Articles | Volume 11, issue 6
https://doi.org/10.5194/amt-11-3479-2018
https://doi.org/10.5194/amt-11-3479-2018
Research article
 | 
19 Jun 2018
Research article |  | 19 Jun 2018

Kinetically controlled glass transition measurement of organic aerosol thin films using broadband dielectric spectroscopy

Yue Zhang, Shachi Katira, Andrew Lee, Andrew T. Lambe, Timothy B. Onasch, Wen Xu, William A. Brooks, Manjula R. Canagaratna, Andrew Freedman, John T. Jayne, Doug R. Worsnop, Paul Davidovits, David Chandler, and Charles E. Kolb

Related authors

The effects of morphology, mobility size, and secondary organic aerosol (SOA) material coating on the ice nucleation activity of black carbon in the cirrus regime
Cuiqi Zhang, Yue Zhang, Martin J. Wolf, Leonid Nichman, Chuanyang Shen, Timothy B. Onasch, Longfei Chen, and Daniel J. Cziczo
Atmos. Chem. Phys., 20, 13957–13984, https://doi.org/10.5194/acp-20-13957-2020,https://doi.org/10.5194/acp-20-13957-2020, 2020
Short summary
Predicting secondary organic aerosol phase state and viscosity and its effect on multiphase chemistry in a regional-scale air quality model
Ryan Schmedding, Quazi Z. Rasool, Yue Zhang, Havala O. T. Pye, Haofei Zhang, Yuzhi Chen, Jason D. Surratt, Felipe D. Lopez-Hilfiker, Joel A. Thornton, Allen H. Goldstein, and William Vizuete
Atmos. Chem. Phys., 20, 8201–8225, https://doi.org/10.5194/acp-20-8201-2020,https://doi.org/10.5194/acp-20-8201-2020, 2020
Short summary
Laboratory study of the heterogeneous ice nucleation on black-carbon-containing aerosol
Leonid Nichman, Martin Wolf, Paul Davidovits, Timothy B. Onasch, Yue Zhang, Doug R. Worsnop, Janarjan Bhandari, Claudio Mazzoleni, and Daniel J. Cziczo
Atmos. Chem. Phys., 19, 12175–12194, https://doi.org/10.5194/acp-19-12175-2019,https://doi.org/10.5194/acp-19-12175-2019, 2019
Short summary

Related subject area

Subject: Aerosols | Technique: Laboratory Measurement | Topic: Instruments and Platforms
An automated online field instrument to quantify the oxidative potential of aerosol particles via ascorbic acid oxidation
Battist Utinger, Steven John Campbell, Nicolas Bukowiecki, Alexandre Barth, Benjamin Gfeller, Ray Freshwater, Hans-Rudolf Rüegg, and Markus Kalberer
Atmos. Meas. Tech., 16, 2641–2654, https://doi.org/10.5194/amt-16-2641-2023,https://doi.org/10.5194/amt-16-2641-2023, 2023
Short summary
Online measurement of highly oxygenated compounds from organic aerosol
Ella Häkkinen, Jian Zhao, Frans Graeffe, Nicolas Fauré, Jordan E. Krechmer, Douglas Worsnop, Hilkka Timonen, Mikael Ehn, and Juha Kangasluoma
Atmos. Meas. Tech., 16, 1705–1721, https://doi.org/10.5194/amt-16-1705-2023,https://doi.org/10.5194/amt-16-1705-2023, 2023
Short summary
The AERosol and TRACe gas Collector (AERTRACC): an online-measurement-controlled sampler for source-resolved emission analysis
Julia Pikmann, Lasse Moormann, Frank Drewnick, and Stephan Borrmann
Atmos. Meas. Tech., 16, 1323–1341, https://doi.org/10.5194/amt-16-1323-2023,https://doi.org/10.5194/amt-16-1323-2023, 2023
Short summary
Design and Evaluation of a Thermal Precipitation Aerosol Electrometer (TPAE)
Shipeng Kang, Tongzhu Yu, Yixin Yang, Jiguang Wang, Huaqiao Gui, Jianguo Liu, and Da-Ren Chen
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-22,https://doi.org/10.5194/amt-2023-22, 2023
Revised manuscript accepted for AMT
Short summary
Quantitative chemical assay of nanogram-level particulate matter using aerosol mass spectrometry: characterization of particles collected from uncrewed atmospheric measurement platforms
Christopher R. Niedek, Fan Mei, Maria A. Zawadowicz, Zihua Zhu, Beat Schmid, and Qi Zhang
Atmos. Meas. Tech., 16, 955–968, https://doi.org/10.5194/amt-16-955-2023,https://doi.org/10.5194/amt-16-955-2023, 2023
Short summary

Cited articles

Adrjanowicz, K., Wojnarowska, Z., Wlodarczyk, P., Kaminski, K., Paluch, M., and Mazgalski, J.: Molecular mobility in liquid and glassy states of Telmisartan (TEL) studied by Broadband Dielectric Spectroscopy, Eur. J. Pharm. Sci., 38, 395–404, https://doi.org/10.1016/j.ejps.2009.09.009, 2009. 
Amann-Winkel, K., Gainaru, C., Handle, P. H., Seidl, M., Nelson, H., Böhmer, R., and Loerting, T.: Water's second glass transition, P. Natl. Acad. Sci. USA, 110, 17720–17725, https://doi.org/10.1073/pnas.1311718110, 2013. 
Angell, C. A.: Liquid Fragility and the Glass Transition in Water and Aqueous Solutions, Chem. Rev., 102, 2627–2650, 2002. 
Bahous, H., Soufi, M. M., Meuret, L., and Benzohra, M.: Relaxation Time at Glass Transition Temperature Measured by Simplex Thermo Stimulated Depolarisation Current, Macromol. Sy., 341, 45–50, https://doi.org/10.1002/masy.201300158, 2014. 
Bateman, A. P., Bertram, A. K., and Martin, S. T.: Hygroscopic Influence on the Semisolid-to-Liquid Transition of Secondary Organic Materials, J. Phys. Chem. A, 119, 4386–4395, https://doi.org/10.1021/jp508521c, 2015. 
Download
Short summary
We have adopted a new technique for measuring glass-forming properties of atmospherically relevant organic aerosols at submicron sizes and relatively low mass concentrations. Aerosol particles are deposited in the form of a thin film with interdigitated electrodes using electrostatic precipitation. Broadband dielectric spectroscopy is used to measure the kinetically controlled glass transition temperatures of glycerol and citric acid aerosols with three atmospheric relevant cooling rates.