIS. We find that 62.5 and 68.4 % of AODs retrieved from Terra MODIS and Aqua MODIS, respectively, fall within previously published expected error.
Antti Lipponen, Tero Mielonen, Mikko R. A. Pitkänen, Robert C. Levy, Virginia R. Sawyer, Sami Romakkaniemi, Ville Kolehmainen, and Antti Arola
Atmos. Meas. Tech., 11, 1529–1547, https://doi.org/10.5194/amt-11-1529-2018, https://doi.org/10.5194/amt-11-1529-2018, 2018
Short summary
Short summary
Atmospheric aerosols are small solid or liquid particles suspended in the atmosphere and they have a significant effect on the climate. Satellite data are used to get global estimates of atmospheric aerosols. In this work, a statistics-based Bayesian aerosol retrieval algorithm was developed to improve the accuracy and quantify the uncertainties related to the aerosol estimates. The algorithm is tested with NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) satellite data.
W. Reed Espinosa, J. Vanderlei Martins, Lorraine A. Remer, Anin Puthukkudy, Daniel Orozco, and Gergely Dolgos
Atmos. Chem. Phys., 18, 3737–3754, https://doi.org/10.5194/acp-18-3737-2018, https://doi.org/10.5194/acp-18-3737-2018, 2018
Short summary
Short summary
This work presents airborne, angularly resolved measurements of light scattered by atmospheric aerosols. A classification scheme, making use of optically independent ancillary data, is developed and used to categorize each of the individual light-scattering measurements. This classification is shown to correlate very strongly with the measured aerosol scattering properties demonstrating that in situ angular light-scattering measurements alone are sufficient to identify many major aerosol types.
Adriana Rocha-Lima, J. Vanderlei Martins, Lorraine A. Remer, Martin Todd, John H. Marsham, Sebastian Engelstaedter, Claire L. Ryder, Carolina Cavazos-Guerra, Paulo Artaxo, Peter Colarco, and Richard Washington
Atmos. Chem. Phys., 18, 1023–1043, https://doi.org/10.5194/acp-18-1023-2018, https://doi.org/10.5194/acp-18-1023-2018, 2018
Short summary
Short summary
We present results of ground-based measurements and subsequent laboratory analysis of Sahara dust samples collected in Algeria and Mauritania during the Fennec campaign in 2011. The results show that the sampled dust has low absorption characteristics and exhibits a distinct spectral bow-like shape. We find distinctive differences in the composition and optical characteristics of the dust from the two sites, corroborating with other studies that not all Saharan dust is the same.
Andrew M. Sayer, N. Christina Hsu, Corey Bettenhausen, Robert E. Holz, Jaehwa Lee, Greg Quinn, and Paolo Veglio
Atmos. Meas. Tech., 10, 1425–1444, https://doi.org/10.5194/amt-10-1425-2017, https://doi.org/10.5194/amt-10-1425-2017, 2017
Short summary
Short summary
The satellite instrument VIIRS is being used to carry on observations of the Earth made by older satellites like MODIS. Data sets created from these satellite observations depend on the quality of the satellite instruments' calibration. This paper describes a comparison between the calibration of these two sensors. MODIS is believed to be more reliable and so VIIRS is corrected to bring it in line with MODIS. These corrections are shown to improve the quality of VIIRS aerosol data.
W. Reed Espinosa, Lorraine A. Remer, Oleg Dubovik, Luke Ziemba, Andreas Beyersdorf, Daniel Orozco, Gregory Schuster, Tatyana Lapyonok, David Fuertes, and J. Vanderlei Martins
Atmos. Meas. Tech., 10, 811–824, https://doi.org/10.5194/amt-10-811-2017, https://doi.org/10.5194/amt-10-811-2017, 2017
Short summary
Short summary
Aerosols, and their interaction with clouds, play a key role in the climate of our planet but many of their properties are poorly understood. We present a new method for estimating the size, shape and optical constants of atmospheric particles from light-scattering measurements made both in the laboratory and aboard an aircraft. This method is shown to have sufficient accuracy to potentially reduce existing uncertainties, particularly in airborne measurements.
Aristeidis K. Georgoulias, Georgia Alexandri, Konstantinos A. Kourtidis, Jos Lelieveld, Prodromos Zanis, Ulrich Pöschl, Robert Levy, Vassilis Amiridis, Eleni Marinou, and Athanasios Tsikerdekis
Atmos. Chem. Phys., 16, 13853–13884, https://doi.org/10.5194/acp-16-13853-2016, https://doi.org/10.5194/acp-16-13853-2016, 2016
Short summary
Short summary
In this work, single pixel observations from MODIS Terra and Aqua are analyzed together with data from other satellite sensors, reanalysis projects and a chemistry–aerosol-transport model to study the spatiotemporal variability of different aerosol types. The results are in accordance with previous works and are a good reference for future studies in the area focusing on aerosols, clouds, radiation and the effects of particle pollution on human health.
Hiren Jethva, Omar Torres, Lorraine Remer, Jens Redemann, John Livingston, Stephen Dunagan, Yohei Shinozuka, Meloe Kacenelenbogen, Michal Segal Rosenheimer, and Rob Spurr
Atmos. Meas. Tech., 9, 5053–5062, https://doi.org/10.5194/amt-9-5053-2016, https://doi.org/10.5194/amt-9-5053-2016, 2016
Short summary
Short summary
Validation of the above-cloud aerosol optical depth retrieved using the "color ratio" method applied to MODIS cloudy-sky
measurements against airborne direct measurements made by NASA’s AATS and 4STAR sun photometers during SAFARI-2000,
ACE-ASIA 2001, and SEAC4RS 2013 reveals a good level of agreement (difference < 0.1), in which most matchups are found
be constrained within the estimated uncertainties associated with the MODIS retrievals (-10 % to +50 %).
Pawan Gupta, Robert C. Levy, Shana Mattoo, Lorraine A. Remer, and Leigh A. Munchak
Atmos. Meas. Tech., 9, 3293–3308, https://doi.org/10.5194/amt-9-3293-2016, https://doi.org/10.5194/amt-9-3293-2016, 2016
Short summary
Short summary
A new surface scheme inside MODIS dark target aerosol retrieval algorithm has been developed to improve the accuracy of aerosol optical depth data over cities. The new scheme integrates the MODIS land surface reflectance and land cover type information into the surface parameterization for urban areas, much of the issues associated with the standard algorithm have been mitigated for our test region. The improved aerosols data sets will be useful for air quality applications over cities.
Galina Wind, Arlindo M. da Silva, Peter M. Norris, Steven Platnick, Shana Mattoo, and Robert C. Levy
Geosci. Model Dev., 9, 2377–2389, https://doi.org/10.5194/gmd-9-2377-2016, https://doi.org/10.5194/gmd-9-2377-2016, 2016
Short summary
Short summary
The MCARS code creates sensor radiances using model-generated atmospheric columns and actual sensor and solar geometry. MCARS output looks like real data, so it is usable by any code that reads MODIS data. MCARS output can be used to test remote-sensing retrieval algorithms. Users know what went into creating the radiance: atmosphere, surface, clouds, and aerosols. Models can use MCARS output to create new parameterizations of relations of atmospheric physical quantities and measured radiances.
Q. Xiao, H. Zhang, M. Choi, S. Li, S. Kondragunta, J. Kim, B. Holben, R. C. Levy, and Y. Liu
Atmos. Chem. Phys., 16, 1255–1269, https://doi.org/10.5194/acp-16-1255-2016, https://doi.org/10.5194/acp-16-1255-2016, 2016
Short summary
Short summary
Using ground AOD measurements from AERONET, DRAGON-Asia Campaign, and handheld sunphotometers, we evaluated emerging aerosol products from VIIRS, GOCI, and Terra and Aqua MODIS (Collection 6) in East Asia in 2012–2013. We found that satellite aerosol products performed better in tracking the day-to-day variability than the high-resolution spatial variability. VIIRS EDR and GOCI products provided the most accurate AOD retrievals, while VIIRS IP and MODIS C6 3 km products had positive biases.
A. M. Sayer, N. C. Hsu, and C. Bettenhausen
Atmos. Meas. Tech., 8, 5277–5288, https://doi.org/10.5194/amt-8-5277-2015, https://doi.org/10.5194/amt-8-5277-2015, 2015
Short summary
Short summary
MODIS is a satellite sensor widely used in Earth science. Its scanning geometry results in a distortion called the ‘bow-tie effect’, which means that, depending on the location of a pixel relative to the satellite ground track, the size and shape of the pixel may be distorted. This affects data such as aerosol optical depth (AOD) derived from the measurements. This paper illustrates the bow-tie disortion’s effect on AOD and presents techniques to restore AOD data products to a more uniform grid
E. Jäkel, B. Mey, R. Levy, X. Gu, T. Yu, Z. Li, D. Althausen, B. Heese, and M. Wendisch
Atmos. Meas. Tech., 8, 5237–5249, https://doi.org/10.5194/amt-8-5237-2015, https://doi.org/10.5194/amt-8-5237-2015, 2015
R. C. Levy, L. A. Munchak, S. Mattoo, F. Patadia, L. A. Remer, and R. E. Holz
Atmos. Meas. Tech., 8, 4083–4110, https://doi.org/10.5194/amt-8-4083-2015, https://doi.org/10.5194/amt-8-4083-2015, 2015
Short summary
Short summary
Aerosol optical depth (AOD) is an essential climate variable, so we seek to create a long-term AOD record. From MODIS, we have 15+ years, which we want to continue with VIIRS. Accounting for instrumental difference, we have developed a MODIS-like algorithm for VIIRS, and applied it to overlapping 2-year time period. In general, the two data sets are similar, except for VIIRS being high-biased over ocean. We discuss the impacts of calibration, resolution, and sampling on the results.
A. Lyapustin, Y. Wang, X. Xiong, G. Meister, S. Platnick, R. Levy, B. Franz, S. Korkin, T. Hilker, J. Tucker, F. Hall, P. Sellers, A. Wu, and A. Angal
Atmos. Meas. Tech., 7, 4353–4365, https://doi.org/10.5194/amt-7-4353-2014, https://doi.org/10.5194/amt-7-4353-2014, 2014
A. M. Sayer, N. C. Hsu, T. F. Eck, A. Smirnov, and B. N. Holben
Atmos. Chem. Phys., 14, 11493–11523, https://doi.org/10.5194/acp-14-11493-2014, https://doi.org/10.5194/acp-14-11493-2014, 2014
A. Rocha-Lima, J. V. Martins, L. A. Remer, N. A. Krotkov, M. H. Tabacniks, Y. Ben-Ami, and P. Artaxo
Atmos. Chem. Phys., 14, 10649–10661, https://doi.org/10.5194/acp-14-10649-2014, https://doi.org/10.5194/acp-14-10649-2014, 2014
S. K. Ebmeier, A. M. Sayer, R. G. Grainger, T. A. Mather, and E. Carboni
Atmos. Chem. Phys., 14, 10601–10618, https://doi.org/10.5194/acp-14-10601-2014, https://doi.org/10.5194/acp-14-10601-2014, 2014
P. R. Colarco, R. A. Kahn, L. A. Remer, and R. C. Levy
Atmos. Meas. Tech., 7, 2313–2335, https://doi.org/10.5194/amt-7-2313-2014, https://doi.org/10.5194/amt-7-2313-2014, 2014
M. Chin, T. Diehl, Q. Tan, J. M. Prospero, R. A. Kahn, L. A. Remer, H. Yu, A. M. Sayer, H. Bian, I. V. Geogdzhayev, B. N. Holben, S. G. Howell, B. J. Huebert, N. C. Hsu, D. Kim, T. L. Kucsera, R. C. Levy, M. I. Mishchenko, X. Pan, P. K. Quinn, G. L. Schuster, D. G. Streets, S. A. Strode, O. Torres, and X.-P. Zhao
Atmos. Chem. Phys., 14, 3657–3690, https://doi.org/10.5194/acp-14-3657-2014, https://doi.org/10.5194/acp-14-3657-2014, 2014
J. M. Livingston, J. Redemann, Y. Shinozuka, R. Johnson, P. B. Russell, Q. Zhang, S. Mattoo, L. Remer, R. Levy, L. Munchak, and S. Ramachandran
Atmos. Chem. Phys., 14, 2015–2038, https://doi.org/10.5194/acp-14-2015-2014, https://doi.org/10.5194/acp-14-2015-2014, 2014
L. A. Remer, S. Mattoo, R. C. Levy, and L. A. Munchak
Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, https://doi.org/10.5194/amt-6-1829-2013, 2013
L. A. Munchak, R. C. Levy, S. Mattoo, L. A. Remer, B. N. Holben, J. S. Schafer, C. A. Hostetler, and R. A. Ferrare
Atmos. Meas. Tech., 6, 1747–1759, https://doi.org/10.5194/amt-6-1747-2013, https://doi.org/10.5194/amt-6-1747-2013, 2013
Y. Shi, J. Zhang, J. S. Reid, E. J. Hyer, and N. C. Hsu
Atmos. Meas. Tech., 6, 949–969, https://doi.org/10.5194/amt-6-949-2013, https://doi.org/10.5194/amt-6-949-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Assessment of the impact of NO2 contribution on aerosol-optical-depth measurements at several sites worldwide
Improved mean field estimates from the Geostationary Environment Monitoring Spectrometer (GEMS) Level-3 aerosol optical depth (L3 AOD) product: using spatiotemporal variability
Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers
Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: retrieval and validation
Regional validation of the solar irradiance tool SolaRes in clear-sky conditions, with a focus on the aerosol module
An empirical characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS data
Intercomparison of AOD retrievals from GAW-PFR and SKYNET sun photometer networks and the effect of calibration
Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE
Characterization of dust aerosols from ALADIN and CALIOP measurements
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Lidar depolarization characterization using a reference system
Algorithm evaluation for polarimetric remote sensing of atmospheric aerosols
Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network
Ozone and aerosol optical depth retrievals using the ultraviolet multi-filter rotating shadow-band radiometer
Expanding the coverage of Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrievals over shallow, turbid, and eutrophic waters
Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network
Spectral aerosol optical depth from SI-traceable spectral solar irradiance measurements
Quality assessment of aerosol lidars at 1064 nm in the framework of the MEMO campaign
Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy
Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity
First assessment of Aeolus Standard Correct Algorithm particle backscatter coefficient retrievals in the eastern Mediterranean
Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry
Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation
Sensitivity of aerosol optical depth trends using long-term measurements of different sun photometers
Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3
Performance evaluation for retrieving aerosol optical depth from the Directional Polarimetric Camera (DPC) based on the GRASP algorithm
Assessment of tropospheric CALIPSO Version 4.2 aerosol types over the ocean using independent CALIPSO–SODA lidar ratios
Real-time UV index retrieval in Europe using Earth observation-based techniques: system description and quality assessment
Evaluation of UV–visible MAX-DOAS aerosol profiling products by comparison with ceilometer, sun photometer, and in situ observations in Vienna, Austria
Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval
Characterization of aerosol size properties from measurements of spectral optical depth: a global validation of the GRASP-AOD code using long-term AERONET data
Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: validation and comparison
Retrieval and evaluation of tropospheric-aerosol extinction profiles using multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements over Athens, Greece
Empirically derived parameterizations of the direct aerosol radiative effect based on ORACLES aircraft observations
TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018)
Evaluation of UV aerosol retrievals from an ozone lidar
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa
Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations
A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling
A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data
The 2018 fire season in North America as seen by TROPOMI: aerosol layer height intercomparisons and evaluation of model-derived plume heights
Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations
Aerosol and cloud top height information of Envisat MIPAS measurements
Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product
Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm
A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing
Analysis of global three-dimensional aerosol structure with spectral radiance matching
Akriti Masoom, Stelios Kazadzis, Masimo Valeri, Ioannis-Panagiotis Raptis, Gabrielle Brizzi, Kyriakoula Papachristopoulou, Francesca Barnaba, Stefano Casadio, Axel Kreuter, and Fabrizio Niro
Atmos. Meas. Tech., 17, 5525–5549, https://doi.org/10.5194/amt-17-5525-2024, https://doi.org/10.5194/amt-17-5525-2024, 2024
Short summary
Short summary
Aerosols, which have a wide impact on climate, radiative forcing, and human health, are widely represented by aerosol optical depth (AOD). AOD retrievals require Rayleigh scattering and atmospheric absorption (ozone, NO2, etc.) corrections. We analysed the NO2 (which has a high spatiotemporal variation) uncertainty impact on AOD retrievals using the synergy of co-located ground-based instruments with a long-term dataset at worldwide sites and found significant AOD over- or underestimations.
Sooyon Kim, Yeseul Cho, Hanjeong Ki, Seyoung Park, Dagun Oh, Seungjun Lee, Yeonghye Cho, Jhoon Kim, Wonjin Lee, Jaewoo Park, Ick Hoon Jin, and Sangwook Kang
Atmos. Meas. Tech., 17, 5221–5241, https://doi.org/10.5194/amt-17-5221-2024, https://doi.org/10.5194/amt-17-5221-2024, 2024
Short summary
Short summary
This paper describes new work that improves the processing of GEMS AOD data. First, we enhance the inverse-distance-weighting algorithm by incorporating quality flag information, assigning weights that are inversely proportional to the number of unreliable grids. Second, we leverage a spatiotemporal merging method to address both spatial and temporal variability. Finally, we estimate the mean field values for GEMS AOD data, enhancing our understanding of the impact of aerosols on climate change.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Chenxing Zha, Lingbing Bu, Zhi Li, Qin Wang, Ahmad Mubarak, Pasindu Liyanage, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 17, 4425–4443, https://doi.org/10.5194/amt-17-4425-2024, https://doi.org/10.5194/amt-17-4425-2024, 2024
Short summary
Short summary
China has launched the atmospheric environment monitoring satellite DQ-1, which consists of an advanced lidar system. Our research presents a retrieval algorithm of the DQ-1 lidar system, and the retrieval results are consistent with other datasets. We also use the DQ-1 dataset to investigate dust and volcanic aerosols. This research shows that the DQ-1 lidar system can accurately measure the Earth's atmosphere and has potential for scientific applications.
Thierry Elias, Nicolas Ferlay, Gabriel Chesnoiu, Isabelle Chiapello, and Mustapha Moulana
Atmos. Meas. Tech., 17, 4041–4063, https://doi.org/10.5194/amt-17-4041-2024, https://doi.org/10.5194/amt-17-4041-2024, 2024
Short summary
Short summary
In the solar energy application field, it is key to simulate solar resources anywhere on the globe. We conceived the Solar Resource estimate (SolaRes) tool to provide precise and accurate estimates of solar resources for any solar plant technology. We present the validation of SolaRes by comparing estimates with measurements made on two ground-based platforms in northern France for 2 years at 1 min resolution. Validation is done in clear-sky conditions where aerosols are the main factors.
Robert P. Damadeo, Viktoria F. Sofieva, Alexei Rozanov, and Larry W. Thomason
Atmos. Meas. Tech., 17, 3669–3678, https://doi.org/10.5194/amt-17-3669-2024, https://doi.org/10.5194/amt-17-3669-2024, 2024
Short summary
Short summary
Comparing different aerosol data sets for scientific studies often requires converting aerosol extinction data between different wavelengths. A common approximation for the spectral behavior of aerosol is the Ångström formula; however, this introduces biases. Using measurements across many different wavelengths from a single instrument, we derive an empirical relationship to both characterize this bias and offer a correction for other studies that may employ this analysis approach.
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, and Stelios Kazadzis
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-84, https://doi.org/10.5194/amt-2024-84, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
Different sun photometer networks use different instruments, post processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET analysing common measurements during 3 campaigns between 2017–2021 and investigate the main cause of the differences.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Rui Song, Adam Povey, and Roy G. Grainger
Atmos. Meas. Tech., 17, 2521–2538, https://doi.org/10.5194/amt-17-2521-2024, https://doi.org/10.5194/amt-17-2521-2024, 2024
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting the Earth's climate. Using data from two lidar-equipped satellites, ALADIN and CALIOP, we examined a 2020 Saharan dust event. The newer ALADIN's results aligned with CALIOP's. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
EGUsphere, https://doi.org/10.5194/egusphere-2024-731, https://doi.org/10.5194/egusphere-2024-731, 2024
Short summary
Short summary
We describe the new feature mask (AEL-FM) and aerosol profile retrieval (AEL-PRO) algorithms developed for Aeolus lidar and present the evaluation of the Aeolus products using CALIPSO data for dust aerosols over Africa. We have found that Aeolus and CALIPSO show similar aerosol patterns in the collocated orbits and have good agreement for the extinction coefficients for the dust aerosols, especially for the cloud-free scenes. The finding is applicable to Aeolus L2A product Baseline 17.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Otto Hasekamp, Pavel Litvinov, Guangliang Fu, Cheng Chen, and Oleg Dubovik
Atmos. Meas. Tech., 17, 1497–1525, https://doi.org/10.5194/amt-17-1497-2024, https://doi.org/10.5194/amt-17-1497-2024, 2024
Short summary
Short summary
Aerosols are particles in the atmosphere that cool the climate by reflecting and absorbing sunlight (direct effect) and changing cloud properties (indirect effect). The scale of aerosol cooling is uncertain, hampering accurate climate predictions. We compare two algorithms for the retrieval of aerosol properties from multi-angle polarimetric measurements: Generalized Retrieval of Atmosphere and Surface Properties (GRASP) and Remote sensing of Trace gas and Aerosol Products (RemoTAP).
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech., 17, 1403–1417, https://doi.org/10.5194/amt-17-1403-2024, https://doi.org/10.5194/amt-17-1403-2024, 2024
Short summary
Short summary
The achieved results revealed that the ACDL observations were in good agreement with the ground-based lidar measurements during dust events. The heights of cloud top and bottom from these two measurements were well matched and comparable. This study proves that the ACDL provides reliable observations of aerosol and cloud in the presence of various climatic conditions, which helps to further evaluate the impacts of aerosol on climate and the environment, as well as on the ecosystem in the future.
Joseph Michalsky and Glen McConville
Atmos. Meas. Tech., 17, 1017–1022, https://doi.org/10.5194/amt-17-1017-2024, https://doi.org/10.5194/amt-17-1017-2024, 2024
Short summary
Short summary
The ozone in the atmosphere is measured by looking at the sun and measuring how diminished the light in the ultraviolet is relative to how bright it is above the Earth's atmosphere. This typically uses spectral instruments that are either costly or no longer manufactured. This paper uses a relatively inexpensive interference filter instrument to perform the same task. Daily ozone measurements with the latter and this filter instrument are compared. Aerosols are calculated as a by-product.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Jincheol Park, Jia Jung, Yunsoo Choi, Hyunkwang Lim, Minseok Kim, Kyunghwa Lee, Yun Gon Lee, and Jhoon Kim
Atmos. Meas. Tech., 16, 3039–3057, https://doi.org/10.5194/amt-16-3039-2023, https://doi.org/10.5194/amt-16-3039-2023, 2023
Short summary
Short summary
In response to the recent release of new geostationary platform-derived observational data generated by the Geostationary Environment Monitoring Spectrometer (GEMS) and its sister instruments, this study utilized the GEMS data fusion product and its proxy data in adjusting aerosol precursor emissions over East Asia. The use of spatiotemporally more complete observation references in updating the emissions resulted in more promising model performances in estimating aerosol loadings in East Asia.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Bastiaan van Diedenhoven, Otto P. Hasekamp, Brian Cairns, Gregory L. Schuster, Snorre Stamnes, Michael Shook, and Luke Ziemba
Atmos. Meas. Tech., 15, 7411–7434, https://doi.org/10.5194/amt-15-7411-2022, https://doi.org/10.5194/amt-15-7411-2022, 2022
Short summary
Short summary
The strong variability in the chemistry of atmospheric particulate matter affects the amount of water aerosols absorb and their effect on climate. We present a remote sensing method to determine the amount of water in particulate matter. Its application to airborne instruments indicates that the observed aerosols have rather low water contents and low fractions of soluble particles. Future satellites will be able to yield global aerosol water uptake data.
Milagros E. Herrera, Oleg Dubovik, Benjamin Torres, Tatyana Lapyonok, David Fuertes, Anton Lopatin, Pavel Litvinov, Cheng Chen, Jose Antonio Benavent-Oltra, Juan L. Bali, and Pablo R. Ristori
Atmos. Meas. Tech., 15, 6075–6126, https://doi.org/10.5194/amt-15-6075-2022, https://doi.org/10.5194/amt-15-6075-2022, 2022
Short summary
Short summary
This study deals with the dynamic error estimates of the aerosol-retrieved properties by the GRASP algorithm, which are provided for directly retrieved and derived parameters. Moreover, GRASP provides full covariance matrices that appear to be a useful approach for optimizing observation schemes and retrieval set-ups. The validation of the retrieved dynamic error estimates is done through real and synthetic measurements using sun photometer and lidar observations.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Larisa Sogacheva, Matthieu Denisselle, Pekka Kolmonen, Timo H. Virtanen, Peter North, Claire Henocq, Silvia Scifoni, and Steffen Dransfeld
Atmos. Meas. Tech., 15, 5289–5322, https://doi.org/10.5194/amt-15-5289-2022, https://doi.org/10.5194/amt-15-5289-2022, 2022
Short summary
Short summary
The aim of this study was to provide global characterisation of a new SYNERGY aerosol product derived from the data from the OLCI and SLSTR sensors aboard the Sentinel-3A and Sentinel-3B satellites. Over ocean, the performance of SYNERGY-retrieved AOD is good. Reduced performance over land was expected since the surface reflectance and angular distribution of scattering are more difficult to treat. Validation statistics are often slightly better for S3B and in the Southern Hemisphere.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Stefan F. Schreier, Tim Bösch, Andreas Richter, Kezia Lange, Michael Revesz, Philipp Weihs, Mihalis Vrekoussis, and Christoph Lotteraner
Atmos. Meas. Tech., 14, 5299–5318, https://doi.org/10.5194/amt-14-5299-2021, https://doi.org/10.5194/amt-14-5299-2021, 2021
Short summary
Short summary
This paper reports on the evaluation of aerosol profiling products retrieved from ground-based MAX-DOAS instruments using the BOREAS algorithm. Aerosol extinction profiles, near-surface aerosol extinction, and aerosol optical depth are compared to measurements collected with ceilometer, sun photometer, and in situ instruments. We show that these MAX-DOAS aerosol profiling products provide useful information to study spatial and temporal variations above the urban area of Vienna.
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Short summary
An experimental assessment of a polarized micro-pulse lidar (P-MPL) in comparison to reference lidars is presented regarding the retrieval of aerosol optical properties. The evaluation is focused on both the optimally determined overlap function and volume linear depolarization ratio. A P-MPL overlap must be regularly estimated to derive suitable aerosol products (backscatter, extinction, and particle depolarization ratio). This methodology can be easily applied to other P-MPL systems.
Benjamin Torres and David Fuertes
Atmos. Meas. Tech., 14, 4471–4506, https://doi.org/10.5194/amt-14-4471-2021, https://doi.org/10.5194/amt-14-4471-2021, 2021
Short summary
Short summary
The article shows the capacity of the new GRASP-AOD approach to be used for large datasets of aerosol optical depth from ground-based observations, through a comparison with standard AERONET codes. This new approach reduces the requirements in terms of measurements (no need of scattering information) to derive some basic aerosol size and optical properties. A broad use of this algorithm would increase the datasets of aerosol properties from ground-based observations.
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary
Short summary
The aerosol fine-mode fraction (FMF) is an important parameter reflecting the content of man-made aerosols. This study carried out the retrieval of FMF in China based on multi-angle polarization data and validated the results. The results of this study can contribute to the FMF retrieval algorithm of multi-angle polarization sensors. At the same time, a high-precision FMF dataset of China was obtained, which can provide basic data for atmospheric environment research.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020, https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary
Short summary
This paper presents a novel method to constrain the size distribution derived from low-cost optical particle counters (OPCs) using satellite data to develop higher-quality particulate matter (PM) estimates. Such estimates can enable cities that do not have access to expensive reference air quality monitors, especially those in the global south, to develop effective air quality management plans.
Dmitry M. Kabanov, Christoph Ritter, and Sergey M. Sakerin
Atmos. Meas. Tech., 13, 5303–5317, https://doi.org/10.5194/amt-13-5303-2020, https://doi.org/10.5194/amt-13-5303-2020, 2020
Short summary
Short summary
Long-term photometer measurements of two sites on Spitsbergen, Barentsburg and Ny-Ålesund, in the European Arctic are presented and compared. We find slightly higher aerosol optical depths at Barentsburg and attribute this to a higher concentration of small particles.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Carl Malings, Daniel M. Westervelt, Aliaksei Hauryliuk, Albert A. Presto, Andrew Grieshop, Ashley Bittner, Matthias Beekmann, and R. Subramanian
Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020, https://doi.org/10.5194/amt-13-3873-2020, 2020
Short summary
Short summary
Most air quality information comes from accurate but expensive instruments. These can be supplemented by lower-cost sensors to increase the density of ground data and expand monitoring into less well-instrumented areas, like sub-Saharan Africa. In this paper, we look at how low-cost sensor data can be combined with satellite information on air quality (which requires ground data to properly calibrate measurements) and assess the benefits these low-cost sensors provide in this context.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Jonas Witthuhn, Anja Hünerbein, and Hartwig Deneke
Atmos. Meas. Tech., 13, 1387–1412, https://doi.org/10.5194/amt-13-1387-2020, https://doi.org/10.5194/amt-13-1387-2020, 2020
Short summary
Short summary
Reliable reference measurements over ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Here, a uniqe set of shipborne reference aerosol products obtained from Microtops sunphotometer and GUVis-3511 shadowband radiometer observations are compared to aerosol products from the MODIS and SEVIRI satellite sensors, and the CAMS reanalysis over the Atlantic Ocean. The present evaluation highlights the importance of an aerosol-type based analysis.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Ekaterina Y. Zhdanova, Natalia Y. Chubarova, and Alexei I. Lyapustin
Atmos. Meas. Tech., 13, 877–891, https://doi.org/10.5194/amt-13-877-2020, https://doi.org/10.5194/amt-13-877-2020, 2020
Short summary
Short summary
We estimated the distribution of aerosol optical thickness (AOT) with a spatial resolution of 1 km over the Moscow megacity using the MAIAC satellite aerosol product from May to September over the years 2000–2017. We revealed that the MAIAC product is a reliable instrument for assessing the spatial features of urban aerosol pollution and its temporal dynamics. The local aerosol effect is about 0.02–0.04 in AOT in the visible spectral range over the Moscow megacity.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Dong Liu, Sijie Chen, Chonghui Cheng, Howard W. Barker, Changzhe Dong, Ju Ke, Shuaibo Wang, and Zhuofan Zheng
Atmos. Meas. Tech., 12, 6541–6556, https://doi.org/10.5194/amt-12-6541-2019, https://doi.org/10.5194/amt-12-6541-2019, 2019
Short summary
Short summary
Aerosols are one of the drivers of climate change, and more information about aerosol vertical distribution is needed to analyze the role of aerosols in the atmosphere. In this work, we match and substitute a pixel along the lidar ground track for every pixel that is not on the track based on the radiance measured by a passive imager, therefore expanding the atmosphere profiles to a nearby region. The accuracy of the construction is confirmed through a procedure mimicking the construction.
Cited articles
Ackerman, S. A., Strabala, K. I., Menzel, W. P., Frey, R. A., Moeller, C. C., and Gumley, L. E.: Discriminating clear sky from clouds with MODIS, J. Geophys. Res., 103, 32.141–32.157, https://doi.org/10.1029/1998JD200032, 1998.
Ackerman, S. A., Frey, R., Strabala, K. I., Liu, Y., Gumley, L., Baum, B. A., and Menzel, W. P.: Discriminating clear-sky from cloud with modis: Algorithm Theoretical Basis Document (MOD35), 6th Edn., Cooperative Institute for Meteorological Satellite Studies, University of Wisconsin-Madison, 2010.
Ahmad, Z. and Fraser, R. S.: An Iterative Radiative Transfer Code For Ocean-Atmosphere Systems, J. Atmos. Sci., 39, 656–665, https://doi.org/10.1175/1520-0469(1982)039<3C0656:AIRTCF>3E2.0.CO;2, 1982.
Al-Saadi, J., Szykman, J., Pierce, R. B., Kittaka, C., Neil, D., Chu, D. A., Remer, L., Gumley, L., Prins, E., Weinstock, L., MacDonald, C., Wayland, R., Dimmick, F., and Fishman, J.: Improving national air quality forecasts with satellite aerosol observations, B. Am. Meteorol. Soc., 86, 1249–1261, https://doi.org/10.1175/BAMS-86-9-1249, 2005.
Anderson, T. L., Charlson, R. J., Winker, D. M., Ogren, J. A., and Holmén, K.: Mesoscale Variations of Tropospheric Aerosols, J. Atmos. Sci., 60, 119–136, https://doi.org/10.1175/1520-0469(2003)060<0119:MVOTA>2.0.CO;2, 2003.
Anderson, T. L., Wu, Y., Chu, D. A., Schmid, B., Redemann, J., and Dubovik, O.: Testing the MODIS satellite retrieval of aerosol fine-mode fraction, J. Geophys. Res., 110, 18204, https://doi.org/10.1029/2005JD005978, 2005.
Benedetti, A., Morcrette, J. J., Boucher, O., Dethof, A., Engelen, R. J., Fisher, M., Flentje, H., Huneeus, N., Jones, L., Kaiser, J. W., Kinne, S., Mangold, A., Razinger, M., Simmons, A. J., and Suttie, M.: Aerosol analysis and forecast in the European Centre for Medium-Range Weather Forecasts Integrated Forecast System: 2. Data assimilation, J. Geophys. Res., 114, D13205, https://doi.org/10.1029/2008JD011115, 2009.
Bodhaine, B., Wood, N., Dutton, E., and Slusser, J.: On Rayleigh optical depth calculations, J. Atmos. Ocean. Tech., 16, 1854–1861, 1999.
Breon, F.-M., Vermeulen, A., and Descloitres, J.: An evaluation of satellite aerosol products against sunphotometer measurements, Remote Sens. Environ., 115, 3102–3111, https://doi.org/10.1016/j.rse.2011.06.017, 2011.
Carmona, I., Kaufman, Y. J., and Alpert, P.: Using numerical weather prediction errors to estimate aerosol heating, Tellus B, 60, 729–741, https://doi.org/10.1111/j.1600-0889.2008.00371.x, 2008.
Carroll, M. L., Townshend, J. R., DiMiceli, C. M., Noojipady, P., and Sohlberg, R. A.: A new global raster water mask at 250 m resolution, International Journal of Digital Earth, 2, 291–308, https://doi.org/10.1080/17538940902951401, 2009.
Carroll, M. L., Townshend, J. R. G., DiMiceli, C. M., Loboda, T., and Sohlberg, R. A.: Shrinking lakes of the Arctic: Spatial relationships and trajectory of change, Geophys. Res. Lett., 38, 20406, https://doi.org/10.1029/2011GL049427, 2011.
Chander, G., Xiong, X. J., Choi, T. J., and Angal, A.: Monitoring on-orbit calibration stability of the Terra MODIS and Landsat 7 ETM+ sensors using pseudo-invariant test sites, Remote Sens. Environ., 114, 925–939, https://doi.org/10.1016/j.rse.2009.12.003, 2010.
Chu, D. A., Kaufman, Y. J., Remer, L. A., and Holben, B. N.: Remote sensing of smoke from MODIS airborne simulator during the SCAR-B experiment, J. Geophys. Res., 103, 31979–31987, https://doi.org/10.1029/98JD01148, 1998.
Chu, D. A., Kaufman, Y. J., Ichoku, C., Remer, L. A., Tanre, D., and Holben, B. N.: Validation of MODIS aerosol optical depth retrieval over land, Geophys. Res. Lett., 29, MOD2.1–MOD2.4, https://doi.org/10.1029/2001GL013205, 2002.
Chu, D. A., Kaufman, Y. J., Zibordi, G., Chern, J. D., Mao, J., Li, C., and Holben, B. N.: Global monitoring of air pollution over land from the Earth Observing System-Terra Moderate Resolution Imaging Spectroradiometer (MODIS), J. Geophys. Res., 108, 4661, https://doi.org/10.1029/2002JD003179, 2003.
Clough, S. A., Iacono, M. J., and Moncet, J.-L.: Line-by-Line Calculations of Atmospheric Fluxes and Cooling Rates: Application to Water Vapor, J. Geophys. Res.-Atmos., 97, 15761, https://doi.org/10.1029/92JD01419, 1992.
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, J. Quant. Spectrosc. Ra., 91, 233–244, https://doi.org/10.1016/j.jqsrt.2004.05.058, 2005.
Cox, C. and Munk, W.: Measurement of the Roughness of the Sea Surface from Photographs of the Sun's Glitter, Journal of the Optical Society of America, 44, 838–850, https://doi.org/10.1364/JOSA.44.000838, 1954.
Crusius, J., Schroth, A. W., Gasso, S., Moy, C. M., Levy, R. C., and Gatica, M.: Glacial flour dust storms in the Gulf of Alaska: Hydrologic and meteorological controls and their importance as a source of bioavailable iron, Geophys. Res. Lett., 38, L06602, https://doi.org/10.1029/2010GL046573, 2011.
de Meij, A., Pozzer, A., and Lelieveld, J.: Trend analysis in aerosol optical depths and pollutant emission estimates between 2000 and 2009, Atmos. Environ., 51, 75–85, https://doi.org/10.1016/j.atmosenv.2012.01.059, 2012.
Dubovik, O., Sinyuk, A., Lapyonok, T., Holben, B. N., Mishchenko, M., Yang, P., Eck, T. F., Volten, H., Munoz, O., Veihelmann, B., van der Zande, W. J., Leon, J.-F., Sorokin, M., and Slutsker, I.: Application of spheroid models to account for aerosol particle nonsphericity in remote sensing of desert dust, J. Geophys. Res., 111, 11208, https://doi.org/10.1029/2005JD006619, 2006.
Engel-Cox, J. A., Holloman, C. H., Coutant, B. W., and Hoff, R. M.: Qualitative and quantitative evaluation of MODIS satellite sensor data for regional and urban scale air quality, Atmos. Environ., 38, 15–15, https://doi.org/10.1016/j.atmosenv.2004.01.039, 2004.
Evans, K. F. and Stephens, G. L.: A new polarized atmospheric radiative transfer model, J. Quant. Spectrosc. Ra., 46, 413–423, 1991.
Franz, B. A. B., Bailey, S. W. S., Werdell, P. J. P., and McClain, C. R. C.: Sensor-independent approach to the vicarious calibration of satellite ocean color radiometry, Appl. Optics, 46, 5068–5082, https://doi.org/10.1364/AO.46.005068, 2007.
Gao, B., Yang, P., Han, W., Li, R., and Wiscombe, W.: An algorithm using visible and 1.38-mu m channels to retrieve cirrus cloud reflectances from aircraft and satellite data, IEEE T. Geosci. Remote, 40, 1659–1668, https://doi.org/10.1109/TGRS.2002.802454, 2002.
Giles, D. M., Holben, B. N., Eck, T. F., Sinyuk, A., Smirnov, A., Slutsker, I., Dickerson, R. R., Thompson, A. M., and Schafer, J. S.: An analysis of AERONET aerosol absorption properties and classifications representative of aerosol source regions, J. Geophys. Res., 117, 17203, https://doi.org/10.1029/2012JD018127, 2012.
Gueymard, C.: SMARTS2: a simple model of the atmospheric radiative transfer of sunshine: algorithms and performance assessment, Florida Solar Energy Center, 1–78, 1995.
Herman, M., Deuzé, J.-L., Marchand, A., Roger, B., and Lallart, P.: Aerosol remote sensing from POLDER/ADEOS over the ocean: Improved retrieval using a nonspherical particle model, J. Geophys. Res., 110, D10S02, https://doi.org/10.1029/2004JD004798, 2005.
Hoff, R., Zhang, H., Jordan, N., Prados, A., Engel-Cox, J., Huff, A., Weber, S., Zell, E., Kondragunta, S., Szykman, J., Johns, B., Dimmick, F., Wimmers, A., Al-Saadi, J., and Kittaka, C.: Applications of the Three-Dimensional Air Quality System to Western U.S. Air Quality: IDEA, Smog Blog, Smog Stories, AirQuest, and the Remote Sensing Information Gateway, J. Air Waste Manage., 59, 980–989, https://doi.org/10.3155/1047-3289.59.8.980, 2009.
Holben, B. N., Eck, T. F., Slutsker, I., Tanre, D., Buis, J. P., Setzer, A., Vermote, E., Reagan, J. A., Kaufman, Y. J., Nakajima, T., Lavenu, F., Jankowiak, I., and Smirnov, A.: AERONET – A federated instrument network and data archive for aerosol characterization, Remote Sens. Environ., 66, 1–16, https://doi.org/10.1016/S0034-4257(98)00031-5, 1998.
Holben, B. N., Eck, T. F., Slutsker, I., Smirnov, A., Sinyuk, A., Schafer, J., Giles, D., and Dubovik, O.: Aeronet's Version 2.0 quality assurance criteria, edited by: Tsay, S.-C., P. Soc. Photo.-Opt. Ins., 16, 6408, https://doi.org/10.1117/12.706524, 2006.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Aerosol Properties Over Bright-Reflecting Source Regions, IEEE T. Geosci. Remote, 42, 557–569, https://doi.org/10.1109/TGRS.2004.824067, 2004.
Hsu, N. C., Tsay, S. C., King, M. D., and Herman, J. R.: Deep blue retrievals of Asian aerosol properties during ACE-Asia, IEEE T. Geosci. Remote, 44, 3180–3195, https://doi.org/10.1109/TGRS.2006.879540, 2006.
Hsu, N. C., Gautam, R., Sayer, A. M., Bettenhausen, C., Li, C., Jeong, M. J., Tsay, S.-C., and Holben, B. N.: Global and regional trends of aerosol optical depth over land and ocean using SeaWiFS measurements from 1997 to 2010, Atmos. Chem. Phys., 12, 8037–8053, https://doi.org/10.5194/acp-12-8037-2012, 2012.
Hubanks, P. A.: MODIS Atmosphere QA Plan for Collection 005, Greenbelt, MD USA, NASA Goddard Space Flight Center, 57, 2012.
Hubanks, P. A., King, M. D., Platnick, S., and Pincus, R.: MODIS atmosphere L3 gridded product algorithm theoretical basis document, ATBD Reference Number: ATBD-MOD-30, 2008.
Huete, A., Didan, K., van Leeuwen, W., Miura, T., and Glenn, E.: MODIS Vegetation Indices, Land Remote Sensing and Global Environmental Change, 1, 579, https://doi.org/10.1007/978-1-4419-6749-7_26, 2011.
Hyer, E. J., Reid, J. S., and Zhang, J.: An over-land aerosol optical depth data set for data assimilation by filtering, correction, and aggregation of MODIS Collection 5 optical depth retrievals, Atmos. Meas. Tech., 4, 379–408, https://doi.org/10.5194/amt-4-379-2011, 2011.
Ichoku, C., Chu, D., Mattoo, S., Kaufman, Y., Remer, L., Tanre, D., Slutsker, I., and Holben, B.: A spatio-temporal approach for global validation and analysis of MODIS aerosol products, Geophys. Res. Lett., 29, 1616, https://doi.org/10.1029/2001GL013206, 2002.
Ichoku, C., Remer, L., Kaufman, Y., Levy, R., Chu, D., Tanre, D., and Holben, B.: MODIS observation of aerosols and estimation of aerosol radiative forcing over southern Africa during SAFARI 2000, J. Geophys. Res.-Atmos., 108, 8499–8499, https://doi.org/10.1029/2002JD002366, 2003.
IPCC, I. P. O. C. C.: Climate Change 2007 – The Physical Science Basis, Cambridge University Press. 2007.
Jeong, M. J., Hsu, N. C., Kwiatkowska, E. J., Franz, B. A., Meister, G., and Salustro, C. E.: Impacts of cross-platform vicarious calibration on the Deep Blue aerosol retrievals for Moderate Resolution Imaging Spectroradiometer aboard Terra, IEEE T. Geosci. Remote., 49, 4877–4888, https://doi.org/10.1109/TGRS.2011.2153205, 2011.
Jethva, H., Satheesh, S. K., and Srinivasan, J.: Assessment of second-generation MODIS aerosol retrieval (Collection 005) at Kanpur, India, Geophys. Res. Lett., 34, L19802, https://doi.org/10.1029/2007GL029647, 2007.
Jethva, H., Torres, O., Remer, L. A., and Bhartia, P. K.: A Color Ratio Method for Simultaneous Retrieval of Aerosol and Cloud Optical Thickness of Above-Cloud Absorbing Aerosols From Passive Sensors: Application to MODIS Measurements, IEEE T. Geosci. Remote, 51, 3862–3870, https://doi.org/10.1109/TGRS.2012.2230008, 2013.
Kahn, R. A.: Reducing the Uncertainties in Direct Aerosol Radiative Forcing, Surv. Geophys., 33, 701–721, https://doi.org/10.1007/s10712-011-9153-z, 2011.
Kahn, R. A., Garay, M. J., Nelson, D. L., Yau, K. K., Bull, M. A., Gaitley, B. J., Martonchik, J. V., and Levy, R. C.: Satellite-derived aerosol optical depth over dark water from MISR and MODIS: Comparisons with AERONET and implications for climatological studies, J. Geophys. Res.-Atmos., 112, D18205, https://doi.org/10.1029/2006JD008175, 2007.
Kasten, F. F. and Young, A. T. A.: Revised optical air mass tables and approximation formula, Appl. Optics, 28, 4735–4738, https://doi.org/10.1364/AO.28.004735, 1989.
Kaufman, Y. J., Tanre, D., Remer, L. A., Vermote, E. F., Chu, A., and Holben, B. N.: Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer, J. Geophys. Res., 102, 17051–17068, https://doi.org/10.1029/96JD03988, 1997a.
Kaufman, Y. J., Wald, A. E., Remer, L. A., Gao, B.-C., Li, R.-R., and Flynn, L.: The MODIS 2.1 μm channel-correlation with visible reflectance for use in remote sensing of aerosol, IEEE T. Geosci. Remote., 35, 1286–1298, https://doi.org/10.1109/36.628795, 1997b.
Kaufman, Y. J., Ichoku, C., Giglio, L., Korontzi, S., Chu, D. A., Hao, W. M., Li, R. R., and Justice, C. O.: Fire and smoke observed from the Earth Observing System MODIS instrument–products, validation, and operational use, Int. J. Remote Sens., 24, 1765–1781, https://doi.org/10.1080/01431160210144741, 2003.
Kaufman, Y. J., Koren, I., Remer, L. A., Rosenfeld, D., and Rudich, Y.: The effect of smoke, dust, and pollution aerosol on shallow cloud development over the Atlantic Ocean, P. Natl. Acad. Sci. USA, 102, 11207–11212, https://doi.org/10.1073/pnas.0505191102, 2005.
King, L. V.: On the Complex Anisotropic Molecule in Relation to the Dispersion and Scattering of Light, P. R. Soc. Lond. A-Conta., 104, 333–357, 1923.
King, M. D., Menzel, W. P., Kaufman, Y. J., Tanre, D., Gao, B.-C., Platnick, S., Ackerman, S. A., Remer, L. A., Pincus, R., and Hubanks, P. A.: Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS, IEEE T. Geosci. Remote, 41, 442–458, https://doi.org/10.1109/TGRS.2002.808226, 2003.
King, M. D., Platnick, S., Menzel, W. P., Ackerman, S. A., and Hubanks, P. A.: Spatial and Temporal Distribution of Clouds Observed by MODIS Onboard the Terra and Aqua Satellites, IEEE T. Geosci. Remote, 51, 3826–3852, https://doi.org/10.1109/TGRS.2012.2227333, 2013.
Kishcha, P., Starobinets, B., and Alpert, P.: Latitudinal variations of cloud and aerosol optical thickness trends based on MODIS satellite data, Geophys. Res. Lett., 34, L05810, https://doi.org/10.1029/2006GL028796, 2007.
Kleidman, R. G., O'Neill, N. T., Remer, L. A., Kaufman, Y. J., Eck, T. F., Tanré, D., Dubovik, O., and Holben, B. N.: Comparison of moderate resolution Imaging spectroradiometer (MODIS) and aerosol robotic network (AERONET) remote-sensing retrievals of aerosol fine mode fraction over ocean, J. Geophys. Res.-Atmos., 110, D22205, https://doi.org/10.1029/2005JD005760, 2005.
Kleidman, R. G., Smirnov, A., Levy, R. C., Mattoo, S., and Tanre, D.: Evaluation and Wind Speed Dependence of MODIS Aerosol Retrievals Over Open Ocean, IEEE T. Geosci. Remote, 50, 429–435, https://doi.org/10.1109/TGRS.2011.2162073, 2012.
Koepke, P.: Effective reflectance of oceanic whitecaps, Appl. Optics, 23, 1816–1824, 1984.
Koren, I. and Feingold, G.: Aerosol-cloud-precipitation system as a predator-prey problem, P. Natl. Acad. Sci., https://doi.org/10.1073/pnas.1101777108, in press, 2011.
Koren, I. and Kaufman, Y. J.: Direct wind measurements of Saharan dust events from Terra and Aqua satellites, Geophys. Res. Lett., 31, L06122, https://doi.org/10.1029/2003GL019338, 2004.
Koren, I., Oreopoulos, L., Feingold, G., Remer, L. A., and Altaratz, O.: How small is a small cloud?, Atmos. Chem. Phys., 8, 3855–3864, https://doi.org/10.5194/acp-8-3855-2008, 2008.
Kotchenova, S. Y., Vermote, E. F., Levy, R., and Lyapustin, A.: Radiative transfer codes for atmospheric correction and aerosol retrieval: intercomparison study, Appl. Optics, 47, 2215–2226, https://doi.org/10.1364/AO.47.002215, 2008.
Koukouli, M. E., Kazadzis, S., Amiridis, V., Ichoku, C., Balis, D. S., and Bais, A. F.: Signs of a negative trend in the MODIS aerosol optical depth over the Southern Balkans, Atmos. Environ., 44, 1219–1228, https://doi.org/10.1016/j.atmosenv.2009.11.024, 2010.
Levy, R. C., Remer, L. A., Tanré, D., Kaufman, Y. J., Ichoku, C., Holben, B. N., Livingston, J. M., Russell, P. B., and Maring, H.: Evaluation of the Moderate-Resolution Imaging Spectroradiometer (MODIS) retrievals of dust aerosol over the ocean during PRIDE, J. Geophys. Res.-Atmos., 108, 8594, https://doi.org/10.1029/2002JD002460, 2003.
Levy, R. C., Remer, L. A., Martins, J. V., Kaufman, Y. J., Plana-Fattori, A., Redemann, J., and Wenny, B.: Evaluation of the MODIS aerosol retrievals over ocean and land during CLAMS, J. Atmos. Sci., 62, 974–992, https://doi.org/10.1175/JAS3391.1, 2005.
Levy, R. C., Remer, L. A., and Dubovik, O.: Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land, J. Geophys. Res.-Atmos., 112, D13210, https://doi.org/10.1029/2006JD007815, 2007a.
Levy, R. C., Remer, L. A., Mattoo, S., Vermote, E. F., and Kaufman, Y. J.: Second-generation operational algorithm: Retrieval of aerosol properties over land from inversion of Moderate Resolution Imaging Spectroradiometer spectral reflectance, J. Geophys. Res.-Atmos., 112, D13211, https://doi.org/10.1029/2006JD007811, 2007b.
Levy, R. C., Leptoukh, G. G., Kahn, R., Zubko, V., Gopalan, A., and Remer, L. A.: A Critical Look at Deriving Monthly Aerosol Optical Depth From Satellite Data, IEEE T. Geosci. Remote, 47, 2942–2956, https://doi.org/10.1109/TGRS.2009.2013842, 2009a.
Levy, R. C., Remer, L. A., Tanré, D., Mattoo, S., and Kaufman, Y. J.: Algorithm for remote sensing of tropospheric aerosol over dark targets from MODIS: Collections 005 and 051: Revision 2; Feb 2009, MODIS Algorithm Theoretical Basis Document, 2009b.
Levy, R. C., Remer, L. A., Kleidman, R. G., Mattoo, S., Ichoku, C., Kahn, R., and Eck, T. F.: Global evaluation of the Collection 5 MODIS dark-target aerosol products over land, Atmos. Chem. Phys., 10, 10399–10420, https://doi.org/10.5194/acp-10-10399-2010, 2010.
Li, C., Lau, A., Mao, J., and Chu, D.: Retrieval, validation, and application of the 1-km aerosol optical depth from MODIS measurements over Hong Kong, IEEE T. Geosci. Remote, 43, 2650–2658, 2005.
Li, R. R., Kaufman, Y. J., Gao, B. C., and Davis, C. O.: Remote sensing of suspended sediments and shallow coastal waters, IEEE T. Geosci. Remote, 41, 559–566, 2003.
Li, R. R., Remer, L., Kaufman, Y. J., Mattoo, S., Gao, B. C., and Vermote, E.: Snow and ice mask for the MODIS aerosol products, IEEE Geosci. Remote Sens., 2, 306–310, 2005.
Livingston, J. M., Redemann, J., Shinozuka, Y., Johnson, R., Russell, P. B., Zhang, Q., Mattoo, S., Remer, L., Levy, R., Munchak, L., and Ramachandran, S.: Comparison of MODIS 3 km and 10 km resolution aerosol optical depth retrievals over land with airborne sunphotometer measurements during ARCTAS summer 2008, Atmos. Chem. Phys. Discuss., 13, 15007–15059, https://doi.org/10.5194/acpd-13-15007-2013, 2013.
Lyapustin, A., Wang, Y., Laszlo, I., Kahn, R., Korkin, S., Remer, L., Levy, R., and Reid, J. S.: Multiangle implementation of atmospheric correction (MAIAC): 2. Aerosol algorithm, J. Geophys. Res.-Atmos., 116, https://doi.org/10.1029/2010JD014986, 2011.
Martins, J. V., Tanré, D., Remer, L., Kaufman, Y., Mattoo, S., and Levy, R.: MODIS Cloud screening for remote sensing of aerosols over oceans using spatial variability, Geophys. Res. Lett., 29, 8009, https://doi.org/10.1029/2001GL013252, 2002.
McComiskey, A., Schwartz, S. E., Schmid, B., Guan, H., Lewis, E. R., Ricchiazzi, P., and Ogren, J. A.: Direct aerosol forcing: Calculation from observables and sensitivities to inputs, J. Geophys. Res.-Atmos., 113, 9202, https://doi.org/10.1029/2007JD009170, 2008.
Meister, G., Franz, B. A., Kwiatkowska, E. J., and McClain, C. R.: Corrections to the Calibration of MODIS Aqua Ocean Color Bands Derived From SeaWiFS Data, IEEE T. Geosci. Remote, 50, 310–319, https://doi.org/10.1109/TGRS.2011.2160552, 2012.
Mielonen, T., Levy, R. C., Aaltonen, V., Komppula, M., de Leeuw, G., Huttunen, J., Lihavainen, H., Kolmonen, P., Lehtinen, K. E. J., and Arola, A.: Evaluating the assumptions of surface reflectance and aerosol type selection within the MODIS aerosol retrieval over land: the problem of dust type selection, Atmos. Meas. Tech., 4, 201–214, https://doi.org/10.5194/amt-4-201-2011, 2011.
Mishchenko, M. I., Geogdzhayev, I. V., Rossow, W. B., Cairns, B., Carlson, B. E., Lacis, A. A., Liu, L., and Travis, L. D.: Long-Term Satellite Record Reveals Likely Recent Aerosol Trend, Science, 315, 1543–1543, https://doi.org/10.1126/science.1136709, 2007.
Monahan, E. C. and Muircheartaigh, I.: Optimal Power-Law Description of Oceanic Whitecap Coverage Dependence on Wind Speed, J. Phys. Oceanogr., 10, 2094–2099, https://doi.org/10.1175/1520-0485(1980)010<2094:OPLDOO>2.0.CO;2, 1980.
Moody, E. G., King, M. D., Platnick, S., Schaaf, C. B., and Feng Gao: Spatially complete global spectral surface albedos: value-added datasets derived from Terra MODIS land products, IEEE T. Geosci. Remote, 43, 144–158, https://doi.org/10.1109/TGRS.2004.838359, 2005.
Moody, E. G., King, M. D., Schaaf, C. B., and Platnick, S.: MODIS-Derived Spatially Complete Surface Albedo Products: Spatial and Temporal Pixel Distribution and Zonal Averages, J. Appl. Meteorol. Clim., 47, 2879–2894, https://doi.org/10.1175/2008JAMC1795.1, 2008.
Munchak, L. A., Levy, R. C., Mattoo, S., Remer, L. A., Holben, B. N., Schafer, J. S., Hostetler, C. A., and Ferrare, R. A.: MODIS 3 km aerosol product: applications over land in an urban/suburban region, Atmos. Meas. Tech., 6, 1747–1759, https://doi.org/10.5194/amt-6-1747-2013, 2013.
National Research Council (US): Committee on Climate Data Records from NOAA Operational Satellites: Climate Data Records from Environmental Satellites, National Academy Press, 2004.
Oo, M. M., Jerg, M., Hernandez, E., Picón, A., Gross, B. M., Moshary, F., and Ahmed, S. A.: Improved MODIS Aerosol Retrieval Using Modified VIS/SWIR Surface Albedo Ratio Over Urban Scenes, IEEE T. Geosci. Remote, 48, 983–1000, https://doi.org/10.1109/TGRS.2009.2028333, 2010.
Petrenko, M., Ichoku, C., and Leptoukh, G.: Multi-sensor Aerosol Products Sampling System (MAPSS), Atmos. Meas. Tech., 5, 913–926, https://doi.org/10.5194/amt-5-913-2012, 2012.
Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., and Thurston, G. D.: Lung Cancer, Cardiopulmonary Mortality, and Long-term Exposure to Fine Particulate Air Pollution, JAMA, 287, 1132–1141, https://doi.org/10-1001/pubs.JAMA-ISSN-0098-7484-287-9-joc11435, 2002.
Redemann, J., Zhang, Q., Livingston, J., Russell, P., Shinozuka, Y., Clarke, A., Johnson, R., and Levy, R.: Testing aerosol properties in MODIS Collection 4 and 5 using airborne sunphotometer observations in INTEX-B/MILAGRO, Atmos. Chem. Phys., 9, 8159–8172, https://doi.org/10.5194/acp-9-8159-2009, 2009.
Reid, J. S., Benedetti, A., Colarco, P. R., and Hansen, J. A.: International Operational Aerosol Observability Workshop, B. Am. Meteorol. Soc., 92, ES21–ES24, https://doi.org/10.1175/2010BAMS3183.1, 2011.
Remer, L. A. and Kaufman, Y. J.: Dynamic aerosol model: Urban/industrial aerosol, J. Geophys. Res., 103, 13859–13871, https://doi.org/10.1029/98JD00994, 1998.
Remer, L. A., Kaufman, Y. J., Holben, B. N., Thompson, A. M., and McNamara, D.: Biomass burning aerosol size distribution and modeled optical properties, J. Geophys. Res., 103, 31879–31891, https://doi.org/10.1029/98JD00271, 1998.
Remer, L. A., Tanre, D., Kaufman, Y. J., Ichoku, C., Mattoo, S., Levy, R., Chu, D. A., Holben, B., Dubovik, O., Smirnov, A., Martins, J. V., Li, R. R., and Ahmad, Z.: Validation of MODIS aerosol retrieval over ocean, Geophys. Res. Lett., 29, MOD3.1–MOD3.4, https://doi.org/10.1029/2001GL013204, 2002.
Remer, L. A., Kaufman, Y. J., Tanre, D., Mattoo, S., Chu, D. A., Martins, J. V., Li, R. R., Ichoku, C., Levy, R. C., Kleidman, R. G., Eck, T. F., Vermote, E., and Holben, B. N.: The MODIS aerosol algorithm, products, and validation, J. Atmos. Sci., 62, 947–973, https://doi.org/10.1175/JAS3385.1, 2005.
Remer, L. A., Kleidman, R. G., Levy, R. C., Kaufman, Y. J., Tanré, D., Mattoo, S., Martins, J. V., Ichoku, C., Koren, I., Yu, H. and Holben, B. N.: Global aerosol climatology from the MODIS satellite sensors, J. Geophys. Res.-Atmos., 113, D14S07, https://doi.org/10.1029/2007JD009661, 2008.
Remer, L. A., Mattoo, S., Levy, R. C., Heidinger, A., Pierce, R. B., and Chin, M.: Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution, Atmos. Meas. Tech., 5, 1823–1840, https://doi.org/10.5194/amt-5-1823-2012, 2012.
Remer, L. A., Mattoo, S., Levy, R. C., and Munchak, L. A.: MODIS 3 km aerosol product: algorithm and global perspective, Atmos. Meas. Tech., 6, 1829–1844, https://doi.org/10.5194/amt-6-1829-2013, 2013.
Salomonson, V. V., Barnes, W. L., Maymon, P. W., Montgomery, H. E., and Ostrow, H.: MODIS: Advanced facility instrument for studies of the Earth as a system, IEEE T. Geosci. Remote, 27, 145–153, 1989.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., Ahmad, Z., Holben, B. N., Smirnov, A., Thomas, G. E., and Zhang, J.: SeaWiFS Ocean Aerosol Retrieval (SOAR): Algorithm, validation, and comparison with other data sets, J. Geophys. Res., 117, D03206, https://doi.org/10.1029/2011JD016599, 2012a.
Sayer, A. M., Smirnov, A., Hsu, N. C., Munchak, L. A., and Holben, B. N.: Estimating marine aerosol particle volume and number from Maritime Aerosol Network data, Atmos. Chem. Phys., 12, 8889-8909, https://doi.org/10.5194/acp-12-8889-2012, 2012b.
Sayer, A. M., Hsu, N. C., Bettenhausen, C., and Jeong, M.-J.: Validation and uncertainty estimates for MODIS Collection 6 "Deep Blue" aerosol data, J. Geophys. Res.-Atmos., 118, 7864–7872, https://doi.org/10.1002/jgrd.50600, 2013.
Schaaf, C. B., Liu, J., Gao, F., and Strahler, A. H.: Aqua and Terra MODIS Albedo and Reflectance Anisotropy Products, Land Remote Sensing and Global Environmental Change, 1, 549–561 , https://doi.org/10.1007/978-1-4419-6749-7_24, 2011.
Schafer, J. S., Eck, T. F., Holben, B. N., Artaxo, P., and Duarte, A. F.: Characterization of the optical properties of atmospheric aerosols in Amazonia from long-term AERONET monitoring (1993–1995 and 1999–2006), J. Geophys. Res.-Atmos., 113, D04204, https://doi.org/10.1029/2007JD009319, 2008.
Shi, Y., Zhang, J., Reid, J. S., Holben, B., Hyer, E. J., and Curtis, C.: An analysis of the collection 5 MODIS over-ocean aerosol optical depth product for its implication in aerosol assimilation, Atmos. Chem. Phys., 11, 557–565, https://doi.org/10.5194/acp-11-557-2011, 2011.
Smirnov, A., Holben, B. N., Slutsker, I., Giles, D. M., McClain, C. R., Eck, T. F., Sakerin, S. M., Macke, A., Croot, P., Zibordi, G., Quinn, P. K., Sciare, J., Kinne, S., Harvey, M., Smyth, T. J., Piketh, S., Zielinski, T., Proshutinsky, A., Goes, J. I., Nelson, N. B., Larouche, P., Radionov, V. F., Goloub, P., Krishna Moorthy, K., Matarrese, R., Robertson, E. J., and Jourdin, F.: Maritime Aerosol Network as a component of Aerosol Robotic Network, J. Geophys. Res., 114, D06204, https://doi.org/10.1029/2008JD011257, 2009.
Stier, P., Feichter, J., Kinne, S., Kloster, S., Vignati, E., Wilson, J., Ganzeveld, L., Tegen, I., Werner, M., Balkanski, Y., Schulz, M., Boucher, O., Minikin, A., and Petzold, A.: The aerosol-climate model ECHAM5-HAM, Atmos. Chem. Phys., 5, 1125–1156, https://doi.org/10.5194/acp-5-1125-2005, 2005.
Sun, J., Xiong, X., Angal, A., Chen, H., Geng, X., and Wu, A.: On-orbit performance of the MODIS reflective solar bands time-dependent response versus scan angle algorithm, edited by: Butler, J. J., Xiong, X. J., and Gu, X., Proc. SPIE, 8510, 85100J, https://doi.org/10.1117/12.930021, 2012.
Tanre, D., Herman, M., and Kaufman, Y.: Information on aerosol size distribution contained in solar reflected spectral radiances, J. Geophys. Res.-Atmos., 101, 19043–19060, 1996.
Tanre, D., Kaufman, Y. J., Herman, M., and Mattoo, S.: Remote sensing of aerosol properties over oceans using the MODIS/EOS spectral radiances, J. Geophys. Res., 102, 16971–16988, 1997.
Tanre, D., Remer, L. A., Kaufman, Y. J., Mattoo, S., Hobbs, P. V., Livingston, J. M., Russell, P. B., and Smirnov, A.: Retrieval of aerosol optical thickness and size distribution over ocean from the MODIS airborne simulator during TARFOX, J. Geophys. Res., 104, 2261–2278, https://doi.org/10.1029/1998JD200077, 1999.
van Donkelaar, A., Martin, R. V., Levy, R. C., da Silva, A. M., Krzyzanowski, M., Chubarova, N. E., Semutnikova, E., and Cohen, A. J.: Satellite-based estimates of ground-level fine particulate matter during extreme events: A case study of the Moscow fires in 2010, Atmos. Environ., 45, 6225–6232, https://doi.org/10.1016/j.atmosenv.2011.07.068, 2011.
Vermote, E. F. and Kotchenova, S.: Atmospheric correction for the monitoring of land surfaces, J. Geophys. Res., 113, D23S90, https://doi.org/10.1029/2007JD009662, 2008.
Wang, D., Morton, D., Masek, J., Wu, A., Nagol, J., Xiong, X., Levy, R., Vermote, E., and Wolfe, R.: Impact of sensor degradation on the MODIS NDVI time series, Remote Sens. Environ., 119, 55–61, 2012.
Wang, J. and Christopher, S. A.: Intercomparison between satellite-derived aerosol optical thickness and PM2.5 mass: Implications for air quality studies, Geophys. Res. Lett., 30, 2095, https://doi.org/10.1029/2003GL018174, 2003.
Wen, G., Marshak, A., Levy, R. C., Remer, L. A., Loeb, N. G., Várnai, T., and Cahalan, R. F.: Improvement of MODIS aerosol retrievals near clouds, J. Geophys. Res.-Atmos., 118, 9168–9181, https://doi.org/10.1002/jgrd.50617, 2013.
Witte, J. C., Douglass, A. R., da Silva, A., Torres, O., Levy, R., and Duncan, B. N.: NASA A-Train and Terra observations of the 2010 Russian wildfires, Atmos. Chem. Phys., 11, 9287–9301, https://doi.org/10.5194/acp-11-9287-2011, 2011.
Wolfe, R. E., Nishihama, M., Fleig, A. J., Kuyper, J. A., Roy, D. P., Storey, J. C., and Patt, F. S.: Achieving sub-pixel geolocation accuracy in support of MODIS land science, Remote Sens. Environ., 83, 31–49, https://doi.org/10.1016/S0034-4257(02)00085-8, 2002.
Xiong, X., Sun, J., Wu, A., Chiang, K.-F., Esposito, J., and Barnes, W.: Terra and Aqua MODIS calibration algorithms and uncertainty analysis, Sensors, 5978, 255–264, https://doi.org/10.1117/12.627631, 2005.
Xiong, X., Sun, J., Barnes, W., Salomonson, V., Esposito, J., Erives, H., and Guenther, B.: Multiyear on-orbit calibration and performance of Terra MODIS reflective solar bands, IEEE T. Geosci. Remote, 45, 879–889, https://doi.org/10.1109/TGRS.2006.890567, 2007.
Young, A. T.: Revised depolarization corrections for atmospheric extinction, Appl. Optics, 19, 3427–3428, https://doi.org/10.1364/AO.19.003427, 1980.
Yu, H., Kaufman, Y. J., Chin, M., Feingold, G., Remer, L. A., Anderson, T. L., Balkanski, Y., Bellouin, N., Boucher, O., Christopher, S., DeCola, P., Kahn, R., Koch, D., Loeb, N., Reddy, M. S., Schulz, M., Takemura, T., and Zhou, M.: A review of measurement-based assessments of the aerosol direct radiative effect and forcing, Atmos. Chem. Phys., 6, 613–666, https://doi.org/10.5194/acp-6-613-2006, 2006.
Zhang, J. and Reid, J. S.: A decadal regional and global trend analysis of the aerosol optical depth using a data-assimilation grade over-water MODIS and Level 2 MISR aerosol products, Atmos. Chem. Phys., 10, 10949–10963, https://doi.org/10.5194/acp-10-10949-2010, 2010.
Zhang, J., Reid, J. S., Westphal, D. L., Baker, N. L., and Hyer, E. J.: A system for operational aerosol optical depth data assimilation over global oceans, J. Geophys. Res.-Atmos., 113, D10208, https://doi.org/10.1029/2007JD009065, 2008.