Articles | Volume 12, issue 10
https://doi.org/10.5194/amt-12-5685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-12-5685-2019
© Author(s) 2019. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
Aerosol measurements with a shipborne Sun–sky–lunar photometer and collocated multiwavelength Raman polarization lidar over the Atlantic Ocean
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
School of Electronic Information, Wuhan University, Wuhan, China
Key Laboratory of Geospace Environment and Geodesy, Ministry of
Education, Wuhan, China
Albert Ansmann
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Holger Baars
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Patric Seifert
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Ronny Engelmann
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Martin Radenz
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Cristofer Jimenez
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Alina Herzog
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Kevin Ohneiser
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Karsten Hanbuch
Leibniz Institute for Tropospheric Research, Permoserstraße 15,
Leipzig, Germany
Luc Blarel
Laboratoire d'Optique Amosphérique, Université des Sciences et
Technologies de Lille, Villeneuve-d'Ascq, France
Philippe Goloub
Laboratoire d'Optique Amosphérique, Université des Sciences et
Technologies de Lille, Villeneuve-d'Ascq, France
Gaël Dubois
Laboratoire d'Optique Amosphérique, Université des Sciences et
Technologies de Lille, Villeneuve-d'Ascq, France
Stephane Victori
R&D Department, Cimel Electronique, Paris, France
Fabrice Maupin
R&D Department, Cimel Electronique, Paris, France
Related authors
Yun He, Dongzhe Jing, Zhenping Yin, Kevin Ohneiser, and Fan Yi
Atmos. Chem. Phys., 24, 11431–11450, https://doi.org/10.5194/acp-24-11431-2024, https://doi.org/10.5194/acp-24-11431-2024, 2024
Short summary
Short summary
We present a long-term ground-based lidar observation of stratospheric aerosols at a mid-latitude site, Wuhan, in central China, from 2010 to 2021. We observed a stratospheric background period from 2013 to mid-2017, along with several perturbations from volcanic aerosols and wildfire-induced smoke. In summer, injected stratospheric aerosols are found to be captured by the Asian monsoon anticyclone, resulting in prolonged residence and regional transport in the mid-latitudes of East Asia.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Huijia Shen, Zhenping Yin, Yun He, Longlong Wang, Yifan Zhan, and Dongzhe Jing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1844, https://doi.org/10.5194/egusphere-2023-1844, 2023
Preprint archived
Short summary
Short summary
With space-borne lidar and radar observations, we study two dust-cirrus interaction cases near Midway Island in the central Pacific. Partial cloud parcels show evident feature of the dominance of heterogeneous nucleation. At the upper troposphere, natural INPs such as dust and smoke may result in cooling effect by increasing the cloud cover to reflect more solar radiation and modulate the cirrus microphysical properties via different ice-nucleating regimes.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023, https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary
Short summary
With the AERONET database, this study derives dust-related conversion factors at oceanic sites used in the POLIPHON method, which can convert lidar-retrieved dust extinction to ice-nucleating particle (INP)- and cloud condensation nuclei (CCN)-relevant parameters. The particle linear depolarization ratio in the AERONET aerosol inversion product is used to identify dust data points. The derived conversion factors can be applied to inverse 3-D global distributions of dust-related INPCs and CCNCs.
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022, https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys., 21, 3015–3033, https://doi.org/10.5194/acp-21-3015-2021, https://doi.org/10.5194/acp-21-3015-2021, 2021
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary
Short summary
Using high-resolution lidar measurements, this process-based study reveals that the clear-day convective boundary layer evolves in four distinct stages differing in depth growth rate and depth fluctuation magnitudes. The accompanying entrainment zone thickness (EZT) shows a discrepancy in statistical mean and standard deviation for different seasons and developing stages. Common EZT characteristics also exist. These findings help us understand the atmospheric boundary layer evolution.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020, https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Short summary
Part 2 presents the application of the dual-FOV polarization lidar technique introduced in Part 1. A lidar system was upgraded with a second polarization telescope, and it was deployed at the southernmost tip of South America. A comparison with alternative remote sensing techniques and the evaluation of the aerosol–cloud–wind relation in a convective boundary layer in pristine marine conditions are presented in two case studies, demonstrating the potential of the approach for ACI studies.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Majid Hajipour, Patric Seifert, Hannes Griesche, Kevin Ohneiser, and Martin Radenz
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-173, https://doi.org/10.5194/amt-2024-173, 2024
Preprint under review for AMT
Short summary
Short summary
This study presents an approach that enables the detection of the shape and orientation of multiple types of co-located hydrometeors in mixed-phase cloud systems. This information is key for improving the understanding of these clouds, as they do contain ice and liquid water simultaneously, making them relevant for the precipitation budget and radiative balance of the Earth's atmosphere. The retrieval is based on elevation scans of polarimetric cloud radars and can therefore be flexibly applied.
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Julian Hofer, Moritz Haarig, Ulla Wandinger, Bernd Heinold, Ina Tegen, Matthias Faust, Holger Baars, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
EGUsphere, https://doi.org/10.5194/egusphere-2024-3159, https://doi.org/10.5194/egusphere-2024-3159, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
This study investigates how hematite (an iron oxide mineral) in the Saharan Desert dust affects how dust particles interact with radiation. Using lidar data from Cabo Verde (2021–2022) and hematite content from atmospheric model simulations, the results show that higher hematite fraction leads to stronger particle backscattering at specific wavelengths. These findings can improve the representaiton of mineral dust in climate models, particularly regarding their radiative effect.
Yenny González, María F. Sánchez-Barrero, Ioana Popovici, África Barreto, Stephane Victori, Ellsworth J. Welton, Rosa D. García, Pablo G. Sicilia, Fernando A. Almansa, Carlos Torres, and Philippe Goloub
EGUsphere, https://doi.org/10.5194/egusphere-2024-2727, https://doi.org/10.5194/egusphere-2024-2727, 2024
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Short summary
We characterize the optical properties of various aerosols using a compact dual-wavelength depolarization lidar (CIMEL CE376) at 532 and 808 nm. Through a modified two-wavelength Klett inversion method, we assess the vertical distribution and temporal evolution of Saharan dust, volcanic aerosols, and wildfire smoke in the subtropical North Atlantic from August 2021 to August 2023. The study confirms the CE376 lidar's effectiveness in monitoring and characterizing atmospheric aerosols over time.
Teresa Vogl, Martin Radenz, Fabiola Ramelli, Rosa Gierens, and Heike Kalesse-Los
Atmos. Meas. Tech., 17, 6547–6568, https://doi.org/10.5194/amt-17-6547-2024, https://doi.org/10.5194/amt-17-6547-2024, 2024
Short summary
Short summary
In this study, we present a toolkit of two Python algorithms to extract information from Doppler spectra measured by ground-based cloud radars. In these Doppler spectra, several peaks can be formed due to populations of droplets/ice particles with different fall velocities coexisting in the same measurement time and height. The two algorithms can detect peaks and assign them to certain particle types, such as small cloud droplets or fast-falling ice particles like graupel.
Yuyang Chang, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Igor Veselovskii, Fabrice Ducos, Gaël Dubois, Masanori Saito, Anton Lopatin, Oleg Dubovik, and Cheng Chen
EGUsphere, https://doi.org/10.5194/egusphere-2024-2655, https://doi.org/10.5194/egusphere-2024-2655, 2024
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Short summary
Our study retrieved dust aerosol microphysical properties from lidar measurements using different scattering models. Numeric simulations and real data applications revealed the importance of considering depolarization measurements and particle non-sphericity to improve retrieval accuracy. Contrasts of the non-spherical scattering models in simulating particle backscattering properties, particularly the depolarization ratio, enlarge the difference of retrievals derived using these models.
Yun He, Dongzhe Jing, Zhenping Yin, Kevin Ohneiser, and Fan Yi
Atmos. Chem. Phys., 24, 11431–11450, https://doi.org/10.5194/acp-24-11431-2024, https://doi.org/10.5194/acp-24-11431-2024, 2024
Short summary
Short summary
We present a long-term ground-based lidar observation of stratospheric aerosols at a mid-latitude site, Wuhan, in central China, from 2010 to 2021. We observed a stratospheric background period from 2013 to mid-2017, along with several perturbations from volcanic aerosols and wildfire-induced smoke. In summer, injected stratospheric aerosols are found to be captured by the Asian monsoon anticyclone, resulting in prolonged residence and regional transport in the mid-latitudes of East Asia.
Audrey Teisseire, Anne-Claire Billault-Roux, Teresa Vogl, and Patric Seifert
EGUsphere, https://doi.org/10.5194/egusphere-2024-2711, https://doi.org/10.5194/egusphere-2024-2711, 2024
Short summary
Short summary
This study demonstrates the ability of the VDPS method, delivering the vertical distribution of particle shape, to highlight riming and aggregation processes, identifying graupel and aggregates, respectively, as isometric particles. The distinction between these processes can be achieved using lidar or spectral techniques, as demonstrated in the case studies. The capability of the VDPS method to identify rimed particles and aggregates without differentiating them can simplify statistical work.
Igor Veselovskii, Mikhail Korenskiy, Nikita Kasianik, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, and Thierry Podvin
EGUsphere, https://doi.org/10.5194/egusphere-2024-2874, https://doi.org/10.5194/egusphere-2024-2874, 2024
Short summary
Short summary
A fluorescence lidar was utilized to study transported smoke during the wildfire season from May to September 2023. The lidar performs fluorescence measurements at 5 wavelengths. Observations reveal that the fluorescence capacity increases with altitude, suggesting higher concentration of organic compounds in the UTLS compared to the lower troposphere. And urban aerosol fluorescence tends to decrease with wavelength, while the peak of smoke fluorescence is observed at 513 or 560 nm channels.
Pierre Tulet, Joel Van Baelen, Pierre Bosser, Jérome Brioude, Aurélie Colomb, Philippe Goloub, Andrea Pazmino, Thierry Portafaix, Michel Ramonet, Karine Sellegri, Melilotus Thyssen, Léa Gest, Nicolas Marquestaut, Dominique Mékiès, Jean-Marc Metzger, Gilles Athier, Luc Blarel, Marc Delmotte, Guillaume Desprairies, Mérédith Dournaux, Gaël Dubois, Valentin Duflot, Kevin Lamy, Lionel Gardes, Jean-François Guillemot, Valérie Gros, Joanna Kolasinski, Morgan Lopez, Olivier Magand, Erwan Noury, Manuel Nunes-Pinharanda, Guillaume Payen, Joris Pianezze, David Picard, Olivier Picard, Sandrine Prunier, François Rigaud-Louise, Michael Sicard, and Benjamin Torres
Earth Syst. Sci. Data, 16, 3821–3849, https://doi.org/10.5194/essd-16-3821-2024, https://doi.org/10.5194/essd-16-3821-2024, 2024
Short summary
Short summary
The MAP-IO program aims to compensate for the lack of atmospheric and oceanographic observations in the Southern Ocean by equipping the ship Marion Dufresne with a set of 17 scientific instruments. This program collected 700 d of measurements under different latitudes, seasons, sea states, and weather conditions. These new data will support the calibration and validation of numerical models and the understanding of the atmospheric composition of this region of Earth.
Benedikt Gast, Cristofer Jimenez, Albert Ansmann, Moritz Haarig, Ronny Engelmann, Felix Fritzsch, Athena Augusta Floutsi, Hannes Griesche, Kevin Ohneiser, Julian Hofer, Martin Radenz, Holger Baars, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2586, https://doi.org/10.5194/egusphere-2024-2586, 2024
Short summary
Short summary
In this study, we discuss the enhanced detection capabilities of a fluorescence lidar in the case of optically thin aerosol layers in the upper troposphere and lower stratosphere (UTLS) region. Our results suggest that such thin aerosol layers are not so rare in the UTLS and can potentially trigger and impact cirrus cloud formation through heterogeneous ice nucleation. By altering the microphysical cloud properties, this could affect cloud evolution and lifetime, and thus their climate effect.
Mégane Ventura, Fabien Waquet, Isabelle Chiapello, Gérard Brogniez, Frédéric Parol, Frédérique Auriol, Rodrigue Loisil, Cyril Delegove, Luc Blarel, Oleg Dubovik, Marc Mallet, Cyrille Flamant, and Paola Formenti
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-121, https://doi.org/10.5194/amt-2024-121, 2024
Preprint under review for AMT
Short summary
Short summary
Biomass burning aerosols (BBA) from Central Africa, are transported above stratocumulus clouds. The absorption of solar energy by aerosols induce warming, altering the clouds dynamics. We developed an approach that combines polarimeter and lidar to quantify it. This methodology is assessed during the AEROCLO-SA campaign. To validate it, we used flux measurements acquired during aircraft loop descents. Major perspective is the generalization of this method to the global level.
Igor Veselovskii, Boris Barchunov, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskii, Gaël Dubois, William Boissiere, and Nikita Kasianik
Atmos. Meas. Tech., 17, 4137–4152, https://doi.org/10.5194/amt-17-4137-2024, https://doi.org/10.5194/amt-17-4137-2024, 2024
Short summary
Short summary
The paper presents a new method that categorizes atmospheric aerosols by analyzing their optical properties with a Mie–Raman–fluorescence lidar. The research specifically looks into understanding the presence of smoke, urban, and dust aerosols in the mixtures identified by this lidar. The reliability of the results is evaluated using the Monte Carlo technique. The effectiveness of this approach is successfully demonstrated through testing in ATOLL, an observatory influenced by diverse aerosols.
Albert Ansmann, Cristofer Jimenez, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Daniel A. Knopf, Sandro Dahlke, Tom Gaudek, Patric Seifert, and Ulla Wandinger
EGUsphere, https://doi.org/10.5194/egusphere-2024-2008, https://doi.org/10.5194/egusphere-2024-2008, 2024
Short summary
Short summary
In this study, we focus on the potential impact of wildfire smoke on cirrus formation. For the first time, state-of-the-art aerosol and cirrus observations with lidar and radar, presented in part 1 of a series of two articles, are closely linked to comprehensive modeling of gravity-wave-induced ice nucleation in cirrus evolution processes, presented in part 2. We found a clear impact of wildfire smoke on cirrus evolution.
Albert Ansmann, Cristofer Jimenez, Daniel A. Knopf, Johanna Roschke, Johannes Bühl, Kevin Ohneiser, and Ronny Engelmann
EGUsphere, https://doi.org/10.5194/egusphere-2024-2009, https://doi.org/10.5194/egusphere-2024-2009, 2024
Short summary
Short summary
In this study, we focus on the potential impact of wildfire smoke on cirrus formation. Aerosol and cirrus observations with lidar and radar during the MOSAiC expedition, presented in part 1 (egusphere-2024-2008) are closely linked to comprehensive modeling of ice nucleation in cirrus evolution processes, presented in this part 2 (egusphere-2024-2009). A clear impact of wildfire smoke on cirrus formation was found.
Nadja Omanovic, Sylvaine Ferrachat, Christopher Fuchs, Jan Henneberger, Anna J. Miller, Kevin Ohneiser, Fabiola Ramelli, Patric Seifert, Robert Spirig, Huiying Zhang, and Ulrike Lohmann
Atmos. Chem. Phys., 24, 6825–6844, https://doi.org/10.5194/acp-24-6825-2024, https://doi.org/10.5194/acp-24-6825-2024, 2024
Short summary
Short summary
We present simulations with a high-resolution numerical weather prediction model to study the growth of ice crystals in low clouds following glaciogenic seeding. We show that the simulated ice crystals grow slower than observed and do not consume as many cloud droplets as measured in the field. This may have implications for forecasting precipitation, as the ice phase is crucial for precipitation at middle and high latitudes.
Robin Miri, Olivier Pujol, Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Thierry Podvin, and Fabrice Ducos
Atmos. Meas. Tech., 17, 3367–3375, https://doi.org/10.5194/amt-17-3367-2024, https://doi.org/10.5194/amt-17-3367-2024, 2024
Short summary
Short summary
This paper focuses on the use of fluorescence to study aerosols with lidar. An innovative method for aerosol hygroscopic growth study using fluorescence is presented. The paper presents case studies to showcase the effectiveness and potential of the proposed approach. These advancements will contribute to better understanding the interactions between aerosols and water vapor, with future work expected to be dedicated to aerosol–cloud interaction.
Maria Fernanda Sanchez Barrero, Ioana Elisabeta Popovici, Philippe Goloub, Stephane Victori, Qiaoyun Hu, Benjamin Torres, Thierry Podvin, Luc Blarel, Gaël Dubois, Fabrice Ducos, Eric Bourrianne, Aliaksandr Lapionak, Lelia Proniewski, Brent Holben, David Matthew Giles, and Anthony LaRosa
Atmos. Meas. Tech., 17, 3121–3146, https://doi.org/10.5194/amt-17-3121-2024, https://doi.org/10.5194/amt-17-3121-2024, 2024
Short summary
Short summary
This study showcases the use of a compact elastic lidar to monitor aerosols aboard moving platforms. By coupling dual-wavelength and depolarization measurements with photometer data, we studied aerosols during events of Saharan dust and smoke transport. Our research, conducted in various scenarios, not only validated our methods but also offered insights into the atmospheric dynamics near active fires. This study aids future research to fill observational gaps in aerosol monitoring.
Junghwa Lee, Patric Seifert, Tempei Hashino, Maximilian Maahn, Fabian Senf, and Oswald Knoth
Atmos. Chem. Phys., 24, 5737–5756, https://doi.org/10.5194/acp-24-5737-2024, https://doi.org/10.5194/acp-24-5737-2024, 2024
Short summary
Short summary
Spectral bin model simulations of an idealized supercooled stratiform cloud were performed with the AMPS model for variable CCN and INP concentrations. We performed radar forward simulations with PAMTRA to transfer the simulations into radar observational space. The derived radar reflectivity factors were compared to observational studies of stratiform mixed-phase clouds. These studies report a similar response of the radar reflectivity factor to aerosol perturbations as we found in our study.
Henriette Gebauer, Athena Augusta Floutsi, Moritz Haarig, Martin Radenz, Ronny Engelmann, Dietrich Althausen, Annett Skupin, Albert Ansmann, Cordula Zenk, and Holger Baars
Atmos. Chem. Phys., 24, 5047–5067, https://doi.org/10.5194/acp-24-5047-2024, https://doi.org/10.5194/acp-24-5047-2024, 2024
Short summary
Short summary
Sulfate aerosol from the volcanic eruption at La Palma in 2021 was observed over Cabo Verde. We characterized the aerosol burden based on a case study of lidar and sun photometer observations. We compared the volcanic case to the typical background conditions (reference case) to quantify the volcanic pollution. We show the first ever measurements of the extinction coefficient, lidar ratio and depolarization ratio at 1064 nm for volcanic sulfate.
Kangwen Sun, Guangyao Dai, Songhua Wu, Oliver Reitebuch, Holger Baars, Jiqiao Liu, and Suping Zhang
Atmos. Chem. Phys., 24, 4389–4409, https://doi.org/10.5194/acp-24-4389-2024, https://doi.org/10.5194/acp-24-4389-2024, 2024
Short summary
Short summary
This paper investigates the correlation between marine aerosol optical properties and wind speeds over remote oceans using the spaceborne lidars ALADIN and CALIOP. Three remote ocean areas are selected. Pure marine aerosol optical properties at 355 nm are derived from ALADIN. The relationships between marine aerosol optical properties and wind speeds are analyzed within and above the marine atmospheric boundary layer, revealing the effect of wind speed on marine aerosols over remote oceans.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Sofía Gómez Maqueo Anaya, Dietrich Althausen, Matthias Faust, Holger Baars, Bernd Heinold, Julian Hofer, Ina Tegen, Albert Ansmann, Ronny Engelmann, Annett Skupin, Birgit Heese, and Kerstin Schepanski
Geosci. Model Dev., 17, 1271–1295, https://doi.org/10.5194/gmd-17-1271-2024, https://doi.org/10.5194/gmd-17-1271-2024, 2024
Short summary
Short summary
Mineral dust aerosol particles vary greatly in their composition depending on source region, which leads to different physicochemical properties. Most atmosphere–aerosol models consider mineral dust aerosols to be compositionally homogeneous, which ultimately increases model uncertainty. Here, we present an approach to explicitly consider the heterogeneity of the mineralogical composition for simulations of the Saharan atmospheric dust cycle with regard to dust transport towards the Atlantic.
Audrey Teisseire, Patric Seifert, Alexander Myagkov, Johannes Bühl, and Martin Radenz
Atmos. Meas. Tech., 17, 999–1016, https://doi.org/10.5194/amt-17-999-2024, https://doi.org/10.5194/amt-17-999-2024, 2024
Short summary
Short summary
The vertical distribution of particle shape (VDPS) method, introduced in this study, aids in characterizing the density-weighted shape of cloud particles from scanning slanted linear depolarization ratio (SLDR)-mode cloud radar observations. The VDPS approach represents a new, versatile way to study microphysical processes by combining a spheroidal scattering model with real measurements of SLDR.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, William Boissiere, Mikhail Korenskiy, Nikita Kasianik, Sergey Khaykyn, and Robin Miri
Atmos. Meas. Tech., 17, 1023–1036, https://doi.org/10.5194/amt-17-1023-2024, https://doi.org/10.5194/amt-17-1023-2024, 2024
Short summary
Short summary
Measurements of transported smoke layers were performed with a lidar in Lille and a five-channel fluorescence lidar in Moscow. Results show the peak of fluorescence in the boundary layer is at 438 nm, while in the smoke layer it shifts to longer wavelengths. The fluorescence depolarization is 45 % to 55 %. The depolarization ratio of the water vapor channel is low (2 ± 0.5 %) in the absence of fluorescence and can be used to evaluate the contribution of fluorescence to water vapor signal.
Athena Augusta Floutsi, Holger Baars, and Ulla Wandinger
Atmos. Meas. Tech., 17, 693–714, https://doi.org/10.5194/amt-17-693-2024, https://doi.org/10.5194/amt-17-693-2024, 2024
Short summary
Short summary
We introduce an aerosol-typing scheme (HETEAC-Flex) based on lidar-derived intensive optical properties and applicable to ground-based and spaceborne lidars. HETEAC-Flex utilizes the optimal estimation method and enables the identification of up to four different aerosol components, as well as the determination of their contribution to the aerosol mixture in terms of relative volume. The aerosol components represent common aerosol types such as dust, sea salt, smoke and pollution.
Julian Hofer, Patric Seifert, J. Ben Liley, Martin Radenz, Osamu Uchino, Isamu Morino, Tetsu Sakai, Tomohiro Nagai, and Albert Ansmann
Atmos. Chem. Phys., 24, 1265–1280, https://doi.org/10.5194/acp-24-1265-2024, https://doi.org/10.5194/acp-24-1265-2024, 2024
Short summary
Short summary
An 11-year dataset of polarization lidar observations from Lauder, New Zealand / Aotearoa, was used to distinguish the thermodynamic phase of natural clouds. The cloud dataset was separated to assess the impact of air mass origin on the frequency of heterogeneous ice formation. Ice formation efficiency in clouds above Lauder was found to be lower than in the polluted Northern Hemisphere midlatitudes but higher than in very clean and pristine environments, such as Punta Arenas in southern Chile.
Antonio Fernando Almansa, África Barreto, Natalia Kouremeti, Ramiro González, Akriti Masoom, Carlos Toledano, Julian Gröbner, Rosa Delia García, Yenny González, Stelios Kazadzis, Stéphane Victori, Óscar Álvarez, Fabrice Maupin, Virgilio Carreño, Victoria Eugenia Cachorro, and Emilio Cuevas
Atmos. Meas. Tech., 17, 659–675, https://doi.org/10.5194/amt-17-659-2024, https://doi.org/10.5194/amt-17-659-2024, 2024
Short summary
Short summary
This paper applies sun photometer synergies to improve calibration transference between different sun photometers and also enhance their quality assurance and quality control. We have validated this technique using different instrumentation, the WMO-GAW and NASA-AERONET references, under different aerosol regimes using the standard Langley calibration method as a reference.
Silke Groß, Volker Freudenthaler, Moritz Haarig, Albert Ansmann, Carlos Toledano, David Mateos, Petra Seibert, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Josef Gasteiger, Maximilian Dollner, Anne Tipka, Manuel Schöberl, Marilena Teri, and Bernadett Weinzierl
EGUsphere, https://doi.org/10.5194/egusphere-2024-140, https://doi.org/10.5194/egusphere-2024-140, 2024
Short summary
Short summary
Aerosols contribute to the largest uncertainties in climate change predictions. Especially absorbing aerosols propose difficulties in our understanding. The eastern Mediterranean is a hot spot for aerosols with natural and anthropogenic contributions. We present lidar measurements performed during the A-LIFE field experiment to characterize aerosols and aerosol mixtures. We extend current classification and separation schemes and compare different classification schemes.
Hannes Jascha Griesche, Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 24, 597–612, https://doi.org/10.5194/acp-24-597-2024, https://doi.org/10.5194/acp-24-597-2024, 2024
Short summary
Short summary
The Arctic is strongly affected by climate change and the role of clouds therein is not yet completely understood. Measurements from the Arctic expedition PS106 were used to simulate radiative fluxes with and without clouds at very low altitudes (below 165 m), and their radiative effect was calculated to be 54 Wm-2. The low heights of these clouds make them hard to observe. This study shows the importance of accurate measurements and simulations of clouds and gives suggestions for improvements.
Alexandra Tsekeri, Anna Gialitaki, Marco Di Paolantonio, Davide Dionisi, Gian Luigi Liberti, Alnilam Fernandes, Artur Szkop, Aleksander Pietruczuk, Daniel Pérez-Ramírez, Maria J. Granados Muñoz, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Diego Bermejo Pantaleón, Juan Antonio Bravo-Aranda, Anna Kampouri, Eleni Marinou, Vassilis Amiridis, Michael Sicard, Adolfo Comerón, Constantino Muñoz-Porcar, Alejandro Rodríguez-Gómez, Salvatore Romano, Maria Rita Perrone, Xiaoxia Shang, Mika Komppula, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Diofantos Hadjimitsis, Francisco Navas-Guzmán, Alexander Haefele, Dominika Szczepanik, Artur Tomczak, Iwona S. Stachlewska, Livio Belegante, Doina Nicolae, Kalliopi Artemis Voudouri, Dimitris Balis, Athena A. Floutsi, Holger Baars, Linda Miladi, Nicolas Pascal, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 16, 6025–6050, https://doi.org/10.5194/amt-16-6025-2023, https://doi.org/10.5194/amt-16-6025-2023, 2023
Short summary
Short summary
EARLINET/ACTRIS organized an intensive observational campaign in May 2020, with the objective of monitoring the atmospheric state over Europe during the COVID-19 lockdown and relaxation period. The work presented herein focuses on deriving a common methodology for applying a synergistic retrieval that utilizes the network's ground-based passive and active remote sensing measurements and deriving the aerosols from anthropogenic activities over Europe.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Kevin Ohneiser, Daniel A. Knopf, Argyro Nisantzi, Johannes Bühl, Ronny Engelmann, Annett Skupin, Patric Seifert, Holger Baars, Dragos Ene, Ulla Wandinger, and Diofantos Hadjimitsis
Atmos. Chem. Phys., 23, 14097–14114, https://doi.org/10.5194/acp-23-14097-2023, https://doi.org/10.5194/acp-23-14097-2023, 2023
Short summary
Short summary
For the first time, rather clear evidence is found that wildfire smoke particles can trigger strong cirrus formation. This finding is of importance because intensive and large wildfires may occur increasingly often in the future as climate change proceeds. Based on lidar observations in Cyprus in autumn 2020, we provide detailed insight into the cirrus formation at the tropopause in the presence of aged wildfire smoke (here, 8–9 day old Californian wildfire smoke).
Albert Ansmann, Kevin Ohneiser, Ronny Engelmann, Martin Radenz, Hannes Griesche, Julian Hofer, Dietrich Althausen, Jessie M. Creamean, Matthew C. Boyer, Daniel A. Knopf, Sandro Dahlke, Marion Maturilli, Henriette Gebauer, Johannes Bühl, Cristofer Jimenez, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 23, 12821–12849, https://doi.org/10.5194/acp-23-12821-2023, https://doi.org/10.5194/acp-23-12821-2023, 2023
Short summary
Short summary
The 1-year MOSAiC (2019–2020) expedition with the German ice breaker Polarstern was the largest polar field campaign ever conducted. The Polarstern, with our lidar aboard, drifted with the pack ice north of 85° N for more than 7 months (October 2019 to mid-May 2020). We measured the full annual cycle of aerosol conditions in terms of aerosol optical and cloud-process-relevant properties. We observed a strong contrast between polluted winter and clean summer aerosol conditions.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Ulla Wandinger, Moritz Haarig, Holger Baars, David Donovan, and Gerd-Jan van Zadelhoff
Atmos. Meas. Tech., 16, 4031–4052, https://doi.org/10.5194/amt-16-4031-2023, https://doi.org/10.5194/amt-16-4031-2023, 2023
Short summary
Short summary
We introduce the algorithms that have been developed to derive cloud top height and aerosol layer products from observations with the Atmospheric Lidar (ATLID) onboard the Earth Cloud, Aerosol and Radiation Explorer (EarthCARE). The products provide information on the uppermost cloud and geometrical and optical properties of aerosol layers in an atmospheric column. They can be used individually but also serve as input for algorithms that combine observations with EarthCARE’s lidar and imager.
Huijia Shen, Zhenping Yin, Yun He, Longlong Wang, Yifan Zhan, and Dongzhe Jing
EGUsphere, https://doi.org/10.5194/egusphere-2023-1844, https://doi.org/10.5194/egusphere-2023-1844, 2023
Preprint archived
Short summary
Short summary
With space-borne lidar and radar observations, we study two dust-cirrus interaction cases near Midway Island in the central Pacific. Partial cloud parcels show evident feature of the dominance of heterogeneous nucleation. At the upper troposphere, natural INPs such as dust and smoke may result in cooling effect by increasing the cloud cover to reflect more solar radiation and modulate the cirrus microphysical properties via different ice-nucleating regimes.
Holger Baars, Joshua Walchester, Elizaveta Basharova, Henriette Gebauer, Martin Radenz, Johannes Bühl, Boris Barja, Ulla Wandinger, and Patric Seifert
Atmos. Meas. Tech., 16, 3809–3834, https://doi.org/10.5194/amt-16-3809-2023, https://doi.org/10.5194/amt-16-3809-2023, 2023
Short summary
Short summary
In 2018, the Aeolus satellite of the European Space Agency (ESA) was launched to improve weather forecasts through global measurements of wind profiles. Given the novel lidar technique onboard, extensive validation efforts have been needed to verify the observations. For this reason, we performed long-term validation measurements in Germany and Chile. We found significant improvement in the data products due to a new algorithm version and can confirm the general validity of Aeolus observations.
Ulla Wandinger, Athena Augusta Floutsi, Holger Baars, Moritz Haarig, Albert Ansmann, Anja Hünerbein, Nicole Docter, David Donovan, Gerd-Jan van Zadelhoff, Shannon Mason, and Jason Cole
Atmos. Meas. Tech., 16, 2485–2510, https://doi.org/10.5194/amt-16-2485-2023, https://doi.org/10.5194/amt-16-2485-2023, 2023
Short summary
Short summary
We introduce an aerosol classification model that has been developed for the Earth Clouds, Aerosols and Radiation Explorer (EarthCARE). The model provides a consistent description of microphysical, optical, and radiative properties of common aerosol types such as dust, sea salt, pollution, and smoke. It is used for aerosol classification and assessment of radiation effects based on the synergy of active and passive observations with lidar, imager, and radiometer of the multi-instrument platform.
Athena Augusta Floutsi, Holger Baars, Ronny Engelmann, Dietrich Althausen, Albert Ansmann, Stephanie Bohlmann, Birgit Heese, Julian Hofer, Thomas Kanitz, Moritz Haarig, Kevin Ohneiser, Martin Radenz, Patric Seifert, Annett Skupin, Zhenping Yin, Sabur F. Abdullaev, Mika Komppula, Maria Filioglou, Elina Giannakaki, Iwona S. Stachlewska, Lucja Janicka, Daniele Bortoli, Eleni Marinou, Vassilis Amiridis, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Boris Barja, and Ulla Wandinger
Atmos. Meas. Tech., 16, 2353–2379, https://doi.org/10.5194/amt-16-2353-2023, https://doi.org/10.5194/amt-16-2353-2023, 2023
Short summary
Short summary
DeLiAn is a collection of lidar-derived aerosol intensive optical properties for several aerosol types, namely the particle linear depolarization ratio, the extinction-to-backscatter ratio (lidar ratio) and the Ångström exponent. The data collection is based on globally distributed, long-term, ground-based, multiwavelength, Raman and polarization lidar measurements and currently covers two wavelengths, 355 and 532 nm, for 13 aerosol categories ranging from basic aerosol types to mixtures.
Igor Veselovskii, Nikita Kasianik, Mikhail Korenskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, and Dong Liu
Atmos. Meas. Tech., 16, 2055–2065, https://doi.org/10.5194/amt-16-2055-2023, https://doi.org/10.5194/amt-16-2055-2023, 2023
Short summary
Short summary
A five-channel fluorescence lidar was developed for the study of atmospheric aerosol. The fluorescence spectrum induced by 355 nm laser emission is analyzed in five spectral intervals, namely 438 and 29, 472 and 32, 513 and 29, 560 and 40, and 614 and 54 nm. This lidar system was operated during strong forest fires. Our results demonstrate that, for urban aerosol, the maximal fluorescence backscattering is observed at 472 nm, while for smoke, the spectrum is shifted toward longer wavelengths.
Yun He, Zhenping Yin, Albert Ansmann, Fuchao Liu, Longlong Wang, Dongzhe Jing, and Huijia Shen
Atmos. Meas. Tech., 16, 1951–1970, https://doi.org/10.5194/amt-16-1951-2023, https://doi.org/10.5194/amt-16-1951-2023, 2023
Short summary
Short summary
With the AERONET database, this study derives dust-related conversion factors at oceanic sites used in the POLIPHON method, which can convert lidar-retrieved dust extinction to ice-nucleating particle (INP)- and cloud condensation nuclei (CCN)-relevant parameters. The particle linear depolarization ratio in the AERONET aerosol inversion product is used to identify dust data points. The derived conversion factors can be applied to inverse 3-D global distributions of dust-related INPCs and CCNCs.
Samuel Kwakye, Heike Kalesse-Los, Maximilian Maahn, Patric Seifert, Roel van Klink, Christian Wirth, and Johannes Quaas
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2023-69, https://doi.org/10.5194/amt-2023-69, 2023
Publication in AMT not foreseen
Short summary
Short summary
Insect numbers in the atmosphere can be calculated using polarimetric weather radar but they have to be identified and separated from other echoes, especially weather phenomena. Here, the separation is demonstrated using three machine-learning algorithms and insect count data from suction traps and the nature of radar measurements of different radar echoes is revealed. Random forest is the best separating algorithm and insect echoes radar measurements are distinct.
Kevin Ohneiser, Albert Ansmann, Jonas Witthuhn, Hartwig Deneke, Alexandra Chudnovsky, Gregor Walter, and Fabian Senf
Atmos. Chem. Phys., 23, 2901–2925, https://doi.org/10.5194/acp-23-2901-2023, https://doi.org/10.5194/acp-23-2901-2023, 2023
Short summary
Short summary
This study shows that smoke layers can reach the tropopause via the self-lofting effect within 3–7 d in the absence of pyrocumulonimbus convection if the
aerosol optical thickness is larger than approximately 2 for a longer time period. When reaching the stratosphere, wildfire smoke can sensitively influence the stratospheric composition on a hemispheric scale and thus can affect the Earth’s climate and the ozone layer.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Konstantinos Michailidis, Maria-Elissavet Koukouli, Dimitris Balis, J. Pepijn Veefkind, Martin de Graaf, Lucia Mona, Nikolaos Papagianopoulos, Gesolmina Pappalardo, Ioanna Tsikoudi, Vassilis Amiridis, Eleni Marinou, Anna Gialitaki, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Daniele Bortoli, Maria João Costa, Vanda Salgueiro, Alexandros Papayannis, Maria Mylonaki, Lucas Alados-Arboledas, Salvatore Romano, Maria Rita Perrone, and Holger Baars
Atmos. Chem. Phys., 23, 1919–1940, https://doi.org/10.5194/acp-23-1919-2023, https://doi.org/10.5194/acp-23-1919-2023, 2023
Short summary
Short summary
Comparisons with ground-based correlative lidar measurements constitute a key component in the validation of satellite aerosol products. This paper presents the validation of the TROPOMI aerosol layer height (ALH) product, using archived quality assured ground-based data from lidar stations that belong to the EARLINET network. Comparisons between the TROPOMI ALH and co-located EARLINET measurements show good agreement over the ocean.
Yun He, Zhenping Yin, Fuchao Liu, and Fan Yi
Atmos. Chem. Phys., 22, 13067–13085, https://doi.org/10.5194/acp-22-13067-2022, https://doi.org/10.5194/acp-22-13067-2022, 2022
Short summary
Short summary
A method is proposed to identify the sole presence of heterogeneous nucleation and competition between heterogeneous and homogeneous nucleation for dust-related cirrus clouds by characterizing the relationship between dust ice-nucleating particle concentration calculated from CALIOP using the POLIPHON method and in-cloud ice crystal number concentration from the DARDAR-Nice dataset. Two typical cirrus cases are shown as a demonstration, and the proposed method can be extended to a global scale.
Willi Schimmel, Heike Kalesse-Los, Maximilian Maahn, Teresa Vogl, Andreas Foth, Pablo Saavedra Garfias, and Patric Seifert
Atmos. Meas. Tech., 15, 5343–5366, https://doi.org/10.5194/amt-15-5343-2022, https://doi.org/10.5194/amt-15-5343-2022, 2022
Short summary
Short summary
This study introduces the novel Doppler radar spectra-based machine learning approach VOODOO (reVealing supercOOled liquiD beyOnd lidar attenuatiOn). VOODOO is a powerful probability-based extension to the existing Cloudnet hydrometeor target classification, enabling the detection of liquid-bearing cloud layers beyond complete lidar attenuation via user-defined p* threshold. VOODOO performs best for (multi-layer) stratiform and deep mixed-phase clouds with liquid water path > 100 g m−2.
Albert Ansmann, Kevin Ohneiser, Alexandra Chudnovsky, Daniel A. Knopf, Edwin W. Eloranta, Diego Villanueva, Patric Seifert, Martin Radenz, Boris Barja, Félix Zamorano, Cristofer Jimenez, Ronny Engelmann, Holger Baars, Hannes Griesche, Julian Hofer, Dietrich Althausen, and Ulla Wandinger
Atmos. Chem. Phys., 22, 11701–11726, https://doi.org/10.5194/acp-22-11701-2022, https://doi.org/10.5194/acp-22-11701-2022, 2022
Short summary
Short summary
For the first time we present a systematic study on the impact of wildfire smoke on ozone depletion in the Arctic (2020) and Antarctic stratosphere (2020, 2021). Two major fire events in Siberia and Australia were responsible for the observed record-breaking stratospheric smoke pollution. Our analyses were based on lidar observations of smoke parameters (Polarstern, Punta Arenas) and NDACC Arctic and Antarctic ozone profiles as well as on Antarctic OMI satellite observations of column ozone.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Boris Barchunov, and Mikhail Korenskii
Atmos. Meas. Tech., 15, 4881–4900, https://doi.org/10.5194/amt-15-4881-2022, https://doi.org/10.5194/amt-15-4881-2022, 2022
Short summary
Short summary
An approach to reveal variability in aerosol type at a high spatiotemporal resolution, by combining fluorescence and Mie–Raman lidar data, is presented. We applied this new classification scheme to lidar data obtained by LOA, University of Lille, in 2020–2021. It is demonstrated that the separation of the main particle types, such as smoke, dust, pollen, and urban, can be performed with a height resolution of 60 m and temporal resolution better than 10 min for the current lidar configuration.
Xianda Gong, Martin Radenz, Heike Wex, Patric Seifert, Farnoush Ataei, Silvia Henning, Holger Baars, Boris Barja, Albert Ansmann, and Frank Stratmann
Atmos. Chem. Phys., 22, 10505–10525, https://doi.org/10.5194/acp-22-10505-2022, https://doi.org/10.5194/acp-22-10505-2022, 2022
Short summary
Short summary
The sources of ice-nucleating particles (INPs) are poorly understood in the Southern Hemisphere (SH). We studied INPs in the boundary layer in the southern Patagonia region. No seasonal cycle of INP concentrations was observed. The majority of INPs are biogenic particles, likely from local continental sources. The INP concentrations are higher when strong precipitation occurs. While previous studies focused on marine INP sources in SH, we point out the importance of continental sources of INPs.
Bernd Heinold, Holger Baars, Boris Barja, Matthew Christensen, Anne Kubin, Kevin Ohneiser, Kerstin Schepanski, Nick Schutgens, Fabian Senf, Roland Schrödner, Diego Villanueva, and Ina Tegen
Atmos. Chem. Phys., 22, 9969–9985, https://doi.org/10.5194/acp-22-9969-2022, https://doi.org/10.5194/acp-22-9969-2022, 2022
Short summary
Short summary
The extreme 2019–2020 Australian wildfires produced massive smoke plumes lofted into the lower stratosphere by pyrocumulonimbus convection. Most climate models do not adequately simulate the injection height of such intense fires. By combining aerosol-climate modeling with prescribed pyroconvective smoke injection and lidar observations, this study shows the importance of the representation of the most extreme wildfire events for estimating the atmospheric energy budget.
Jörg Wieder, Nikola Ihn, Claudia Mignani, Moritz Haarig, Johannes Bühl, Patric Seifert, Ronny Engelmann, Fabiola Ramelli, Zamin A. Kanji, Ulrike Lohmann, and Jan Henneberger
Atmos. Chem. Phys., 22, 9767–9797, https://doi.org/10.5194/acp-22-9767-2022, https://doi.org/10.5194/acp-22-9767-2022, 2022
Short summary
Short summary
Ice formation and its evolution in mixed-phase clouds are still uncertain. We evaluate the lidar retrieval of ice-nucleating particle concentration in dust-dominated and continental air masses over the Swiss Alps with in situ observations. A calibration factor to improve the retrieval from continental air masses is proposed. Ice multiplication factors are obtained with a new method utilizing remote sensing. Our results indicate that secondary ice production occurs at temperatures down to −30 °C.
Carola Barrientos-Velasco, Hartwig Deneke, Anja Hünerbein, Hannes J. Griesche, Patric Seifert, and Andreas Macke
Atmos. Chem. Phys., 22, 9313–9348, https://doi.org/10.5194/acp-22-9313-2022, https://doi.org/10.5194/acp-22-9313-2022, 2022
Short summary
Short summary
This article describes an intercomparison of radiative fluxes and cloud properties from satellite, shipborne observations, and 1D radiative transfer simulations. The analysis focuses on research for PS106 expedition aboard the German research vessel, Polarstern. The results are presented in detailed case studies, time series for the PS106 cruise and extended to the central Arctic region. The findings illustrate the main periods of agreement and discrepancies of both points of view.
Kevin Ohneiser, Albert Ansmann, Bernd Kaifler, Alexandra Chudnovsky, Boris Barja, Daniel A. Knopf, Natalie Kaifler, Holger Baars, Patric Seifert, Diego Villanueva, Cristofer Jimenez, Martin Radenz, Ronny Engelmann, Igor Veselovskii, and Félix Zamorano
Atmos. Chem. Phys., 22, 7417–7442, https://doi.org/10.5194/acp-22-7417-2022, https://doi.org/10.5194/acp-22-7417-2022, 2022
Short summary
Short summary
We present and discuss 2 years of long-term lidar observations of the largest stratospheric perturbation by wildfire smoke ever observed. The smoke originated from the record-breaking Australian fires in 2019–2020 and affects climate conditions and even the ozone layer in the Southern Hemisphere. The obvious link between dense smoke occurrence in the stratosphere and strong ozone depletion found in the Arctic and in the Antarctic in 2020 can be regarded as a new aspect of climate change.
Goutam Choudhury, Albert Ansmann, and Matthias Tesche
Atmos. Chem. Phys., 22, 7143–7161, https://doi.org/10.5194/acp-22-7143-2022, https://doi.org/10.5194/acp-22-7143-2022, 2022
Short summary
Short summary
Lidars provide height-resolved type-specific aerosol properties and are key in studying vertically collocated aerosols and clouds. In this study, we compare the aerosol number concentrations derived from spaceborne lidar with the in situ flight measurements. Our results show a reasonable agreement between both datasets. Such an agreement has not been achieved yet. It shows the potential of spaceborne lidar in studying aerosol–cloud interactions, which is needed to improve our climate forecasts.
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, and Thierry Podvin
Atmos. Chem. Phys., 22, 5399–5414, https://doi.org/10.5194/acp-22-5399-2022, https://doi.org/10.5194/acp-22-5399-2022, 2022
Short summary
Short summary
Our lidar observations show that the optical properties of wildfire smoke particles are highly varied after long-range transport. The variabilities are probably relevant to vegetation type, combustion condition and the aging process, which alter the smoke particle properties, as well as their impact on cloud processes and properties. The lidar fluorescence channel provides a good opportunity for smoke characterization and heterogenous ice crystal formation.
Michael Weger, Holger Baars, Henriette Gebauer, Maik Merkel, Alfred Wiedensohler, and Bernd Heinold
Geosci. Model Dev., 15, 3315–3345, https://doi.org/10.5194/gmd-15-3315-2022, https://doi.org/10.5194/gmd-15-3315-2022, 2022
Short summary
Short summary
Numerical models are an important tool to assess the air quality in cities,
as they can provide near-continouos data in time and space. In this paper,
air pollution for an entire city is simulated at a high spatial resolution of 40 m.
At this spatial scale, the effects of buildings on the atmosphere,
like channeling or blocking of the air flow, are directly represented by diffuse obstacles in the used model CAIRDIO. For model validation, measurements from air-monitoring sites are used.
Igor Veselovskii, Qiaoyun Hu, Albert Ansmann, Philippe Goloub, Thierry Podvin, and Mikhail Korenskiy
Atmos. Chem. Phys., 22, 5209–5221, https://doi.org/10.5194/acp-22-5209-2022, https://doi.org/10.5194/acp-22-5209-2022, 2022
Short summary
Short summary
A remote sensing method based on fluorescence lidar measurements can detect and quantify the smoke content in the upper troposphere and inside cirrus clouds. Based on two case studies, we demonstrate that the fluorescence lidar technique provides the possibility to estimate the smoke surface area concentration within freshly formed cirrus layers. This value was used in a smoke ice nucleating particle parameterization scheme to predict ice crystal number concentrations in cirrus generation cells.
Xiaoxia Shang, Holger Baars, Iwona S. Stachlewska, Ina Mattis, and Mika Komppula
Atmos. Chem. Phys., 22, 3931–3944, https://doi.org/10.5194/acp-22-3931-2022, https://doi.org/10.5194/acp-22-3931-2022, 2022
Short summary
Short summary
This study reports pollen observations at four lidar stations (Hohenpeißenberg, Germany; Kuopio, Finland; Leipzig, Germany; and Warsaw, Poland) during the intensive observation campaign organized in May 2020. A novel simple method for the characterization of the pure pollen is proposed, based on lidar measurements. It was applied to evaluate the pollen depolarization ratio and for the aerosol classifications.
Michaël Sicard, Carmen Córdoba-Jabonero, María-Ángeles López-Cayuela, Albert Ansmann, Adolfo Comerón, María-Paz Zorzano, Alejandro Rodríguez-Gómez, and Constantino Muñoz-Porcar
Atmos. Chem. Phys., 22, 1921–1937, https://doi.org/10.5194/acp-22-1921-2022, https://doi.org/10.5194/acp-22-1921-2022, 2022
Short summary
Short summary
This paper completes the companion paper of Córdoba-Jabonero et al. (2021). We estimate the total direct radiative effect produced by mineral dust particles during the June 2019 mega-heatwave at two sites in Spain and Germany. The results show that the dust particles in the atmosphere contribute to cooling the surface (less radiation reaches the surface) and that the heatwave (parametrized by high surface and air temperatures) contributes to reducing this cooling.
Birgit Heese, Athena Augusta Floutsi, Holger Baars, Dietrich Althausen, Julian Hofer, Alina Herzog, Silke Mewes, Martin Radenz, and Yoav Y. Schechner
Atmos. Chem. Phys., 22, 1633–1648, https://doi.org/10.5194/acp-22-1633-2022, https://doi.org/10.5194/acp-22-1633-2022, 2022
Short summary
Short summary
The aerosol distribution over Haifa, Israel, was measured for 2 years by a laser-based vertically resolved measurement technique called lidar. From these data, the aerosol types and their percentages of the observed aerosol mixtures were identified in terms of their size and shape. We found mostly desert dust from the surrounding deserts and sea salt from the close-by Mediterranean Sea. But aerosols from anthropogenic and industrial pollution from local and far away sources were also detected.
Heike Kalesse-Los, Willi Schimmel, Edward Luke, and Patric Seifert
Atmos. Meas. Tech., 15, 279–295, https://doi.org/10.5194/amt-15-279-2022, https://doi.org/10.5194/amt-15-279-2022, 2022
Short summary
Short summary
It is important to detect the vertical distribution of cloud droplets and ice in mixed-phase clouds. Here, an artificial neural network (ANN) previously developed for Arctic clouds is applied to a mid-latitudinal cloud radar data set. The performance of this technique is contrasted to the Cloudnet target classification. For thick/multi-layer clouds, the machine learning technique is better at detecting liquid than Cloudnet, but if lidar data are available Cloudnet is at least as good as the ANN.
Jerónimo Escribano, Enza Di Tomaso, Oriol Jorba, Martina Klose, Maria Gonçalves Ageitos, Francesca Macchia, Vassilis Amiridis, Holger Baars, Eleni Marinou, Emmanouil Proestakis, Claudia Urbanneck, Dietrich Althausen, Johannes Bühl, Rodanthi-Elisavet Mamouri, and Carlos Pérez García-Pando
Atmos. Chem. Phys., 22, 535–560, https://doi.org/10.5194/acp-22-535-2022, https://doi.org/10.5194/acp-22-535-2022, 2022
Short summary
Short summary
We explore the benefits and consistency in adding lidar dust observations in a dust optical depth assimilation. We show that adding lidar data to a dust optical depth assimilation has valuable benefits and the dust analysis improves. We discuss the impact of the narrow satellite footprint of the lidar dust observations on the assimilation.
Frithjof Ehlers, Thomas Flament, Alain Dabas, Dimitri Trapon, Adrien Lacour, Holger Baars, and Anne Grete Straume-Lindner
Atmos. Meas. Tech., 15, 185–203, https://doi.org/10.5194/amt-15-185-2022, https://doi.org/10.5194/amt-15-185-2022, 2022
Short summary
Short summary
The Aeolus satellite observes the Earth and can vertically detect any kind of particles (aerosols or clouds) in the atmosphere below it. These observations are typically very noisy, which needs to be accounted for. This work dampens the noise in Aeolus' aerosol and cloud data, which are provided publicly by the ESA, so that the scientific community can make better use of it. This makes the data potentially more useful for weather prediction and climate research.
Moritz Haarig, Albert Ansmann, Ronny Engelmann, Holger Baars, Carlos Toledano, Benjamin Torres, Dietrich Althausen, Martin Radenz, and Ulla Wandinger
Atmos. Chem. Phys., 22, 355–369, https://doi.org/10.5194/acp-22-355-2022, https://doi.org/10.5194/acp-22-355-2022, 2022
Short summary
Short summary
The irregular shape of dust particles makes it difficult to treat them correctly in optical models. Atmospheric measurements of dust optical properties are therefore of great importance. The present study increases the space of observed parameters from 355 and 532 nm towards 1064 nm, which is of special importance for large dust particles. The lidar ratio influenced by mineralogy and the depolarization ratio influenced by shape are measured for the first time at all three wavelengths.
Martin Radenz, Johannes Bühl, Patric Seifert, Holger Baars, Ronny Engelmann, Boris Barja González, Rodanthi-Elisabeth Mamouri, Félix Zamorano, and Albert Ansmann
Atmos. Chem. Phys., 21, 17969–17994, https://doi.org/10.5194/acp-21-17969-2021, https://doi.org/10.5194/acp-21-17969-2021, 2021
Short summary
Short summary
This study brings together long-term ground-based remote-sensing observations of mixed-phase clouds at three key locations of aerosol–cloud interactions in the Northern and Southern Hemisphere midlatitudes. The findings contribute several new aspects on the nature of the excess of supercooled liquid clouds in the Southern Hemisphere, such as a long-term lidar-based estimate of ice-nucleating particle profiles as well as the effects of boundary layer coupling and gravity waves on ice formation.
Silke Trömel, Clemens Simmer, Ulrich Blahak, Armin Blanke, Sabine Doktorowski, Florian Ewald, Michael Frech, Mathias Gergely, Martin Hagen, Tijana Janjic, Heike Kalesse-Los, Stefan Kneifel, Christoph Knote, Jana Mendrok, Manuel Moser, Gregor Köcher, Kai Mühlbauer, Alexander Myagkov, Velibor Pejcic, Patric Seifert, Prabhakar Shrestha, Audrey Teisseire, Leonie von Terzi, Eleni Tetoni, Teresa Vogl, Christiane Voigt, Yuefei Zeng, Tobias Zinner, and Johannes Quaas
Atmos. Chem. Phys., 21, 17291–17314, https://doi.org/10.5194/acp-21-17291-2021, https://doi.org/10.5194/acp-21-17291-2021, 2021
Short summary
Short summary
The article introduces the ACP readership to ongoing research in Germany on cloud- and precipitation-related process information inherent in polarimetric radar measurements, outlines pathways to inform atmospheric models with radar-based information, and points to remaining challenges towards an improved fusion of radar polarimetry and atmospheric modelling.
Sebastian Düsing, Albert Ansmann, Holger Baars, Joel C. Corbin, Cyrielle Denjean, Martin Gysel-Beer, Thomas Müller, Laurent Poulain, Holger Siebert, Gerald Spindler, Thomas Tuch, Birgit Wehner, and Alfred Wiedensohler
Atmos. Chem. Phys., 21, 16745–16773, https://doi.org/10.5194/acp-21-16745-2021, https://doi.org/10.5194/acp-21-16745-2021, 2021
Short summary
Short summary
The work deals with optical properties of aerosol particles in dried and atmospheric states. Based on two measurement campaigns in the rural background of central Europe, different measurement approaches were compared with each other, such as modeling based on Mie theory and direct in situ or remote sensing measurements. Among others, it was shown that the aerosol extinction-to-backscatter ratio is relative humidity dependent, and refinement with respect to the model input parameters is needed.
Kevin Ohneiser, Albert Ansmann, Alexandra Chudnovsky, Ronny Engelmann, Christoph Ritter, Igor Veselovskii, Holger Baars, Henriette Gebauer, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, and Marion Maturilli
Atmos. Chem. Phys., 21, 15783–15808, https://doi.org/10.5194/acp-21-15783-2021, https://doi.org/10.5194/acp-21-15783-2021, 2021
Short summary
Short summary
The highlight of the lidar measurements during the 1-year MOSAiC (Multidisciplinary drifting Observatory for the Study of Arctic Climate) expedition of the German icebreaker Polarstern (October 2019–October 2020) was the detection of a persistent, 10 km deep Siberian wildfire smoke layer in the upper troposphere and lower stratosphere (UTLS) from about 7–8 km to 17–18 km height that could potentially have impacted the record-breaking ozone depletion over the Arctic in the spring of 2020.
Mariana Adam, Iwona S. Stachlewska, Lucia Mona, Nikolaos Papagiannopoulos, Juan Antonio Bravo-Aranda, Michaël Sicard, Doina N. Nicolae, Livio Belegante, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christina-Anna Papanikolaou, Nikolaos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Arnoud Apituley, Ina Mattis, Anatoli Chaikovsky, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-759, https://doi.org/10.5194/acp-2021-759, 2021
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters, based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke.
Ronny Engelmann, Albert Ansmann, Kevin Ohneiser, Hannes Griesche, Martin Radenz, Julian Hofer, Dietrich Althausen, Sandro Dahlke, Marion Maturilli, Igor Veselovskii, Cristofer Jimenez, Robert Wiesen, Holger Baars, Johannes Bühl, Henriette Gebauer, Moritz Haarig, Patric Seifert, Ulla Wandinger, and Andreas Macke
Atmos. Chem. Phys., 21, 13397–13423, https://doi.org/10.5194/acp-21-13397-2021, https://doi.org/10.5194/acp-21-13397-2021, 2021
Short summary
Short summary
A Raman lidar was operated aboard the icebreaker Polarstern during MOSAiC and monitored aerosol and cloud layers in the central Arctic up to 30 km height. The article provides an overview of the spectrum of aerosol profiling observations and shows aerosol–cloud interaction studies for liquid-water and ice clouds. A highlight was the detection of a 10 km deep wildfire smoke layer over the North Pole up to 17 km height from the fire season of 2019, which persisted over the whole winter period.
Yun He, Yunfei Zhang, Fuchao Liu, Zhenping Yin, Yang Yi, Yifan Zhan, and Fan Yi
Atmos. Meas. Tech., 14, 5939–5954, https://doi.org/10.5194/amt-14-5939-2021, https://doi.org/10.5194/amt-14-5939-2021, 2021
Short summary
Short summary
The POLIPHON method can retrieve the height profiles of dust-related particle mass and ice-nucleating particle (INP) concentrations. Applying a dust case data set screening scheme based on the lidar-derived depolarization ratio (rather than Ångström exponent for 440–870 nm and AOD at 532 nm), the mixed-dust-related conversion factors are retrieved from sun photometer observations over Wuhan, China. This method may potentially be extended to regions influenced by mixed dust.
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Short summary
An experimental assessment of a polarized micro-pulse lidar (P-MPL) in comparison to reference lidars is presented regarding the retrieval of aerosol optical properties. The evaluation is focused on both the optimally determined overlap function and volume linear depolarization ratio. A P-MPL overlap must be regularly estimated to derive suitable aerosol products (backscatter, extinction, and particle depolarization ratio). This methodology can be easily applied to other P-MPL systems.
Hannes J. Griesche, Kevin Ohneiser, Patric Seifert, Martin Radenz, Ronny Engelmann, and Albert Ansmann
Atmos. Chem. Phys., 21, 10357–10374, https://doi.org/10.5194/acp-21-10357-2021, https://doi.org/10.5194/acp-21-10357-2021, 2021
Short summary
Short summary
Heterogeneous ice formation in Arctic mixed-phase clouds under consideration of their surface-coupling state is investigated. Cloud phase and macrophysical properties were determined by means of lidar and cloud radar measurements, the coupling state, and cloud minimum temperature by radiosonde profiles. Above −15 °C cloud minimum temperature, surface-coupled clouds are more likely to contain ice by a factor of 2–6. By means of a literature survey, causes of the observed effects are discussed.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Marie Choël, Nicolas Visez, and Mikhail Korenskiy
Atmos. Meas. Tech., 14, 4773–4786, https://doi.org/10.5194/amt-14-4773-2021, https://doi.org/10.5194/amt-14-4773-2021, 2021
Short summary
Short summary
The multiwavelength Mie–Raman–fluorescence lidar of the University of Lille was used to characterize aerosols during the pollen season in the north of France for the period March–June 2020. The results of observations demonstrate that the presence of pollen grains in aerosol mixtures leads to an increase in the depolarization ratio and to the enhancement of the fluorescence backscattering.
Albert Ansmann, Kevin Ohneiser, Rodanthi-Elisavet Mamouri, Daniel A. Knopf, Igor Veselovskii, Holger Baars, Ronny Engelmann, Andreas Foth, Cristofer Jimenez, Patric Seifert, and Boris Barja
Atmos. Chem. Phys., 21, 9779–9807, https://doi.org/10.5194/acp-21-9779-2021, https://doi.org/10.5194/acp-21-9779-2021, 2021
Short summary
Short summary
We present retrievals of tropospheric and stratospheric height profiles of particle mass, volume, surface area concentration of wildfire smoke layers, and related cloud condensation nuclei (CCN) and ice-nucleating particle (INP) concentrations. The new analysis scheme is applied to ground-based lidar observations of stratospheric Australian smoke over southern South America and to spaceborne lidar observations of tropospheric North American smoke.
Aurélien Chauvigné, Fabien Waquet, Frédérique Auriol, Luc Blarel, Cyril Delegove, Oleg Dubovik, Cyrille Flamant, Marco Gaetani, Philippe Goloub, Rodrigue Loisil, Marc Mallet, Jean-Marc Nicolas, Frédéric Parol, Fanny Peers, Benjamin Torres, and Paola Formenti
Atmos. Chem. Phys., 21, 8233–8253, https://doi.org/10.5194/acp-21-8233-2021, https://doi.org/10.5194/acp-21-8233-2021, 2021
Short summary
Short summary
This work presents aerosol above-cloud properties close to the Namibian coast from a combination of airborne passive remote sensing. The complete analysis of aerosol and cloud optical properties and their microphysical and radiative properties allows us to better identify the impacts of biomass burning emissions. This work also gives a complete overview of the key parameters for constraining climate models in case aerosol and cloud coexist in the troposphere.
Maria Kezoudi, Matthias Tesche, Helen Smith, Alexandra Tsekeri, Holger Baars, Maximilian Dollner, Víctor Estellés, Johannes Bühl, Bernadett Weinzierl, Zbigniew Ulanowski, Detlef Müller, and Vassilis Amiridis
Atmos. Chem. Phys., 21, 6781–6797, https://doi.org/10.5194/acp-21-6781-2021, https://doi.org/10.5194/acp-21-6781-2021, 2021
Short summary
Short summary
Mineral dust concentrations in the diameter range from 0.4 to 14.0 μm were measured with the balloon-borne UCASS optical particle counter. Launches were coordinated with ground-based remote-sensing and airborne in situ measurements during a Saharan dust outbreak over Cyprus. Particle number concentrations reached 50 cm−3 for the diameter range 0.8–13.9 μm. Comparisons with aircraft data show reasonable agreement in magnitude and shape of the particle size distribution.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Johannes Bühl, Martin Radenz, Patric Seifert, Jörg Wieder, Annika Lauber, Julie T. Pasquier, Ronny Engelmann, Claudia Mignani, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 6681–6706, https://doi.org/10.5194/acp-21-6681-2021, https://doi.org/10.5194/acp-21-6681-2021, 2021
Short summary
Short summary
Orographic mixed-phase clouds are an important source of precipitation, but the ice formation processes within them remain uncertain. Here we investigate the origin of ice crystals in a mixed-phase cloud in the Swiss Alps using aerosol and cloud data from in situ and remote sensing observations. We found that ice formation primarily occurs in cloud top generating cells. Our results indicate that secondary ice processes are active in the feeder region, which can enhance orographic precipitation.
Ioana Elisabeta Popovici, Zhaoze Deng, Philippe Goloub, Xiangao Xia, Hongbin Chen, Luc Blarel, Thierry Podvin, Yitian Hao, Hongyan Chen, Disong Fu, Nan Yin, Benjamin Torres, Stéphane Victori, and Xuehua Fan
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1269, https://doi.org/10.5194/acp-2020-1269, 2021
Preprint withdrawn
Short summary
Short summary
This study reports results from MOABAI campaign (Mobile Observation of Atmosphere By vehicle-borne Aerosol measurement Instruments) in North China Plain in may 2017, a unique campaign involving a van equipped with remote sensing and in situ instruments to perform on-road mobile measurements. Aerosol optical properties and mass concentration profiles were derived, capturing the fine spatial distribution of pollution and concentration levels.
Carmen Córdoba-Jabonero, Michaël Sicard, María-Ángeles López-Cayuela, Albert Ansmann, Adolfo Comerón, María-Paz Zorzano, Alejandro Rodríguez-Gómez, and Constantino Muñoz-Porcar
Atmos. Chem. Phys., 21, 6455–6479, https://doi.org/10.5194/acp-21-6455-2021, https://doi.org/10.5194/acp-21-6455-2021, 2021
Short summary
Short summary
The particular pathway of dust outbreaks defines the aerosol scenario and short-wave (SW) dust direct radiative effect (DRE). The synergetic use of POLIPHON method with continuous P-MPL measurements allows SW DRE of coarse (Dc) and fine (Df) dust particles to be evaluated separately. A dust-induced cooling effect is found, and despite Dc usually being dominant in intense dust events, the Df contribution to the total DRE can be significant, being higher at the top of atmosphere than on surface.
Ville Vakkari, Holger Baars, Stephanie Bohlmann, Johannes Bühl, Mika Komppula, Rodanthi-Elisavet Mamouri, and Ewan James O'Connor
Atmos. Chem. Phys., 21, 5807–5820, https://doi.org/10.5194/acp-21-5807-2021, https://doi.org/10.5194/acp-21-5807-2021, 2021
Short summary
Short summary
The depolarization ratio is a valuable parameter for aerosol categorization from remote sensing measurements. Here, we introduce particle depolarization ratio measurements at the 1565 nm wavelength, which is substantially longer than previously utilized wavelengths and enhances our capabilities to study the wavelength dependency of the particle depolarization ratio.
Fabiola Ramelli, Jan Henneberger, Robert O. David, Annika Lauber, Julie T. Pasquier, Jörg Wieder, Johannes Bühl, Patric Seifert, Ronny Engelmann, Maxime Hervo, and Ulrike Lohmann
Atmos. Chem. Phys., 21, 5151–5172, https://doi.org/10.5194/acp-21-5151-2021, https://doi.org/10.5194/acp-21-5151-2021, 2021
Short summary
Short summary
Interactions between dynamics, microphysics and orography can enhance precipitation. Yet the exact role of these interactions is still uncertain. Here we investigate the role of low-level blocking and turbulence for precipitation by combining remote sensing and in situ observations. The observations show that blocked flow can induce the formation of feeder clouds and that turbulence can enhance hydrometeor growth, demonstrating the importance of local flow effects for orographic precipitation.
Martin Radenz, Patric Seifert, Holger Baars, Athena Augusta Floutsi, Zhenping Yin, and Johannes Bühl
Atmos. Chem. Phys., 21, 3015–3033, https://doi.org/10.5194/acp-21-3015-2021, https://doi.org/10.5194/acp-21-3015-2021, 2021
Fuchao Liu, Fan Yi, Zhenping Yin, Yunpeng Zhang, Yun He, and Yang Yi
Atmos. Chem. Phys., 21, 2981–2998, https://doi.org/10.5194/acp-21-2981-2021, https://doi.org/10.5194/acp-21-2981-2021, 2021
Short summary
Short summary
Using high-resolution lidar measurements, this process-based study reveals that the clear-day convective boundary layer evolves in four distinct stages differing in depth growth rate and depth fluctuation magnitudes. The accompanying entrainment zone thickness (EZT) shows a discrepancy in statistical mean and standard deviation for different seasons and developing stages. Common EZT characteristics also exist. These findings help us understand the atmospheric boundary layer evolution.
Maria Mylonaki, Elina Giannakaki, Alexandros Papayannis, Christina-Anna Papanikolaou, Mika Komppula, Doina Nicolae, Nikolaos Papagiannopoulos, Aldo Amodeo, Holger Baars, and Ourania Soupiona
Atmos. Chem. Phys., 21, 2211–2227, https://doi.org/10.5194/acp-21-2211-2021, https://doi.org/10.5194/acp-21-2211-2021, 2021
Short summary
Short summary
We introduce an automated aerosol type classification method, SCAN. The output of SCAN is compared with two aerosol classification methods: (1) the Mahalanobis distance automatic aerosol type classification and (2) a neural network aerosol typing algorithm. A total of 97 free tropospheric aerosol layers from four EARLINET stations in the period 2014–2018 were classified.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Olivier Pujol, Oleg Dubovik, and Anton Lopatin
Atmos. Meas. Tech., 13, 6691–6701, https://doi.org/10.5194/amt-13-6691-2020, https://doi.org/10.5194/amt-13-6691-2020, 2020
Short summary
Short summary
To study the feasibility of a fluorescence lidar for aerosol characterization, the fluorescence channel is added to the multiwavelength Mie-Raman lidar of Lille University. A part of the fluorescence spectrum is selected by the interference filter of 44 nm bandwidth centered at 466 nm. Such an approach has demonstrated high sensitivity, allowing fluorescence signals from weak aerosol layers to be detected. The technique can also be used for monitoring the aerosol inside the cloud layers.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Jörg Schmidt, Patric Seifert, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15247–15263, https://doi.org/10.5194/acp-20-15247-2020, https://doi.org/10.5194/acp-20-15247-2020, 2020
Short summary
Short summary
A novel lidar method to study cloud microphysical properties (of liquid water clouds) and to study aerosol–cloud interaction (ACI) is developed and presented in this paper. In Part 1, the theoretical framework including an error analysis is given together with an overview of the aerosol information that the same lidar system can obtain. The ACI concept based on aerosol and cloud information is also explained. Applications of the proposed approach to lidar measurements are presented in Part 2.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, David Donovan, Aleksey Malinka, Patric Seifert, Robert Wiesen, Martin Radenz, Zhenping Yin, Johannes Bühl, Jörg Schmidt, Boris Barja, and Ulla Wandinger
Atmos. Chem. Phys., 20, 15265–15284, https://doi.org/10.5194/acp-20-15265-2020, https://doi.org/10.5194/acp-20-15265-2020, 2020
Short summary
Short summary
Part 2 presents the application of the dual-FOV polarization lidar technique introduced in Part 1. A lidar system was upgraded with a second polarization telescope, and it was deployed at the southernmost tip of South America. A comparison with alternative remote sensing techniques and the evaluation of the aerosol–cloud–wind relation in a convective boundary layer in pristine marine conditions are presented in two case studies, demonstrating the potential of the approach for ACI studies.
Martin Bauch, Thomas Labbé, Annabell Engel, and Patric Seifert
Clim. Past, 16, 2343–2358, https://doi.org/10.5194/cp-16-2343-2020, https://doi.org/10.5194/cp-16-2343-2020, 2020
Short summary
Short summary
The onset of Little Ice Age cooling around 1310 CE was preceded in Europe by a series of droughts in the first decade of the 14th century that were uniquely severe in the period 1200–1400. Based mainly on information from chronicles and other historical texts, we reconstructed the socioeconomic and cultural impact of these events but also a seesaw pattern of multiannual droughts in the Mediterranean and Europe north of the Alps that has remarkable resemblances to the 2018–2019 dry period.
Anna Gialitaki, Alexandra Tsekeri, Vassilis Amiridis, Romain Ceolato, Lucas Paulien, Anna Kampouri, Antonis Gkikas, Stavros Solomos, Eleni Marinou, Moritz Haarig, Holger Baars, Albert Ansmann, Tatyana Lapyonok, Anton Lopatin, Oleg Dubovik, Silke Groß, Martin Wirth, Maria Tsichla, Ioanna Tsikoudi, and Dimitris Balis
Atmos. Chem. Phys., 20, 14005–14021, https://doi.org/10.5194/acp-20-14005-2020, https://doi.org/10.5194/acp-20-14005-2020, 2020
Short summary
Short summary
Stratospheric smoke particles are found to significantly depolarize incident light, while this effect is also accompanied by a strong spectral dependence. We utilize scattering simulations to show that this behaviour can be attributed to the near-spherical shape of the particles. We also examine whether an extension of the current AERONET scattering model to include the near-spherical shapes could be of benefit to the AERONET retrieval for stratospheric smoke associated with enhanced PLDR.
Qiaoyun Hu, Haofei Wang, Philippe Goloub, Zhengqiang Li, Igor Veselovskii, Thierry Podvin, Kaitao Li, and Mikhail Korenskiy
Atmos. Chem. Phys., 20, 13817–13834, https://doi.org/10.5194/acp-20-13817-2020, https://doi.org/10.5194/acp-20-13817-2020, 2020
Short summary
Short summary
This study presents the characteristics of Taklamakan dust particles derived from lidar measurements collected in the dust aerosol observation field campaign. It provides comprehensive parameters for Taklamakan dust properties and vertical distributions of Taklamakan dust. This paper also points out the importance of polluted dust which was frequently observed in the field campaign. The results contribute to improving knowledge about dust and reducing uncertainties in the climatic model.
Holger Baars, Alina Herzog, Birgit Heese, Kevin Ohneiser, Karsten Hanbuch, Julian Hofer, Zhenping Yin, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 13, 6007–6024, https://doi.org/10.5194/amt-13-6007-2020, https://doi.org/10.5194/amt-13-6007-2020, 2020
Short summary
Short summary
A first validation for the European satellite Aeolus is presented. Aeolus is the first satellite that can actively measure horizontal wind profiles from space.
Radiosonde launches on board the German research vessel Polarstern have been utilized to validate Aeolus observations over the Atlantic Ocean, a region where almost no other reference measurements are available. It is shown that Aeolus is able to measure accurately atmospheric winds and thus may significantly improve weather forecasts.
Hannes J. Griesche, Patric Seifert, Albert Ansmann, Holger Baars, Carola Barrientos Velasco, Johannes Bühl, Ronny Engelmann, Martin Radenz, Yin Zhenping, and Andreas Macke
Atmos. Meas. Tech., 13, 5335–5358, https://doi.org/10.5194/amt-13-5335-2020, https://doi.org/10.5194/amt-13-5335-2020, 2020
Short summary
Short summary
In summer 2017, the research vessel Polarstern performed cruise PS106 to the Arctic north of Svalbard. In the frame of the cruise, remote-sensing observations of the atmosphere were performed on Polarstern to continuously monitor aerosol and clouds above the vessel. In our study, we present the deployed instrumentation and applied data analysis methods and provide case studies of the aerosol and cloud observations made during the cruise. Statistics of low-cloud occurrence are presented as well.
Nikolaos Papagiannopoulos, Giuseppe D'Amico, Anna Gialitaki, Nicolae Ajtai, Lucas Alados-Arboledas, Aldo Amodeo, Vassilis Amiridis, Holger Baars, Dimitris Balis, Ioannis Binietoglou, Adolfo Comerón, Davide Dionisi, Alfredo Falconieri, Patrick Fréville, Anna Kampouri, Ina Mattis, Zoran Mijić, Francisco Molero, Alex Papayannis, Gelsomina Pappalardo, Alejandro Rodríguez-Gómez, Stavros Solomos, and Lucia Mona
Atmos. Chem. Phys., 20, 10775–10789, https://doi.org/10.5194/acp-20-10775-2020, https://doi.org/10.5194/acp-20-10775-2020, 2020
Short summary
Short summary
Volcanic and desert dust particles affect human activities in manifold ways; consequently, mitigation tools are important. Their early detection and the issuance of early warnings are key elements in the initiation of operational response procedures. A methodology for the early warning of these hazards using European Aerosol Research Lidar Network (EARLINET) data is presented. The tailored product is investigated during a volcanic eruption and mineral dust advected in the eastern Mediterranean.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Khanneh Wadinga Fomba, Ulla Wandinger, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 9265–9280, https://doi.org/10.5194/acp-20-9265-2020, https://doi.org/10.5194/acp-20-9265-2020, 2020
Short summary
Short summary
For the first time, a dense data set of particle extinction-to-backscatter ratios (lidar ratios), depolarization ratios, and backscatter- and extinction-related Ångström exponents for a Central Asian site are presented. The observations were performed with a continuously running multiwavelength polarization Raman lidar at Dushanbe, Tajikistan, during an 18-month campaign. The found optical properties reflect the large range of occurring aerosol mixtures.
Maria Filioglou, Elina Giannakaki, John Backman, Jutta Kesti, Anne Hirsikko, Ronny Engelmann, Ewan O'Connor, Jari T. T. Leskinen, Xiaoxia Shang, Hannele Korhonen, Heikki Lihavainen, Sami Romakkaniemi, and Mika Komppula
Atmos. Chem. Phys., 20, 8909–8922, https://doi.org/10.5194/acp-20-8909-2020, https://doi.org/10.5194/acp-20-8909-2020, 2020
Short summary
Short summary
Dust optical properties are region-dependent. Saharan, Asian, and Arabian dusts do not pose similar optical properties in terms of lidar ratios; thus, a universal lidar ratio for dust particles will lead to biases. The present study analyses observations over the United Arab Emirates, quantifying the optical and geometrical extents of the aerosol layers in the area, providing at the same time the Arabian dust properties along with chemical analysis of dust samples collected in the region.
Haofei Wang, Zhengqiang Li, Yang Lv, Ying Zhang, Hua Xu, Jianping Guo, and Philippe Goloub
Atmos. Chem. Phys., 20, 8839–8854, https://doi.org/10.5194/acp-20-8839-2020, https://doi.org/10.5194/acp-20-8839-2020, 2020
Short summary
Short summary
Lidar shows good performance in calculating the convective layer height in the daytime and the residual layer height at night, as well as having the potential to describe the stable layer height at night. The MLH seasonal change in Beijing indicates that it is low in winter and autumn and high in spring and summer. From 2014 to 2018, the magnitude of the diurnal cycle of MLH increased year by year. MLH from lidar shows better accuracy than a radiosonde when calculating surface pollution.
Mariana Adam, Doina Nicolae, Livio Belegante, Iwona S. Stachlewska, Lucja Janicka, Dominika Szczepanik, Maria Mylonaki, Christiana Anna Papanikolaou, Nikos Siomos, Kalliopi Artemis Voudouri, Luca Alados-Arboledas, Juan Antonio Bravo-Aranda, Arnoud Apituley, Nikolaos Papagiannopoulos, Lucia Mona, Ina Mattis, Anatoli Chaikovsky, Michaël Sicard, Constantino Muñoz-Porcar, Aleksander Pietruczuk, Daniele Bortoli, Holger Baars, Ivan Grigorov, and Zahary Peshev
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-647, https://doi.org/10.5194/acp-2020-647, 2020
Revised manuscript not accepted
Short summary
Short summary
Results over 10 years of biomass burning events measured by EARLINET are analysed by means of the intensive parameters based on the methodology described in Part I. Smoke type is characterized for each of the four geographical regions based on continental smoke origin. Relationships between intensive parameters or colour ratios are shown. The smoke is labelled in average as aged smoke. The local smoke has a smaller lidar ratio while the depolarization is smaller for long range transported smoke.
Christa Genz, Roland Schrödner, Bernd Heinold, Silvia Henning, Holger Baars, Gerald Spindler, and Ina Tegen
Atmos. Chem. Phys., 20, 8787–8806, https://doi.org/10.5194/acp-20-8787-2020, https://doi.org/10.5194/acp-20-8787-2020, 2020
Short summary
Short summary
Atmospheric aerosols are the precondition for the formation of cloud droplets and thus have a large influence on cloud properties. Concentrations of cloud condensation nuclei of the period with highest aerosol concentrations over central Europe are uncertain. In this work, modeled estimates of CCN from today and the mid-1980s are compared to available in situ and remote sensing observations. A scaling factor between today and the 1980s for the CCN concentrations has been derived.
Kevin Ohneiser, Albert Ansmann, Holger Baars, Patric Seifert, Boris Barja, Cristofer Jimenez, Martin Radenz, Audrey Teisseire, Athina Floutsi, Moritz Haarig, Andreas Foth, Alexandra Chudnovsky, Ronny Engelmann, Félix Zamorano, Johannes Bühl, and Ulla Wandinger
Atmos. Chem. Phys., 20, 8003–8015, https://doi.org/10.5194/acp-20-8003-2020, https://doi.org/10.5194/acp-20-8003-2020, 2020
Short summary
Short summary
Unique lidar observations of a strong perturbation in stratospheric aerosol conditions in the Southern Hemisphere caused by the extreme Australian bushfires in 2019–2020 are presented. One of the main goals of this article is to provide the CALIPSO and Aeolus spaceborne lidar science teams with basic input parameters (lidar ratios, depolarization ratios) for a trustworthy documentation of this record-breaking event.
Igor Veselovskii, Qiaoyun Hu, Philippe Goloub, Thierry Podvin, Mikhail Korenskiy, Yevgeny Derimian, Michel Legrand, and Patricia Castellanos
Atmos. Chem. Phys., 20, 6563–6581, https://doi.org/10.5194/acp-20-6563-2020, https://doi.org/10.5194/acp-20-6563-2020, 2020
Short summary
Short summary
Atmospheric dust has a significant impact on the Earth's climate system, and this impact remains highly uncertain. The desert dust is always a mixture of various minerals, and the imaginary part of the complex refractive index often exhibits an increase in UV for dust containing iron oxides. Our results demonstrate that multiwavelength Raman lidar measurements allow for the characterization of the spectral dependence of the imaginary part of dust.
Athena Augusta Floutsi, Holger Baars, Martin Radenz, Moritz Haarig, Zhenping Yin, Patric Seifert, Cristofer Jimenez, Ulla Wandinger, Ronny Engelmann, Boris Barja, Felix Zamorano, and Albert Ansmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-453, https://doi.org/10.5194/acp-2020-453, 2020
Preprint withdrawn
Montserrat Costa-Surós, Odran Sourdeval, Claudia Acquistapace, Holger Baars, Cintia Carbajal Henken, Christa Genz, Jonas Hesemann, Cristofer Jimenez, Marcel König, Jan Kretzschmar, Nils Madenach, Catrin I. Meyer, Roland Schrödner, Patric Seifert, Fabian Senf, Matthias Brueck, Guido Cioni, Jan Frederik Engels, Kerstin Fieg, Ksenia Gorges, Rieke Heinze, Pavan Kumar Siligam, Ulrike Burkhardt, Susanne Crewell, Corinna Hoose, Axel Seifert, Ina Tegen, and Johannes Quaas
Atmos. Chem. Phys., 20, 5657–5678, https://doi.org/10.5194/acp-20-5657-2020, https://doi.org/10.5194/acp-20-5657-2020, 2020
Short summary
Short summary
The impact of anthropogenic aerosols on clouds is a key uncertainty in climate change. This study analyses large-domain simulations with a new high-resolution model to investigate the differences in clouds between 1985 and 2013 comparing multiple observational datasets. The differences in aerosol and in cloud droplet concentrations are clearly detectable. For other quantities, the detection and attribution proved difficult, despite a substantial impact on the Earth's energy budget.
Julian Hofer, Albert Ansmann, Dietrich Althausen, Ronny Engelmann, Holger Baars, Sabur F. Abdullaev, and Abduvosit N. Makhmudov
Atmos. Chem. Phys., 20, 4695–4711, https://doi.org/10.5194/acp-20-4695-2020, https://doi.org/10.5194/acp-20-4695-2020, 2020
Short summary
Short summary
For the first time, continuous, vertically resolved long-term aerosol measurements were conducted with a state-of-the-art multiwavelength lidar over a Central Asian site. Such observations are urgently required in efforts to predict future climate and environmental conditions and to support spaceborne remote sensing (ground truth activities).
Carola Barrientos Velasco, Hartwig Deneke, Hannes Griesche, Patric Seifert, Ronny Engelmann, and Andreas Macke
Atmos. Meas. Tech., 13, 1757–1775, https://doi.org/10.5194/amt-13-1757-2020, https://doi.org/10.5194/amt-13-1757-2020, 2020
Short summary
Short summary
In the changing Arctic, quantifying the resulting variability of incoming solar radiation is important to better elucidate the net radiative effect of clouds. As part of a multidisciplinary expedition in the central Arctic held in early summer 2017, a novel network of pyranometers was deployed over an ice floe to investigate the spatiotemporal variability of solar radiation under different sky conditions. This study presents the collected data and an analysis of the spatiotemporal variability.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen
Atmos. Chem. Phys., 20, 2177–2199, https://doi.org/10.5194/acp-20-2177-2020, https://doi.org/10.5194/acp-20-2177-2020, 2020
Short summary
Short summary
Spaceborne retrievals of cloud phase were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid clouds. This analysis showed that at equal temperature the average occurrence of ice clouds increases for higher dust mixing ratios on a day-to-day basis in the middle and high latitudes. This indicates that mineral dust may have a strong impact on the occurrence of ice clouds even in remote areas.
Elina Giannakaki, Panos Kokkalis, Eleni Marinou, Nikolaos S. Bartsotas, Vassilis Amiridis, Albert Ansmann, and Mika Komppula
Atmos. Meas. Tech., 13, 893–905, https://doi.org/10.5194/amt-13-893-2020, https://doi.org/10.5194/amt-13-893-2020, 2020
Short summary
Short summary
A new method, called ElEx, is proposed for the estimation of extinction coefficient lidar profiles using only the information provided by the elastic and polarization channels of a lidar system. The method is applicable to lidar measurements both during daytime and nighttime under well-defined aerosol mixtures. Comparisons with both Raman lidar profiles during nightime and sun photometer daytime aerosol optical depth observations demonstrate the potential of the ElEx methodology.
Johannes Bühl, Patric Seifert, Martin Radenz, Holger Baars, and Albert Ansmann
Atmos. Meas. Tech., 12, 6601–6617, https://doi.org/10.5194/amt-12-6601-2019, https://doi.org/10.5194/amt-12-6601-2019, 2019
Short summary
Short summary
In the present paper, we present a novel remote-sensing technique for the measurement of ice crystal number concentrations in clouds. The fall velocity of ice crystals measured with values from cloud radar and a radar wind profiler is used in order to derive information about ice crystal size and number concentration. In contrast to existing methods based on the combination of lidar and cloud radar, the present method can also be used in optically thick clouds.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Johannes Bühl, Patric Seifert, Ronny Engelmann, Julian Hofer, Argyro Nisantzi, James D. Atkinson, Zamin A. Kanji, Berko Sierau, Mihalis Vrekoussis, and Jean Sciare
Atmos. Chem. Phys., 19, 15087–15115, https://doi.org/10.5194/acp-19-15087-2019, https://doi.org/10.5194/acp-19-15087-2019, 2019
Short summary
Short summary
For the first time, a closure study of the relationship between the ice-nucleating particle concentration (INPC) and ice crystal number concentration (ICNC) in altocumulus and cirrus layers, solely based on ground-based active remote sensing, is presented. The closure studies were conducted in Cyprus. A focus was on altocumulus and cirrus layers which developed in pronounced Saharan dust layers. The closure studies show that heterogeneous ice nucleation can play a dominant role in ice formation.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Carlos Toledano, Benjamín Torres, Cristian Velasco-Merino, Dietrich Althausen, Silke Groß, Matthias Wiegner, Bernadett Weinzierl, Josef Gasteiger, Albert Ansmann, Ramiro González, David Mateos, David Farrel, Thomas Müller, Moritz Haarig, and Victoria E. Cachorro
Atmos. Chem. Phys., 19, 14571–14583, https://doi.org/10.5194/acp-19-14571-2019, https://doi.org/10.5194/acp-19-14571-2019, 2019
Short summary
Short summary
Ground-based sun photometers have been used to analyze the properties of long-range transported Saharan dust over Barbados. The measurements were carried out as part of the Saharan Aerosol Long-Range Transport and Aerosol–Cloud-Interaction Experiment (SALTRACE), carried out in the Caribbean in 2013. A variety of instruments, ground-based and airborne, were used in this research. In this paper, the sun photometer data are presented and related to data collected from other co-located instruments.
Rebecca M. Pauly, John E. Yorks, Dennis L. Hlavka, Matthew J. McGill, Vassilis Amiridis, Stephen P. Palm, Sharon D. Rodier, Mark A. Vaughan, Patrick A. Selmer, Andrew W. Kupchock, Holger Baars, and Anna Gialitaki
Atmos. Meas. Tech., 12, 6241–6258, https://doi.org/10.5194/amt-12-6241-2019, https://doi.org/10.5194/amt-12-6241-2019, 2019
Short summary
Short summary
The Cloud Aerosol Transport System (CATS) demonstrated that direct calibration of 1064 nm lidar data from a spaceborne platform is possible. By normalizing the CATS signal to a modeled molecular backscatter profile the CATS data were calibrated, enabling the derivation of optical properties of clouds and aerosols. Comparisons of the calibrated signal with airborne lidar, ground-based lidar, and spaceborne lidar all show agreement within the estimated error bars of the respective instruments.
Marie Boichu, Olivier Favez, Véronique Riffault, Jean-Eudes Petit, Yunjiang Zhang, Colette Brogniez, Jean Sciare, Isabelle Chiapello, Lieven Clarisse, Shouwen Zhang, Nathalie Pujol-Söhne, Emmanuel Tison, Hervé Delbarre, and Philippe Goloub
Atmos. Chem. Phys., 19, 14253–14287, https://doi.org/10.5194/acp-19-14253-2019, https://doi.org/10.5194/acp-19-14253-2019, 2019
Short summary
Short summary
This study, benefiting especially from recently developed mass spectrometry observations of aerosols, highlights unknown properties of volcanic sulfates in the troposphere. It shows their specific chemical fingerprint, distinct from those of freshly emitted industrial sulfates and background aerosols. We also demonstrate the large-scale persistence of the volcanic sulfate pollution over weeks. Hence, these results cast light on the impact of tropospheric eruptions on air quality and climate.
Moritz Haarig, Adrian Walser, Albert Ansmann, Maximilian Dollner, Dietrich Althausen, Daniel Sauer, David Farrell, and Bernadett Weinzierl
Atmos. Chem. Phys., 19, 13773–13788, https://doi.org/10.5194/acp-19-13773-2019, https://doi.org/10.5194/acp-19-13773-2019, 2019
Short summary
Short summary
Aerosol particles are necessary in forming a cloud droplet. In order to improve studies of cloud formation, the aerosol load and type below a cloud has to be measured without disturbing the cloud. The lidar is a perfect tool for this purpose, as it provides a vertical profile of the aerosol particles from the ground. We validated the lidar retrieval of cloud-relevant aerosol properties like particle number concentrations with airborne in situ measurements in the Saharan Air Layer at Barbados.
Huizheng Che, Xiangao Xia, Hujia Zhao, Oleg Dubovik, Brent N. Holben, Philippe Goloub, Emilio Cuevas-Agulló, Victor Estelles, Yaqiang Wang, Jun Zhu, Bing Qi, Wei Gong, Honglong Yang, Renjian Zhang, Leiku Yang, Jing Chen, Hong Wang, Yu Zheng, Ke Gui, Xiaochun Zhang, and Xiaoye Zhang
Atmos. Chem. Phys., 19, 11843–11864, https://doi.org/10.5194/acp-19-11843-2019, https://doi.org/10.5194/acp-19-11843-2019, 2019
Short summary
Short summary
A full-scale description of ground-based aerosol microphysical and optical properties over China is presented. Moreover, the results have also provided significant information about optical and radiative aerosol properties for different types of sites covering a broad expanse of China. The results have considerable value for ground-truthing satellite observations and validating aerosol models.
Emmanouil Proestakis, Vassilis Amiridis, Eleni Marinou, Ioannis Binietoglou, Albert Ansmann, Ulla Wandinger, Julian Hofer, John Yorks, Edward Nowottnick, Abduvosit Makhmudov, Alexandros Papayannis, Aleksander Pietruczuk, Anna Gialitaki, Arnoud Apituley, Artur Szkop, Constantino Muñoz Porcar, Daniele Bortoli, Davide Dionisi, Dietrich Althausen, Dimitra Mamali, Dimitris Balis, Doina Nicolae, Eleni Tetoni, Gian Luigi Liberti, Holger Baars, Ina Mattis, Iwona Sylwia Stachlewska, Kalliopi Artemis Voudouri, Lucia Mona, Maria Mylonaki, Maria Rita Perrone, Maria João Costa, Michael Sicard, Nikolaos Papagiannopoulos, Nikolaos Siomos, Pasquale Burlizzi, Rebecca Pauly, Ronny Engelmann, Sabur Abdullaev, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 11743–11764, https://doi.org/10.5194/acp-19-11743-2019, https://doi.org/10.5194/acp-19-11743-2019, 2019
Short summary
Short summary
To increase accuracy and validate satellite-based products, comparison with ground-based reference observations is required. To do this, we present evaluation activity of EARLINET for the qualitative and quantitative assessment of NASA's CATS lidar operating aboard the International Space Station (ISS) while identified discrepancies are discussed. Better understanding CATS performance and limitations provides a valuable basis for scientific studies implementing the satellite-based lidar system.
Lucia T. Deaconu, Nicolas Ferlay, Fabien Waquet, Fanny Peers, François Thieuleux, and Philippe Goloub
Atmos. Chem. Phys., 19, 11613–11634, https://doi.org/10.5194/acp-19-11613-2019, https://doi.org/10.5194/acp-19-11613-2019, 2019
Short summary
Short summary
We analyse and quantify the effect of above-cloud aerosol (AAC) loading on the underlying cloud properties in the South Atlantic Ocean. We use a synergy of remote sensing retrievals collocated with ERA-Interim meteorological profiles. The results show that for larger loads of AACs, clouds are optically thicker, with an increase in liquid water path by 20 g m−2 and lower cloud-top altitudes. We also observe a strong covariation between the aerosol plume and the presence of water vapour.
Martin Radenz, Johannes Bühl, Patric Seifert, Hannes Griesche, and Ronny Engelmann
Atmos. Meas. Tech., 12, 4813–4828, https://doi.org/10.5194/amt-12-4813-2019, https://doi.org/10.5194/amt-12-4813-2019, 2019
Short summary
Short summary
Clouds may be composed of more than one particle population even at the smallest scales. Cloud radar observations can contain information on multiple particle species, showing up as distinct peaks and subpeaks in the Doppler spectrum. We propose the use of binary tree structures to recursively structure these peaks. Two case studies from different locations and instruments illustrate how this approach can be used to disentangle particle populations in multilayered mixed-phase clouds.
Albert Ansmann, Rodanthi-Elisavet Mamouri, Julian Hofer, Holger Baars, Dietrich Althausen, and Sabur F. Abdullaev
Atmos. Meas. Tech., 12, 4849–4865, https://doi.org/10.5194/amt-12-4849-2019, https://doi.org/10.5194/amt-12-4849-2019, 2019
Eleni Marinou, Matthias Tesche, Athanasios Nenes, Albert Ansmann, Jann Schrod, Dimitra Mamali, Alexandra Tsekeri, Michael Pikridas, Holger Baars, Ronny Engelmann, Kalliopi-Artemis Voudouri, Stavros Solomos, Jean Sciare, Silke Groß, Florian Ewald, and Vassilis Amiridis
Atmos. Chem. Phys., 19, 11315–11342, https://doi.org/10.5194/acp-19-11315-2019, https://doi.org/10.5194/acp-19-11315-2019, 2019
Short summary
Short summary
We assess the feasibility of ground-based and spaceborne lidars to retrieve profiles of cloud-relevant aerosol concentrations and ice-nucleating particles. The retrieved profiles are in good agreement with airborne in situ measurements. Our methodology will be applied to satellite observations in the future so as to provide a global 3D product of cloud-relevant properties.
Sieglinde Callewaert, Sophie Vandenbussche, Nicolas Kumps, Arve Kylling, Xiaoxia Shang, Mika Komppula, Philippe Goloub, and Martine De Mazière
Atmos. Meas. Tech., 12, 3673–3698, https://doi.org/10.5194/amt-12-3673-2019, https://doi.org/10.5194/amt-12-3673-2019, 2019
Short summary
Short summary
This article presents the updated MAPIR algorithm, which uses infrared satellite data to obtain the global 3-D distribution of mineral aerosols. A description of the method together with its technical improvements is given. Additionally, a 10-year data set was generated and used to evaluate this new algorithm against AERONET, CALIOP, CATS and two ground-based lidar stations. We have shown that the new MAPIR algorithm provides reliable aerosol optical depth and dust layer mean altitude profiles.
Andreas Foth, Thomas Kanitz, Ronny Engelmann, Holger Baars, Martin Radenz, Patric Seifert, Boris Barja, Michael Fromm, Heike Kalesse, and Albert Ansmann
Atmos. Chem. Phys., 19, 6217–6233, https://doi.org/10.5194/acp-19-6217-2019, https://doi.org/10.5194/acp-19-6217-2019, 2019
Short summary
Short summary
In this study, we present the vertical aerosol distribution in the pristine region of the southern tip of South America determined by ground-based and spaceborne lidar observations. Most aerosol load is contained within the planetary boundary layer up to about 1200 m. The free troposphere is characterized by a very low aerosol concentration but a frequent occurrence of clouds. Lofted aerosol layers were rarely observed and, when present, were characterized by very low optical thicknesses.
Cristofer Jimenez, Albert Ansmann, Ronny Engelmann, Moritz Haarig, Jörg Schmidt, and Ulla Wandinger
Atmos. Meas. Tech., 12, 1077–1093, https://doi.org/10.5194/amt-12-1077-2019, https://doi.org/10.5194/amt-12-1077-2019, 2019
Short summary
Short summary
We propose an extended formalism for a full instrumental characterization of a three-channel lidar system, allowing the retrieval of highly accurate linear depolarization profiles. The results obtained at several depolarizing scenarios, the good agreement with the retrievals of a second collocated calibrated lidar system, and the long-term stability of the calibration parameters corroborate the potential and robustness of the new technique.
Qiaoyun Hu, Philippe Goloub, Igor Veselovskii, Juan-Antonio Bravo-Aranda, Ioana Elisabeta Popovici, Thierry Podvin, Martial Haeffelin, Anton Lopatin, Oleg Dubovik, Christophe Pietras, Xin Huang, Benjamin Torres, and Cheng Chen
Atmos. Chem. Phys., 19, 1173–1193, https://doi.org/10.5194/acp-19-1173-2019, https://doi.org/10.5194/acp-19-1173-2019, 2019
Short summary
Short summary
Smoke plumes generated in Canadian fire activities were elevated to the lower stratosphere and transported from North America to Europe. The smoke plumes were observed by three lidar systems in northern France. This study provides a comprehensive characterization for aged smoke aerosols at high altitude using lidar observations. It presents that fire activities on the Earth's surface can be an important contributor of stratospheric aerosols and impact the Earth's radiation budget.
Michael Weger, Bernd Heinold, Christa Engler, Ulrich Schumann, Axel Seifert, Romy Fößig, Christiane Voigt, Holger Baars, Ulrich Blahak, Stephan Borrmann, Corinna Hoose, Stefan Kaufmann, Martina Krämer, Patric Seifert, Fabian Senf, Johannes Schneider, and Ina Tegen
Atmos. Chem. Phys., 18, 17545–17572, https://doi.org/10.5194/acp-18-17545-2018, https://doi.org/10.5194/acp-18-17545-2018, 2018
Short summary
Short summary
The impact of desert dust on cloud formation is investigated for a major Saharan dust event over Europe by interactive regional dust modeling. Dust particles are very efficient ice-nucleating particles promoting the formation of ice crystals in clouds. The simulations show that the observed extensive cirrus development was likely related to the above-average dust load. The interactive dust–cloud feedback in the model significantly improves the agreement with aircraft and satellite observations.
Diego Villanueva, Bernd Heinold, Patric Seifert, Hartwig Deneke, Martin Radenz, and Ina Tegen
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-1074, https://doi.org/10.5194/acp-2018-1074, 2018
Revised manuscript not accepted
Short summary
Short summary
Two different satellite products were analysed together with an atmospheric composition model to assess the global frequency of ice and liquid stratiform clouds. This analysis showed that at equal temperature the average occurrence of fully glaciated stratiform clouds was found to increase for higher dust mixing-ratios on a day-to-day basis in the mid- and high latitudes. This indicates that mineral dust may have a strong impact in the occurrence of ice clouds even in remote areas.
Nikolaos Papagiannopoulos, Lucia Mona, Aldo Amodeo, Giuseppe D'Amico, Pilar Gumà Claramunt, Gelsomina Pappalardo, Lucas Alados-Arboledas, Juan Luís Guerrero-Rascado, Vassilis Amiridis, Panagiotis Kokkalis, Arnoud Apituley, Holger Baars, Anja Schwarz, Ulla Wandinger, Ioannis Binietoglou, Doina Nicolae, Daniele Bortoli, Adolfo Comerón, Alejandro Rodríguez-Gómez, Michaël Sicard, Alex Papayannis, and Matthias Wiegner
Atmos. Chem. Phys., 18, 15879–15901, https://doi.org/10.5194/acp-18-15879-2018, https://doi.org/10.5194/acp-18-15879-2018, 2018
Short summary
Short summary
A stand-alone automatic method for typing observations of the European Aerosol Research Lidar Network (EARLINET) is presented. The method compares the observations to model distributions that were constructed using EARLINET pre-classified data. The algorithm’s versatility and adaptability makes it suitable for network-wide typing studies.
Martin Radenz, Johannes Bühl, Volker Lehmann, Ulrich Görsdorf, and Ronny Leinweber
Atmos. Meas. Tech., 11, 5925–5940, https://doi.org/10.5194/amt-11-5925-2018, https://doi.org/10.5194/amt-11-5925-2018, 2018
Short summary
Short summary
Ultra-high-frequency radar wind profilers are widely used for remote sensing of horizontal and vertical wind velocity. They emit electromagnetic radiation at a wavelength of 60 cm and receive signals from both falling particles and the air itself. In this paper, we describe a method to separate both signal components with the help of an additional cloud radar system in order to come up with undisturbed measurements of both vertical air velocity and the fall velocity of particles.
Albert Ansmann, Holger Baars, Alexandra Chudnovsky, Ina Mattis, Igor Veselovskii, Moritz Haarig, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Chem. Phys., 18, 11831–11845, https://doi.org/10.5194/acp-18-11831-2018, https://doi.org/10.5194/acp-18-11831-2018, 2018
Short summary
Short summary
Extremely large light extinction coefficients of 500 Mm-1, about 20 times higher than after the Pinatubo volcanic eruptions in 1991, were observed by EARLINET lidars in the stratosphere over central Europe from 21 to 22 August, 2017. This paper provides an overview based on ground-based (lidar, AERONET) and satellite (MODIS, OMI) remote sensing.
Moritz Haarig, Albert Ansmann, Holger Baars, Cristofer Jimenez, Igor Veselovskii, Ronny Engelmann, and Dietrich Althausen
Atmos. Chem. Phys., 18, 11847–11861, https://doi.org/10.5194/acp-18-11847-2018, https://doi.org/10.5194/acp-18-11847-2018, 2018
Short summary
Short summary
The worldwide only triple-wavelength polarization/Raman lidar was used to measure optical, microphysical, and morphological properties of aged Canadian wildfire smoke occurring in the troposphere and stratosphere over Leipzig, Germany, in August 2017. A strong contrast between the tropospheric and stratospheric smoke properties was found.
Carmen Córdoba-Jabonero, Michaël Sicard, Albert Ansmann, Ana del Águila, and Holger Baars
Atmos. Meas. Tech., 11, 4775–4795, https://doi.org/10.5194/amt-11-4775-2018, https://doi.org/10.5194/amt-11-4775-2018, 2018
Short summary
Short summary
The high potential of the MPLNET polarized Micro-Pulse LiDAR (P-MPL) is demonstrated in synergy with the POLIPHON (POlarization-LIdar PHOtometer Networking) method to retrieve the vertical separation of both the optical and mass features of the dust, smoke and pollen components mixed with other aerosols. This synergetic procedure can be easily applied to the worldwide MPLNET lidar systems and to space-borne lidars: the ongoing NASA CALIPSO/CALIOP and the forthcoming ESA EarthCARE/ATLID.
Ioana Elisabeta Popovici, Philippe Goloub, Thierry Podvin, Luc Blarel, Rodrigue Loisil, Florin Unga, Augustin Mortier, Christine Deroo, Stéphane Victori, Fabrice Ducos, Benjamin Torres, Cyril Delegove, Marie Choël, Nathalie Pujol-Söhne, and Christophe Pietras
Atmos. Meas. Tech., 11, 4671–4691, https://doi.org/10.5194/amt-11-4671-2018, https://doi.org/10.5194/amt-11-4671-2018, 2018
Short summary
Short summary
This paper aims to show the potential of an instrumented mobile platform, performing on-road remote sensing and in situ measurements, to derive aerosol properties. It is distinguished from other transportable platforms through its ability to perform measurements during movement. Its reduced size, versatility and great flexibility makes it suitable for following sudden aerosol events and for validating satellite measurements and model simulations.
Daniel Moran-Zuloaga, Florian Ditas, David Walter, Jorge Saturno, Joel Brito, Samara Carbone, Xuguang Chi, Isabella Hrabě de Angelis, Holger Baars, Ricardo H. M. Godoi, Birgit Heese, Bruna A. Holanda, Jošt V. Lavrič, Scot T. Martin, Jing Ming, Mira L. Pöhlker, Nina Ruckteschler, Hang Su, Yaqiang Wang, Qiaoqiao Wang, Zhibin Wang, Bettina Weber, Stefan Wolff, Paulo Artaxo, Ulrich Pöschl, Meinrat O. Andreae, and Christopher Pöhlker
Atmos. Chem. Phys., 18, 10055–10088, https://doi.org/10.5194/acp-18-10055-2018, https://doi.org/10.5194/acp-18-10055-2018, 2018
Short summary
Short summary
This study presents multiple years of aerosol coarse mode observations at the remote ATTO site in the Amazon Basin. The results are discussed in light of the frequent and episodic long-range transport of Saharan dust plumes in the early wet season as well as the persistent background bioaerosol cycling in the rain forest ecosystem. This work provides a solid basis for future studies on the dynamic coarse mode aerosol cycling and its biogeochemical relevance in the Amazon.
Stephanie Bohlmann, Holger Baars, Martin Radenz, Ronny Engelmann, and Andreas Macke
Atmos. Chem. Phys., 18, 9661–9679, https://doi.org/10.5194/acp-18-9661-2018, https://doi.org/10.5194/acp-18-9661-2018, 2018
Short summary
Short summary
Lidar measurements of two expeditions across the Atlantic Ocean aboard the research vessel Polarstern are presented. In addition to Saharan dust layers and complex dust–smoke mixtures, pure marine conditions with enhanced particle depolarisation ratios on top of the marine boundary layer could be observed. A statistical analysis shows latitudinal differences in the optical properties within the marine boundary layer and illustrates the potential of these properties for aerosol classification.
Barbara Altstädter, Andreas Platis, Michael Jähn, Holger Baars, Janine Lückerath, Andreas Held, Astrid Lampert, Jens Bange, Markus Hermann, and Birgit Wehner
Atmos. Chem. Phys., 18, 8249–8264, https://doi.org/10.5194/acp-18-8249-2018, https://doi.org/10.5194/acp-18-8249-2018, 2018
Short summary
Short summary
This article describes the appearance of ultrafine aerosol particles (size < 12 nm) within the atmospheric boundary layer under cloudy conditions. New particle formation (NPF) was observed with the ALADINA unmanned aerial system in relation to increased turbulence near the inversion layer. Fast mixing processes and rapid dilution of surrounding air led to an insufficient particle growth rate, seen in sporadic clusters at ground. These events might not have been classified as NPF by surface data.
Dimitra Mamali, Eleni Marinou, Jean Sciare, Michael Pikridas, Panagiotis Kokkalis, Michael Kottas, Ioannis Binietoglou, Alexandra Tsekeri, Christos Keleshis, Ronny Engelmann, Holger Baars, Albert Ansmann, Vassilis Amiridis, Herman Russchenberg, and George Biskos
Atmos. Meas. Tech., 11, 2897–2910, https://doi.org/10.5194/amt-11-2897-2018, https://doi.org/10.5194/amt-11-2897-2018, 2018
Short summary
Short summary
The paper's scope is to evaluate the performance of in situ atmospheric aerosol instrumentation on board unmanned aerial vehicles (UAVs) and the performance of algorithms used to calculate the aerosol mass from remote sensing instruments by comparing the two independent techniques to each other. Our results indicate that UAV-based aerosol measurements (using specific in situ and remote sensing instrumentation) can provide reliable ways to determine the aerosol mass throughout the atmosphere.
Guangyao Dai, Dietrich Althausen, Julian Hofer, Ronny Engelmann, Patric Seifert, Johannes Bühl, Rodanthi-Elisavet Mamouri, Songhua Wu, and Albert Ansmann
Atmos. Meas. Tech., 11, 2735–2748, https://doi.org/10.5194/amt-11-2735-2018, https://doi.org/10.5194/amt-11-2735-2018, 2018
Short summary
Short summary
The presented calibration method grants access to quality approved automated atmospheric water vapor profiles from lidar measurements. This method uses the Raman lidar data from the water vapor and nitrogen channels and additional data from sun photometer and GDAS. The retrieved water vapor profiles agree well with respective profiles from radio soundings. The paper describes this method and shows results from the CyCARE (Cyprus Cloud Aerosol and Rain Experiment) campaign in 2015–2017.
Livio Belegante, Juan Antonio Bravo-Aranda, Volker Freudenthaler, Doina Nicolae, Anca Nemuc, Dragos Ene, Lucas Alados-Arboledas, Aldo Amodeo, Gelsomina Pappalardo, Giuseppe D'Amico, Francesco Amato, Ronny Engelmann, Holger Baars, Ulla Wandinger, Alexandros Papayannis, Panos Kokkalis, and Sérgio N. Pereira
Atmos. Meas. Tech., 11, 1119–1141, https://doi.org/10.5194/amt-11-1119-2018, https://doi.org/10.5194/amt-11-1119-2018, 2018
Short summary
Short summary
This paper presents different depolarization calibration procedures used to improve the quality of the depolarization data. The results illustrate a significant improvement of the depolarization lidar products for all the selected EARLINET lidar instruments. The calibrated volume and particle depolarization profiles at 532 nm show values that fall within a range that is accepted in the literature. The depolarization accuracy estimate at 532 nm is better than ±0.03 for all cases.
Sebastian Düsing, Birgit Wehner, Patric Seifert, Albert Ansmann, Holger Baars, Florian Ditas, Silvia Henning, Nan Ma, Laurent Poulain, Holger Siebert, Alfred Wiedensohler, and Andreas Macke
Atmos. Chem. Phys., 18, 1263–1290, https://doi.org/10.5194/acp-18-1263-2018, https://doi.org/10.5194/acp-18-1263-2018, 2018
Alexandra Tsekeri, Anton Lopatin, Vassilis Amiridis, Eleni Marinou, Julia Igloffstein, Nikolaos Siomos, Stavros Solomos, Panagiotis Kokkalis, Ronny Engelmann, Holger Baars, Myrto Gratsea, Panagiotis I. Raptis, Ioannis Binietoglou, Nikolaos Mihalopoulos, Nikolaos Kalivitis, Giorgos Kouvarakis, Nikolaos Bartsotas, George Kallos, Sara Basart, Dirk Schuettemeyer, Ulla Wandinger, Albert Ansmann, Anatoli P. Chaikovsky, and Oleg Dubovik
Atmos. Meas. Tech., 10, 4995–5016, https://doi.org/10.5194/amt-10-4995-2017, https://doi.org/10.5194/amt-10-4995-2017, 2017
Short summary
Short summary
The Generalized Aerosol Retrieval from Radiometer and Lidar Combined data algorithm (GARRLiC) and the LIdar-Radiometer Inversion Code (LIRIC) provide the opportunity to study the aerosol vertical distribution by combining ground-based lidar and sun-photometric measurements. Here, we utilize the capabilities of both algorithms for the characterization of Saharan dust and marine particles, along with their mixtures, in the south-eastern Mediterranean.
Albert Ansmann, Franziska Rittmeister, Ronny Engelmann, Sara Basart, Oriol Jorba, Christos Spyrou, Samuel Remy, Annett Skupin, Holger Baars, Patric Seifert, Fabian Senf, and Thomas Kanitz
Atmos. Chem. Phys., 17, 14987–15006, https://doi.org/10.5194/acp-17-14987-2017, https://doi.org/10.5194/acp-17-14987-2017, 2017
Julian Hofer, Dietrich Althausen, Sabur F. Abdullaev, Abduvosit N. Makhmudov, Bakhron I. Nazarov, Georg Schettler, Ronny Engelmann, Holger Baars, K. Wadinga Fomba, Konrad Müller, Bernd Heinold, Konrad Kandler, and Albert Ansmann
Atmos. Chem. Phys., 17, 14559–14577, https://doi.org/10.5194/acp-17-14559-2017, https://doi.org/10.5194/acp-17-14559-2017, 2017
Short summary
Short summary
The Central Asian Dust Experiment provides unprecedented data on vertically resolved aerosol optical properties over Central Asia from continuous 18-month polarization Raman lidar observations in Dushanbe, Tajikistan. Central Asia is affected by climate change (e.g. glacier retreat) but in a large part missing vertically resolved aerosol measurements, which would help to better understand transport of dust and pollution aerosol across Central Asia and their influence on climate and health.
Moritz Haarig, Albert Ansmann, Josef Gasteiger, Konrad Kandler, Dietrich Althausen, Holger Baars, Martin Radenz, and David A. Farrell
Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, https://doi.org/10.5194/acp-17-14199-2017, 2017
Short summary
Short summary
The depolarization ratio and the backscatter coefficient of marine particles are correlated with the relative humidity. The measurements were performed under atmospheric conditions with a multi-wavelength lidar system in pure marine conditions over Barbados in February 2014. For RH < 50 % the sea salt particles have a cubic-like shape resulting in an enhanced depolarization ratio of up to 0.15. This agrees with model results of cubic sea salt. The extinction enhancement f(RH) factor was derived.
Maria Filioglou, Anna Nikandrova, Sami Niemelä, Holger Baars, Tero Mielonen, Ari Leskinen, David Brus, Sami Romakkaniemi, Elina Giannakaki, and Mika Komppula
Atmos. Meas. Tech., 10, 4303–4316, https://doi.org/10.5194/amt-10-4303-2017, https://doi.org/10.5194/amt-10-4303-2017, 2017
Franziska Rittmeister, Albert Ansmann, Ronny Engelmann, Annett Skupin, Holger Baars, Thomas Kanitz, and Stefan Kinne
Atmos. Chem. Phys., 17, 12963–12983, https://doi.org/10.5194/acp-17-12963-2017, https://doi.org/10.5194/acp-17-12963-2017, 2017
Rodanthi-Elisavet Mamouri and Albert Ansmann
Atmos. Meas. Tech., 10, 3403–3427, https://doi.org/10.5194/amt-10-3403-2017, https://doi.org/10.5194/amt-10-3403-2017, 2017
Moritz Haarig, Albert Ansmann, Dietrich Althausen, André Klepel, Silke Groß, Volker Freudenthaler, Carlos Toledano, Rodanthi-Elisavet Mamouri, David A. Farrell, Damien A. Prescod, Eleni Marinou, Sharon P. Burton, Josef Gasteiger, Ronny Engelmann, and Holger Baars
Atmos. Chem. Phys., 17, 10767–10794, https://doi.org/10.5194/acp-17-10767-2017, https://doi.org/10.5194/acp-17-10767-2017, 2017
Short summary
Short summary
Our measurements performed with a lidar on Barbados give a vertical profile of Saharan dust, which was transported over 5000 km across the Atlantic. The new triple-wavelength depolarization technique reveals more information about the shape and size of dust, which will improve our understanding of the aging process of dust in the atmosphere and its representation in dust models. Changing properties of dust particles influence the solar radiation and the cloud properties and thus our climate.
Holger Baars, Patric Seifert, Ronny Engelmann, and Ulla Wandinger
Atmos. Meas. Tech., 10, 3175–3201, https://doi.org/10.5194/amt-10-3175-2017, https://doi.org/10.5194/amt-10-3175-2017, 2017
Short summary
Short summary
A novel technique for multiwavelength lidars is introduced to derive information on the particle type in the tropospheric profile in analogy to the Cloudnet target classification. Four different aerosol classes and several cloud classes are defined. The technique is based on absolute calibrated lidar signals in temporally high resolution and thus is also well suited for aerosol–cloud-interaction studies. The approach was applied on a 2-month data set of the HOPE campaign in western Germany.
Birgit Heese, Holger Baars, Stephanie Bohlmann, Dietrich Althausen, and Ruru Deng
Atmos. Chem. Phys., 17, 6679–6691, https://doi.org/10.5194/acp-17-6679-2017, https://doi.org/10.5194/acp-17-6679-2017, 2017
Johannes Bühl, Patric Seifert, Ronny Engelmann, Julia Fruntke, and Albert Ansmann
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-230, https://doi.org/10.5194/acp-2017-230, 2017
Revised manuscript not accepted
Short summary
Short summary
Vertical air motion is a key driver of physical processes in clouds. The stability of clouds and the process of ice formation have been shown to depend critically on vertical air motions. However, observations of vertical air motions and ice formation in clouds are rare. This motivated us in the Up- and downdraft in Drop and Ice Nucleation Experiment (UDINE) to deliver a comprehensive statistics, connecting remote-sensing observations of vertical motions and ice formation.
Pablo Ortiz-Amezcua, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, José Antonio Benavent-Oltra, Christine Böckmann, Stefanos Samaras, Iwona S. Stachlewska, Łucja Janicka, Holger Baars, Stephanie Bohlmann, and Lucas Alados-Arboledas
Atmos. Chem. Phys., 17, 5931–5946, https://doi.org/10.5194/acp-17-5931-2017, https://doi.org/10.5194/acp-17-5931-2017, 2017
Short summary
Short summary
Strong events of biomass burning aerosol transported from North American forest fires were detected during July 2013 at three European stations from EARLINET. Satellite observations and models were used to estimate the smoke sources and transport paths. Using lidar techniques and regularization algorithms, the aerosol layers were optically and microphysically characterized, finding some common features among the events, concerning the similar aging processes undergone by the particles.
Eleni Marinou, Vassilis Amiridis, Ioannis Binietoglou, Athanasios Tsikerdekis, Stavros Solomos, Emannouil Proestakis, Dimitra Konsta, Nikolaos Papagiannopoulos, Alexandra Tsekeri, Georgia Vlastou, Prodromos Zanis, Dimitrios Balis, Ulla Wandinger, and Albert Ansmann
Atmos. Chem. Phys., 17, 5893–5919, https://doi.org/10.5194/acp-17-5893-2017, https://doi.org/10.5194/acp-17-5893-2017, 2017
Short summary
Short summary
We provide a 3D multiyear analysis on the evolution of Saharan dust over Europe, using a dust product retrieved from the CALIPSO satellite and using EARLINET methods. The results reveal for the first time the 9-year 3D seasonal patterns of dust over its transport paths from the Sahara towards the Mediterranean. The dataset is unique with respect to its potential applications, including the evaluation of dust models and the estimation of ice nuclei concentration profiles from space.
Andreas Macke, Patric Seifert, Holger Baars, Christian Barthlott, Christoph Beekmans, Andreas Behrendt, Birger Bohn, Matthias Brueck, Johannes Bühl, Susanne Crewell, Thomas Damian, Hartwig Deneke, Sebastian Düsing, Andreas Foth, Paolo Di Girolamo, Eva Hammann, Rieke Heinze, Anne Hirsikko, John Kalisch, Norbert Kalthoff, Stefan Kinne, Martin Kohler, Ulrich Löhnert, Bomidi Lakshmi Madhavan, Vera Maurer, Shravan Kumar Muppa, Jan Schween, Ilya Serikov, Holger Siebert, Clemens Simmer, Florian Späth, Sandra Steinke, Katja Träumner, Silke Trömel, Birgit Wehner, Andreas Wieser, Volker Wulfmeyer, and Xinxin Xie
Atmos. Chem. Phys., 17, 4887–4914, https://doi.org/10.5194/acp-17-4887-2017, https://doi.org/10.5194/acp-17-4887-2017, 2017
Short summary
Short summary
This article provides an overview of the instrumental setup and the main results obtained during the two HD(CP)2 Observational Prototype Experiments HOPE-Jülich and HOPE-Melpitz conducted in Germany in April–May and Sept 2013, respectively. Goal of the field experiments was to provide high-resolution observational datasets for both, improving the understaning of boundary layer and cloud processes, as well as for the evaluation of the new ICON model that is run at 156 m horizontal resolution.
Jann Schrod, Daniel Weber, Jaqueline Drücke, Christos Keleshis, Michael Pikridas, Martin Ebert, Bojan Cvetković, Slobodan Nickovic, Eleni Marinou, Holger Baars, Albert Ansmann, Mihalis Vrekoussis, Nikos Mihalopoulos, Jean Sciare, Joachim Curtius, and Heinz G. Bingemer
Atmos. Chem. Phys., 17, 4817–4835, https://doi.org/10.5194/acp-17-4817-2017, https://doi.org/10.5194/acp-17-4817-2017, 2017
Short summary
Short summary
In this paper we present data of ice-nucleating particles (INPs) from a 1-month campaign in the Eastern Mediterranean using unmanned aircraft systems (UASs, drones) and offline sampling with subsequent laboratory analysis. To our knowledge, this is the first time INPs were measured onboard a UAS. We find that INP concentrations were 1 magnitude higher aloft than at the ground, highlighting that surface-based measurement of INP may only be of limited significance for the situation at cloud level.
Stavros Solomos, Albert Ansmann, Rodanthi-Elisavet Mamouri, Ioannis Binietoglou, Platon Patlakas, Eleni Marinou, and Vassilis Amiridis
Atmos. Chem. Phys., 17, 4063–4079, https://doi.org/10.5194/acp-17-4063-2017, https://doi.org/10.5194/acp-17-4063-2017, 2017
Short summary
Short summary
An extreme dust storm affected Middle East and the Eastern Mediterranean in September 2015. This event was produced by a combination of meteorological and land-use properties. Analysis with remote sensing observations and modeling simulations reveals (i) transport of warm moist air from the Red and Arabian seas, (ii) formation of a thermal low over Syria, (iii) convective outflows and haboob formation (i.e. propagating dust walls), and (iv) changes in land-use and dust erodibility due to war.
Diego A. Gouveia, Boris Barja, Henrique M. J. Barbosa, Patric Seifert, Holger Baars, Theotonio Pauliquevis, and Paulo Artaxo
Atmos. Chem. Phys., 17, 3619–3636, https://doi.org/10.5194/acp-17-3619-2017, https://doi.org/10.5194/acp-17-3619-2017, 2017
Short summary
Short summary
We derive the first comprehensive statistics of cirrus clouds over a tropical rain forest. Monthly frequency of occurrence can be as high as 88 %. The diurnal cycle follows that of precipitation, and frequently cirrus is found in the tropopause layer. The mean values of cloud top, base, thickness, optical depth and lidar ratio were 14.3 km, 12.9 km, 1.4 km, 0.25, and 23 sr respectively. The high fraction (42 %) of subvisible clouds may contaminate satellite measurements to an unknown extent.
Josef Gasteiger, Silke Groß, Daniel Sauer, Moritz Haarig, Albert Ansmann, and Bernadett Weinzierl
Atmos. Chem. Phys., 17, 297–311, https://doi.org/10.5194/acp-17-297-2017, https://doi.org/10.5194/acp-17-297-2017, 2017
Short summary
Short summary
To study aerosol transport in the Saharan Air Layer (SAL) from Africa to the Caribbean, we combine advanced optical models of Saharan aerosols with Stokes settling and two hypotheses about the occurrence of vertical mixing. By testing our hypotheses with lidar and in situ profiles measured near the top of the transported SAL, we find strong evidence that vertical mixing occurs in the SAL over the Atlantic with significant consequences for size distribution of the transported Saharan aerosols.
Rodanthi-Elisavet Mamouri, Albert Ansmann, Argyro Nisantzi, Stavros Solomos, George Kallos, and Diofantos G. Hadjimitsis
Atmos. Chem. Phys., 16, 13711–13724, https://doi.org/10.5194/acp-16-13711-2016, https://doi.org/10.5194/acp-16-13711-2016, 2016
Juan Antonio Bravo-Aranda, Livio Belegante, Volker Freudenthaler, Lucas Alados-Arboledas, Doina Nicolae, María José Granados-Muñoz, Juan Luis Guerrero-Rascado, Aldo Amodeo, Giusseppe D'Amico, Ronny Engelmann, Gelsomina Pappalardo, Panos Kokkalis, Rodanthy Mamouri, Alex Papayannis, Francisco Navas-Guzmán, Francisco José Olmo, Ulla Wandinger, Francesco Amato, and Martial Haeffelin
Atmos. Meas. Tech., 9, 4935–4953, https://doi.org/10.5194/amt-9-4935-2016, https://doi.org/10.5194/amt-9-4935-2016, 2016
Short summary
Short summary
This work analyses the lidar polarizing sensitivity by means of the Stokes–Müller formalism and provides a new tool to quantify the systematic error of the volume linear depolarization ration (δ) using the Monte Carlo technique. Results evidence the importance of the lidar polarizing effects which can lead to systematic errors larger than 100 %. Additionally, we demonstrate that a proper lidar characterization helps to reduce the uncertainty.
Silke Groß, Josef Gasteiger, Volker Freudenthaler, Thomas Müller, Daniel Sauer, Carlos Toledano, and Albert Ansmann
Atmos. Chem. Phys., 16, 11535–11546, https://doi.org/10.5194/acp-16-11535-2016, https://doi.org/10.5194/acp-16-11535-2016, 2016
Short summary
Short summary
Dual-wavelength depolarization sensitive Raman lidar measurements were used to characterize the optical properties of the dust loaded convective boundary layer over the Caribbean. Furthermore we derived the dust volume fraction and dust mass concentration within the convective boundary layer.
Moritz Haarig, Ronny Engelmann, Albert Ansmann, Igor Veselovskii, David N. Whiteman, and Dietrich Althausen
Atmos. Meas. Tech., 9, 4269–4278, https://doi.org/10.5194/amt-9-4269-2016, https://doi.org/10.5194/amt-9-4269-2016, 2016
Johannes Bühl, Patric Seifert, Alexander Myagkov, and Albert Ansmann
Atmos. Chem. Phys., 16, 10609–10620, https://doi.org/10.5194/acp-16-10609-2016, https://doi.org/10.5194/acp-16-10609-2016, 2016
Short summary
Short summary
We probe thin layered clouds with remote sensing instruments from ground in order to get insight into atmospheric processes like the formation of rain or snow. We think that the findings of our work can be used to improve climate and weather simulations. The present paper presents a new technique that can be used to detect the shape, fall speed and mass of ice particles falling from layered clouds. With such information the impact of cloud ice, e.g., on the lifetime of a cloud, can be estimated.
Alexander Myagkov, Patric Seifert, Ulla Wandinger, Johannes Bühl, and Ronny Engelmann
Atmos. Meas. Tech., 9, 3739–3754, https://doi.org/10.5194/amt-9-3739-2016, https://doi.org/10.5194/amt-9-3739-2016, 2016
Short summary
Short summary
This paper presents first quantitative estimations of ice particle shape at the top of liquid-topped clouds. The estimation is based on polarimetric measurements from a Ka-band cloud radar. 22 cases observed during the ACCEPT (Analysis of the Composition of Clouds with Extended Polarization Techniques) campaign were used. Data from a free-fall chamber were used for the comparison. A good agreement of detected shapes with known shape–temperature dependencies observed in laboratories was found.
Ina Mattis, Giuseppe D'Amico, Holger Baars, Aldo Amodeo, Fabio Madonna, and Marco Iarlori
Atmos. Meas. Tech., 9, 3009–3029, https://doi.org/10.5194/amt-9-3009-2016, https://doi.org/10.5194/amt-9-3009-2016, 2016
Short summary
Short summary
We present an automated software tool for the retrieval of profiles of optical particle properties from lidar signals. This tool is one of the modules of the Single Calculus Chain of the European Aerosol Research Lidar Network (EARLINET). It allows for the analysis of the data of many different lidar systems of EARLINET in an automated, unsupervised way.
Erika Kienast-Sjögren, Christian Rolf, Patric Seifert, Ulrich K. Krieger, Bei P. Luo, Martina Krämer, and Thomas Peter
Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, https://doi.org/10.5194/acp-16-7605-2016, 2016
Short summary
Short summary
We present a climatology of mid-latitude cirrus cloud properties based on 13 000 hours of automatically analyzed lidar measurements at three different sites. Jungfraujoch,
situated at 3580 m a.s.l., is found to be ideal to measure high and optically thin
cirrus. We use our retrieved optical properties together with a radiation model and
estimate the radiative forcing by mid-latitude cirrus.
All cirrus clouds detected here have a positive net radiative effect.
Rodanthi-Elisavet Mamouri and Albert Ansmann
Atmos. Chem. Phys., 16, 5905–5931, https://doi.org/10.5194/acp-16-5905-2016, https://doi.org/10.5194/acp-16-5905-2016, 2016
Ronny Engelmann, Thomas Kanitz, Holger Baars, Birgit Heese, Dietrich Althausen, Annett Skupin, Ulla Wandinger, Mika Komppula, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Ina Mattis, Holger Linné, and Albert Ansmann
Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, https://doi.org/10.5194/amt-9-1767-2016, 2016
Short summary
Short summary
The atmospheric science community demands for autonomous and quality-assured vertically resolved measurements of aerosol and cloud properties. For this purpose, a portable lidar called Polly
was developed at TROPOS in 2003. This lidar type was continuously improved with gained experience from EARLINET, worldwide field campaigns, and institute collaborations within the last 10 years. We present recent changes to the setup of our portable multiwavelength Raman and polarization lidar PollyXT.
Holger Baars, Thomas Kanitz, Ronny Engelmann, Dietrich Althausen, Birgit Heese, Mika Komppula, Jana Preißler, Matthias Tesche, Albert Ansmann, Ulla Wandinger, Jae-Hyun Lim, Joon Young Ahn, Iwona S. Stachlewska, Vassilis Amiridis, Eleni Marinou, Patric Seifert, Julian Hofer, Annett Skupin, Florian Schneider, Stephanie Bohlmann, Andreas Foth, Sebastian Bley, Anne Pfüller, Eleni Giannakaki, Heikki Lihavainen, Yrjö Viisanen, Rakesh Kumar Hooda, Sérgio Nepomuceno Pereira, Daniele Bortoli, Frank Wagner, Ina Mattis, Lucja Janicka, Krzysztof M. Markowicz, Peggy Achtert, Paulo Artaxo, Theotonio Pauliquevis, Rodrigo A. F. Souza, Ved Prakesh Sharma, Pieter Gideon van Zyl, Johan Paul Beukes, Junying Sun, Erich G. Rohwer, Ruru Deng, Rodanthi-Elisavet Mamouri, and Felix Zamorano
Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, https://doi.org/10.5194/acp-16-5111-2016, 2016
Short summary
Short summary
The findings from more than 10 years of global aerosol lidar measurements with Polly systems are summarized, and a data set of optical properties for specific aerosol types is given. An automated data retrieval algorithm for continuous Polly lidar observations is presented and discussed by means of a Saharan dust advection event in Leipzig, Germany. Finally, a statistic on the vertical aerosol distribution including the seasonal variability at PollyNET locations around the globe is presented.
Anatoli Chaikovsky, Oleg Dubovik, Brent Holben, Andrey Bril, Philippe Goloub, Didier Tanré, Gelsomina Pappalardo, Ulla Wandinger, Ludmila Chaikovskaya, Sergey Denisov, Jan Grudo, Anton Lopatin, Yana Karol, Tatsiana Lapyonok, Vassilis Amiridis, Albert Ansmann, Arnoud Apituley, Lucas Allados-Arboledas, Ioannis Binietoglou, Antonella Boselli, Giuseppe D'Amico, Volker Freudenthaler, David Giles, María José Granados-Muñoz, Panayotis Kokkalis, Doina Nicolae, Sergey Oshchepkov, Alex Papayannis, Maria Rita Perrone, Alexander Pietruczuk, Francesc Rocadenbosch, Michaël Sicard, Ilya Slutsker, Camelia Talianu, Ferdinando De Tomasi, Alexandra Tsekeri, Janet Wagner, and Xuan Wang
Atmos. Meas. Tech., 9, 1181–1205, https://doi.org/10.5194/amt-9-1181-2016, https://doi.org/10.5194/amt-9-1181-2016, 2016
Short summary
Short summary
This paper presents a detailed description of LIRIC (LIdar-Radiometer Inversion Code) algorithm for simultaneous processing of coincident lidar and radiometric observations for the retrieval of the aerosol concentrations. As the lidar/radiometric input data we use measurements from European Aerosol Research Lidar Network (EARLINET) lidars and collocated sun-photometers of Aerosol Robotic Network (AERONET). The LIRIC software package was implemented and tested at a number of EARLINET stations.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
Nikolaos Papagiannopoulos, Lucia Mona, Lucas Alados-Arboledas, Vassilis Amiridis, Holger Baars, Ioannis Binietoglou, Daniele Bortoli, Giuseppe D'Amico, Aldo Giunta, Juan Luis Guerrero-Rascado, Anja Schwarz, Sergio Pereira, Nicola Spinelli, Ulla Wandinger, Xuan Wang, and Gelsomina Pappalardo
Atmos. Chem. Phys., 16, 2341–2357, https://doi.org/10.5194/acp-16-2341-2016, https://doi.org/10.5194/acp-16-2341-2016, 2016
Short summary
Short summary
Satellite-derived products must undergo data evaluation with reference data sets in order to identify any possible reasons of discrepancy or to assess their representativity. In that direction, data coming from CALIPSO satellite were compared with observations from the ground. We identified a CALIPSO underestimation that could be linked to an assumption in the satellites' algorithms. The proposed correction improves the performance and could enhance aerosol modeling.
A. Skupin, A. Ansmann, R. Engelmann, P. Seifert, and T. Müller
Atmos. Chem. Phys., 16, 1863–1876, https://doi.org/10.5194/acp-16-1863-2016, https://doi.org/10.5194/acp-16-1863-2016, 2016
A. Myagkov, P. Seifert, M. Bauer-Pfundstein, and U. Wandinger
Atmos. Meas. Tech., 9, 469–489, https://doi.org/10.5194/amt-9-469-2016, https://doi.org/10.5194/amt-9-469-2016, 2016
Short summary
Short summary
In this paper a newly developed scanning 35 GHz cloud radar MIRA-35 is described. The issues concerned with implementation, polarization calibration, and data processing are considered. Also, an algorithm for a characterization of shape and orientation distribution based on polarimetric observations from the cloud radar is presented. For demonstration, the developed retrieval technique is applied to a cloud system containing ice crystals with different habits.
L. Belegante, J. A. Bravo-Aranda, V. Freudenthaler, D. Nicolae, A. Nemuc, L. Alados-Arboledas, A. Amodeo, G. Pappalardo, G. D’Amico, R. Engelmann, H. Baars, U. Wandinger, A. Papayannis, P. Kokkalis, and S. N. Pereira
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2015-337, https://doi.org/10.5194/amt-2015-337, 2016
Revised manuscript has not been submitted
Short summary
Short summary
This study aims to present techniques developed to calibrate the lidar depolarization channels.
The experimental approach of the paper is designed to present how calibration procedures are implemented. Most of the literature is focused on the theoretical perspective of the topic and practical issues usually remain an open topic. A hands on approach for the assessment of the lidar polarization sensitivity is welcomed since most of these techniques require comprehensive practical description.
D. Merk, H. Deneke, B. Pospichal, and P. Seifert
Atmos. Chem. Phys., 16, 933–952, https://doi.org/10.5194/acp-16-933-2016, https://doi.org/10.5194/acp-16-933-2016, 2016
Short summary
Short summary
A 2-year data set is analyzed to evaluate the consistency and limitations of current ground-based and satellite-retrieved cloud property data sets. We demonstrate that neither the assumption of a completely adiabatic cloud nor the assumption of a constant sub-adiabatic factor is fulfilled. As cloud adiabaticity is required to estimate the cloud droplet number concentration, but is not available from passive satellite observations, we need an independent method to estimate the adiabatic factor.
M. Jähn, D. Muñoz-Esparza, F. Chouza, O. Reitebuch, O. Knoth, M. Haarig, and A. Ansmann
Atmos. Chem. Phys., 16, 651–674, https://doi.org/10.5194/acp-16-651-2016, https://doi.org/10.5194/acp-16-651-2016, 2016
Short summary
Short summary
Large eddy simulations (LESs) are performed for the area of the Caribbean island Barbados to investigate island effects on boundary layer modification, cloud generation and vertical mixing of aerosols. Incoming Saharan dust layers are analyzed and effects of layer thinning, subsidence and turbulent downward transport become apparent, which are sensitive to atmospheric stability and wind shear. Comparisons of LES model output with lidar data systems are made to validate the modeling results.
G. D'Amico, A. Amodeo, H. Baars, I. Binietoglou, V. Freudenthaler, I. Mattis, U. Wandinger, and G. Pappalardo
Atmos. Meas. Tech., 8, 4891–4916, https://doi.org/10.5194/amt-8-4891-2015, https://doi.org/10.5194/amt-8-4891-2015, 2015
M. Sicard, G. D'Amico, A. Comerón, L. Mona, L. Alados-Arboledas, A. Amodeo, H. Baars, J. M. Baldasano, L. Belegante, I. Binietoglou, J. A. Bravo-Aranda, A. J. Fernández, P. Fréville, D. García-Vizcaíno, A. Giunta, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, D. Hadjimitsis, A. Haefele, M. Hervo, M. Iarlori, P. Kokkalis, D. Lange, R. E. Mamouri, I. Mattis, F. Molero, N. Montoux, A. Muñoz, C. Muñoz Porcar, F. Navas-Guzmán, D. Nicolae, A. Nisantzi, N. Papagiannopoulos, A. Papayannis, S. Pereira, J. Preißler, M. Pujadas, V. Rizi, F. Rocadenbosch, K. Sellegri, V. Simeonov, G. Tsaknakis, F. Wagner, and G. Pappalardo
Atmos. Meas. Tech., 8, 4587–4613, https://doi.org/10.5194/amt-8-4587-2015, https://doi.org/10.5194/amt-8-4587-2015, 2015
Short summary
Short summary
In the framework of the ACTRIS summer 2012 measurement campaign (8 June–17 July 2012), EARLINET organized and performed a controlled exercise of feasibility to demonstrate its potential to perform operational, coordinated measurements and deliver products in near-real time. The paper describes the measurement protocol and discusses the delivery of real-time and near-real-time lidar-derived products.
S. Groß, V. Freudenthaler, K. Schepanski, C. Toledano, A. Schäfler, A. Ansmann, and B. Weinzierl
Atmos. Chem. Phys., 15, 11067–11080, https://doi.org/10.5194/acp-15-11067-2015, https://doi.org/10.5194/acp-15-11067-2015, 2015
Short summary
Short summary
In June and July 2013 dual-wavelength lidar measurements were performed in Barbados to study long-range transported Saharan dust across the Atlantic Ocean and investigate transport-induced changes. The focus of our measurements is the intensive optical properties, the lidar ratio and the particle linear depolarization ratio. While the lidar ratio shows no differences compared to the values of fresh Saharan dust, the particle linear depolarization ratio shows slight differences.
J. Schmidt, A. Ansmann, J. Bühl, and U. Wandinger
Atmos. Chem. Phys., 15, 10687–10700, https://doi.org/10.5194/acp-15-10687-2015, https://doi.org/10.5194/acp-15-10687-2015, 2015
Short summary
M. Simmel, J. Bühl, A. Ansmann, and I. Tegen
Atmos. Chem. Phys., 15, 10453–10470, https://doi.org/10.5194/acp-15-10453-2015, https://doi.org/10.5194/acp-15-10453-2015, 2015
Short summary
Short summary
The paper combines remote sensing observations and detailed cloud modeling. It was shown that the main features of the observations could be captured which allows one to perform sensitivity studies. Those show that the liquid phase is mainly determined by the dynamical parameters of the model, whereas the ice phase is dominated by microphysical parameters such as ice nuclei number and ice particle shape.
I. Binietoglou, S. Basart, L. Alados-Arboledas, V. Amiridis, A. Argyrouli, H. Baars, J. M. Baldasano, D. Balis, L. Belegante, J. A. Bravo-Aranda, P. Burlizzi, V. Carrasco, A. Chaikovsky, A. Comerón, G. D'Amico, M. Filioglou, M. J. Granados-Muñoz, J. L. Guerrero-Rascado, L. Ilic, P. Kokkalis, A. Maurizi, L. Mona, F. Monti, C. Muñoz-Porcar, D. Nicolae, A. Papayannis, G. Pappalardo, G. Pejanovic, S. N. Pereira, M. R. Perrone, A. Pietruczuk, M. Posyniak, F. Rocadenbosch, A. Rodríguez-Gómez, M. Sicard, N. Siomos, A. Szkop, E. Terradellas, A. Tsekeri, A. Vukovic, U. Wandinger, and J. Wagner
Atmos. Meas. Tech., 8, 3577–3600, https://doi.org/10.5194/amt-8-3577-2015, https://doi.org/10.5194/amt-8-3577-2015, 2015
J. Bühl, R. Leinweber, U. Görsdorf, M. Radenz, A. Ansmann, and V. Lehmann
Atmos. Meas. Tech., 8, 3527–3536, https://doi.org/10.5194/amt-8-3527-2015, https://doi.org/10.5194/amt-8-3527-2015, 2015
Short summary
Short summary
Case studies of combined vertical-velocity measurements of Doppler lidar, cloud radar and wind profiler are presented. The measurements were taken at the Meteorological Observatory, Lindenberg, Germany. Synergistic products are presented that are derived from the vertical-velocity measurements of the three instruments: a comprehensive classification mask of vertically moving atmospheric targets and the terminal fall velocity of water droplets and ice crystals corrected for vertical air motion.
A. Foth, H. Baars, P. Di Girolamo, and B. Pospichal
Atmos. Chem. Phys., 15, 7753–7763, https://doi.org/10.5194/acp-15-7753-2015, https://doi.org/10.5194/acp-15-7753-2015, 2015
Short summary
Short summary
We present a method to derive water vapour profiles from Raman lidar measurements calibrated by the integrated water vapour from a collocated microwave radiometer. These simultaneous observations provide an operational and continuous measurement of water vapour profiles. The stability of the calibration factor allows for the calibration of the lidar even in the presence of clouds. Based on this approach, water vapour profiles can be retrieved during all non-precipitating conditions.
V. Amiridis, E. Marinou, A. Tsekeri, U. Wandinger, A. Schwarz, E. Giannakaki, R. Mamouri, P. Kokkalis, I. Binietoglou, S. Solomos, T. Herekakis, S. Kazadzis, E. Gerasopoulos, E. Proestakis, M. Kottas, D. Balis, A. Papayannis, C. Kontoes, K. Kourtidis, N. Papagiannopoulos, L. Mona, G. Pappalardo, O. Le Rille, and A. Ansmann
Atmos. Chem. Phys., 15, 7127–7153, https://doi.org/10.5194/acp-15-7127-2015, https://doi.org/10.5194/acp-15-7127-2015, 2015
Short summary
Short summary
LIVAS is a 3-D multi-wavelength global aerosol and cloud optical database optimized for future space-based lidar end-to-end simulations of realistic atmospheric scenarios as well as retrieval algorithm testing activities. The global database is based on CALIPSO observations at 532nm, while for the conversion at 355nm EARLINET data are utilized.
A. Nisantzi, R. E. Mamouri, A. Ansmann, G. L. Schuster, and D. G. Hadjimitsis
Atmos. Chem. Phys., 15, 7071–7084, https://doi.org/10.5194/acp-15-7071-2015, https://doi.org/10.5194/acp-15-7071-2015, 2015
E. Giannakaki, A. Pfüller, K. Korhonen, T. Mielonen, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, M. Josipovic, P. Tiitta, K. Chiloane, S. Piketh, H. Lihavainen, K. E. J. Lehtinen, and M. Komppula
Atmos. Chem. Phys., 15, 5429–5442, https://doi.org/10.5194/acp-15-5429-2015, https://doi.org/10.5194/acp-15-5429-2015, 2015
Short summary
Short summary
In this study we summarize 1 year of Raman lidar observations over South Africa. The analyses of lidar measurements presented here could assist in bridging existing gaps in the knowledge of vertical distribution of aerosols above South Africa, since limited long-term data of this type are available for this region. For the first time, we have been able to cover the full seasonal cycle on geometrical characteristics and optical properties of free tropospheric aerosol layers in the region.
B. Altstädter, A. Platis, B. Wehner, A. Scholtz, N. Wildmann, M. Hermann, R. Käthner, H. Baars, J. Bange, and A. Lampert
Atmos. Meas. Tech., 8, 1627–1639, https://doi.org/10.5194/amt-8-1627-2015, https://doi.org/10.5194/amt-8-1627-2015, 2015
Short summary
Short summary
The unmanned research aircraft Carolo P360 "ALADINA" is a flexible tool for investigating the horizontal and vertical distribution of freshly formed particles in the atmospheric boundary layer (ABL) combined with measurements of turbulent fluxes derived by fast meteorological sensors. First results of a feasibility study show, among others, events of particle bursts in an internal
layer of the ABL. Comparisons with ground-based instruments and a lidar present the reliability of the new system.
R. E. Mamouri and A. Ansmann
Atmos. Chem. Phys., 15, 3463–3477, https://doi.org/10.5194/acp-15-3463-2015, https://doi.org/10.5194/acp-15-3463-2015, 2015
A. Nisantzi, R. E. Mamouri, A. Ansmann, and D. Hadjimitsis
Atmos. Chem. Phys., 14, 12155–12165, https://doi.org/10.5194/acp-14-12155-2014, https://doi.org/10.5194/acp-14-12155-2014, 2014
R. E. Mamouri and A. Ansmann
Atmos. Meas. Tech., 7, 3717–3735, https://doi.org/10.5194/amt-7-3717-2014, https://doi.org/10.5194/amt-7-3717-2014, 2014
G. Pappalardo, A. Amodeo, A. Apituley, A. Comeron, V. Freudenthaler, H. Linné, A. Ansmann, J. Bösenberg, G. D'Amico, I. Mattis, L. Mona, U. Wandinger, V. Amiridis, L. Alados-Arboledas, D. Nicolae, and M. Wiegner
Atmos. Meas. Tech., 7, 2389–2409, https://doi.org/10.5194/amt-7-2389-2014, https://doi.org/10.5194/amt-7-2389-2014, 2014
T. Kanitz, A. Ansmann, A. Foth, P. Seifert, U. Wandinger, R. Engelmann, H. Baars, D. Althausen, C. Casiccia, and F. Zamorano
Atmos. Meas. Tech., 7, 2061–2072, https://doi.org/10.5194/amt-7-2061-2014, https://doi.org/10.5194/amt-7-2061-2014, 2014
F. Dahlkötter, M. Gysel, D. Sauer, A. Minikin, R. Baumann, P. Seifert, A. Ansmann, M. Fromm, C. Voigt, and B. Weinzierl
Atmos. Chem. Phys., 14, 6111–6137, https://doi.org/10.5194/acp-14-6111-2014, https://doi.org/10.5194/acp-14-6111-2014, 2014
K. Korhonen, E. Giannakaki, T. Mielonen, A. Pfüller, L. Laakso, V. Vakkari, H. Baars, R. Engelmann, J. P. Beukes, P. G. Van Zyl, A. Ramandh, L. Ntsangwane, M. Josipovic, P. Tiitta, G. Fourie, I. Ngwana, K. Chiloane, and M. Komppula
Atmos. Chem. Phys., 14, 4263–4278, https://doi.org/10.5194/acp-14-4263-2014, https://doi.org/10.5194/acp-14-4263-2014, 2014
A. Skupin, A. Ansmann, R. Engelmann, H. Baars, and T. Müller
Atmos. Meas. Tech., 7, 701–712, https://doi.org/10.5194/amt-7-701-2014, https://doi.org/10.5194/amt-7-701-2014, 2014
V. Amiridis, U. Wandinger, E. Marinou, E. Giannakaki, A. Tsekeri, S. Basart, S. Kazadzis, A. Gkikas, M. Taylor, J. Baldasano, and A. Ansmann
Atmos. Chem. Phys., 13, 12089–12106, https://doi.org/10.5194/acp-13-12089-2013, https://doi.org/10.5194/acp-13-12089-2013, 2013
J. Wagner, A. Ansmann, U. Wandinger, P. Seifert, A. Schwarz, M. Tesche, A. Chaikovsky, and O. Dubovik
Atmos. Meas. Tech., 6, 1707–1724, https://doi.org/10.5194/amt-6-1707-2013, https://doi.org/10.5194/amt-6-1707-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
Related subject area
Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Intercomparison of aerosol optical depth retrievals from GAW-PFR and SKYNET sun photometer networks and the effect of calibration
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Assessment of the impact of NO2 contribution on aerosol-optical-depth measurements at several sites worldwide
Improved mean field estimates from the Geostationary Environment Monitoring Spectrometer (GEMS) Level-3 aerosol optical depth (L3 AOD) product: using spatiotemporal variability
Evaluation of on-site calibration procedures for SKYNET Prede POM sun–sky photometers
Aerosol optical property measurement using the orbiting high-spectral-resolution lidar on board the DQ-1 satellite: retrieval and validation
Regional validation of the solar irradiance tool SolaRes in clear-sky conditions, with a focus on the aerosol module
An empirical characterization of the aerosol Ångström exponent interpolation bias using SAGE III/ISS data
Retrievals of aerosol optical depth over the western North Atlantic Ocean during ACTIVATE
Characterization of dust aerosols from ALADIN and CALIOP measurements
Lidar depolarization characterization using a reference system
Algorithm evaluation for polarimetric remote sensing of atmospheric aerosols
Validation of initial observation from the first spaceborne high-spectral-resolution lidar with a ground-based lidar network
Ozone and aerosol optical depth retrievals using the ultraviolet multi-filter rotating shadow-band radiometer
Aerosol layer height (ALH) retrievals from oxygen absorption bands: Intercomparison and validation among different satellite platforms, GEMS, EPIC, and TROPOMI
Expanding the coverage of Multi-angle Imaging SpectroRadiometer (MISR) aerosol retrievals over shallow, turbid, and eutrophic waters
Aerosol properties derived from ground-based Fourier transform spectra within the COllaborative Carbon Column Observing Network
Spectral aerosol optical depth from SI-traceable spectral solar irradiance measurements
Quality assessment of aerosol lidars at 1064 nm in the framework of the MEMO campaign
Satellite-based, top-down approach for the adjustment of aerosol precursor emissions over East Asia: the TROPOspheric Monitoring Instrument (TROPOMI) NO2 product and the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol optical depth (AOD) data fusion product and its proxy
Assessment of severe aerosol events from NASA MODIS and VIIRS aerosol products for data assimilation and climate continuity
First assessment of Aeolus Standard Correct Algorithm particle backscatter coefficient retrievals in the eastern Mediterranean
Remote sensing of aerosol water fraction, dry size distribution and soluble fraction using multi-angle, multi-spectral polarimetry
Estimates of remote sensing retrieval errors by the GRASP algorithm: application to ground-based observations, concept and validation
Sensitivity of aerosol optical depth trends using long-term measurements of different sun photometers
Extended validation and evaluation of the OLCI–SLSTR SYNERGY aerosol product (SY_2_AOD) on Sentinel-3
Performance evaluation for retrieving aerosol optical depth from the Directional Polarimetric Camera (DPC) based on the GRASP algorithm
Assessment of tropospheric CALIPSO Version 4.2 aerosol types over the ocean using independent CALIPSO–SODA lidar ratios
Real-time UV index retrieval in Europe using Earth observation-based techniques: system description and quality assessment
Evaluation of UV–visible MAX-DOAS aerosol profiling products by comparison with ceilometer, sun photometer, and in situ observations in Vienna, Austria
Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval
Characterization of aerosol size properties from measurements of spectral optical depth: a global validation of the GRASP-AOD code using long-term AERONET data
Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: validation and comparison
Retrieval and evaluation of tropospheric-aerosol extinction profiles using multi-axis differential optical absorption spectroscopy (MAX-DOAS) measurements over Athens, Greece
Empirically derived parameterizations of the direct aerosol radiative effect based on ORACLES aircraft observations
TROPOMI aerosol products: evaluation and observations of synoptic-scale carbonaceous aerosol plumes during 2018–2020
Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications
Interannual and seasonal variations in the aerosol optical depth of the atmosphere in two regions of Spitsbergen (2002–2018)
Evaluation of UV aerosol retrievals from an ozone lidar
Aerosol data assimilation in the MOCAGE chemical transport model during the TRAQA/ChArMEx campaign: lidar observations
Application of low-cost fine particulate mass monitors to convert satellite aerosol optical depth to surface concentrations in North America and Africa
Evaluation of the OMPS/LP stratospheric aerosol extinction product using SAGE III/ISS observations
A fast visible-wavelength 3D radiative transfer model for numerical weather prediction visualization and forward modeling
A first comparison of TROPOMI aerosol layer height (ALH) to CALIOP data
The 2018 fire season in North America as seen by TROPOMI: aerosol layer height intercomparisons and evaluation of model-derived plume heights
Evaluation of satellite-based aerosol datasets and the CAMS reanalysis over the ocean utilizing shipborne reference observations
Aerosol and cloud top height information of Envisat MIPAS measurements
Assessment of urban aerosol pollution over the Moscow megacity by the MAIAC aerosol product
Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm
A review and framework for the evaluation of pixel-level uncertainty estimates in satellite aerosol remote sensing
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, Stephan Nyeki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 6085–6105, https://doi.org/10.5194/amt-17-6085-2024, https://doi.org/10.5194/amt-17-6085-2024, 2024
Short summary
Short summary
Different sun photometer networks use different instruments, post-processing algorithms and calibration protocols for aerosol optical depth (AOD) retrieval. Such differences can affect the homogeneity and comparability of their measurements. In this study, we assess the homogeneity between the sun photometer networks GAW-PFR and SKYNET, analysing common measurements during three campaigns between 2017–2021, and investigate the main cause of the differences.
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024, https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary
Short summary
We describe the new feature mask (AEL-FM) and aerosol profile retrieval (AEL-PRO) algorithms developed for Aeolus lidar and present the evaluation of the Aeolus products using CALIPSO data for dust aerosols over Africa. We have found that Aeolus and CALIPSO show similar aerosol patterns in the collocated orbits and have good agreement for the extinction coefficients for the dust aerosols, especially for the cloud-free scenes. The finding is applicable to Aeolus L2A product Baseline 17.
Akriti Masoom, Stelios Kazadzis, Masimo Valeri, Ioannis-Panagiotis Raptis, Gabrielle Brizzi, Kyriakoula Papachristopoulou, Francesca Barnaba, Stefano Casadio, Axel Kreuter, and Fabrizio Niro
Atmos. Meas. Tech., 17, 5525–5549, https://doi.org/10.5194/amt-17-5525-2024, https://doi.org/10.5194/amt-17-5525-2024, 2024
Short summary
Short summary
Aerosols, which have a wide impact on climate, radiative forcing, and human health, are widely represented by aerosol optical depth (AOD). AOD retrievals require Rayleigh scattering and atmospheric absorption (ozone, NO2, etc.) corrections. We analysed the NO2 (which has a high spatiotemporal variation) uncertainty impact on AOD retrievals using the synergy of co-located ground-based instruments with a long-term dataset at worldwide sites and found significant AOD over- or underestimations.
Sooyon Kim, Yeseul Cho, Hanjeong Ki, Seyoung Park, Dagun Oh, Seungjun Lee, Yeonghye Cho, Jhoon Kim, Wonjin Lee, Jaewoo Park, Ick Hoon Jin, and Sangwook Kang
Atmos. Meas. Tech., 17, 5221–5241, https://doi.org/10.5194/amt-17-5221-2024, https://doi.org/10.5194/amt-17-5221-2024, 2024
Short summary
Short summary
This paper describes new work that improves the processing of GEMS AOD data. First, we enhance the inverse-distance-weighting algorithm by incorporating quality flag information, assigning weights that are inversely proportional to the number of unreliable grids. Second, we leverage a spatiotemporal merging method to address both spatial and temporal variability. Finally, we estimate the mean field values for GEMS AOD data, enhancing our understanding of the impact of aerosols on climate change.
Monica Campanelli, Victor Estellés, Gaurav Kumar, Teruyuki Nakajima, Masahiro Momoi, Julian Gröbner, Stelios Kazadzis, Natalia Kouremeti, Angelos Karanikolas, Africa Barreto, Saulius Nevas, Kerstin Schwind, Philipp Schneider, Iiro Harju, Petri Kärhä, Henri Diémoz, Rei Kudo, Akihiro Uchiyama, Akihiro Yamazaki, Anna Maria Iannarelli, Gabriele Mevi, Annalisa Di Bernardino, and Stefano Casadio
Atmos. Meas. Tech., 17, 5029–5050, https://doi.org/10.5194/amt-17-5029-2024, https://doi.org/10.5194/amt-17-5029-2024, 2024
Short summary
Short summary
To retrieve columnar aerosol properties from sun photometers, some calibration factors are needed. The on-site calibrations, performed as frequently as possible to monitor changes in the machine conditions, allow operators to track and evaluate the calibration status on a continuous basis, reducing the data gaps incurred by the periodic shipments for performing centralized calibrations. The performance of the on-site calibration procedures was evaluated, providing very good results.
Chenxing Zha, Lingbing Bu, Zhi Li, Qin Wang, Ahmad Mubarak, Pasindu Liyanage, Jiqiao Liu, and Weibiao Chen
Atmos. Meas. Tech., 17, 4425–4443, https://doi.org/10.5194/amt-17-4425-2024, https://doi.org/10.5194/amt-17-4425-2024, 2024
Short summary
Short summary
China has launched the atmospheric environment monitoring satellite DQ-1, which consists of an advanced lidar system. Our research presents a retrieval algorithm of the DQ-1 lidar system, and the retrieval results are consistent with other datasets. We also use the DQ-1 dataset to investigate dust and volcanic aerosols. This research shows that the DQ-1 lidar system can accurately measure the Earth's atmosphere and has potential for scientific applications.
Thierry Elias, Nicolas Ferlay, Gabriel Chesnoiu, Isabelle Chiapello, and Mustapha Moulana
Atmos. Meas. Tech., 17, 4041–4063, https://doi.org/10.5194/amt-17-4041-2024, https://doi.org/10.5194/amt-17-4041-2024, 2024
Short summary
Short summary
In the solar energy application field, it is key to simulate solar resources anywhere on the globe. We conceived the Solar Resource estimate (SolaRes) tool to provide precise and accurate estimates of solar resources for any solar plant technology. We present the validation of SolaRes by comparing estimates with measurements made on two ground-based platforms in northern France for 2 years at 1 min resolution. Validation is done in clear-sky conditions where aerosols are the main factors.
Robert P. Damadeo, Viktoria F. Sofieva, Alexei Rozanov, and Larry W. Thomason
Atmos. Meas. Tech., 17, 3669–3678, https://doi.org/10.5194/amt-17-3669-2024, https://doi.org/10.5194/amt-17-3669-2024, 2024
Short summary
Short summary
Comparing different aerosol data sets for scientific studies often requires converting aerosol extinction data between different wavelengths. A common approximation for the spectral behavior of aerosol is the Ångström formula; however, this introduces biases. Using measurements across many different wavelengths from a single instrument, we derive an empirical relationship to both characterize this bias and offer a correction for other studies that may employ this analysis approach.
Leong Wai Siu, Joseph S. Schlosser, David Painemal, Brian Cairns, Marta A. Fenn, Richard A. Ferrare, Johnathan W. Hair, Chris A. Hostetler, Longlei Li, Mary M. Kleb, Amy Jo Scarino, Taylor J. Shingler, Armin Sorooshian, Snorre A. Stamnes, and Xubin Zeng
Atmos. Meas. Tech., 17, 2739–2759, https://doi.org/10.5194/amt-17-2739-2024, https://doi.org/10.5194/amt-17-2739-2024, 2024
Short summary
Short summary
An unprecedented 3-year aerosol dataset was collected from a recent NASA field campaign over the western North Atlantic Ocean, which offers a special opportunity to evaluate two state-of-the-art remote sensing instruments, one lidar and the other polarimeter, on the same aircraft. Special attention has been paid to validate aerosol optical depth data and their uncertainties when no reference dataset is available. Physical reasons for the disagreement between two instruments are discussed.
Rui Song, Adam Povey, and Roy G. Grainger
Atmos. Meas. Tech., 17, 2521–2538, https://doi.org/10.5194/amt-17-2521-2024, https://doi.org/10.5194/amt-17-2521-2024, 2024
Short summary
Short summary
In our study, we explored aerosols, tiny atmospheric particles affecting the Earth's climate. Using data from two lidar-equipped satellites, ALADIN and CALIOP, we examined a 2020 Saharan dust event. The newer ALADIN's results aligned with CALIOP's. By merging their data, we corrected CALIOP's discrepancies, enhancing the dust event depiction. This underscores the significance of advanced satellite instruments in aerosol research. Our findings pave the way for upcoming satellite missions.
Alkistis Papetta, Franco Marenco, Maria Kezoudi, Rodanthi-Elisavet Mamouri, Argyro Nisantzi, Holger Baars, Ioana Elisabeta Popovici, Philippe Goloub, Stéphane Victori, and Jean Sciare
Atmos. Meas. Tech., 17, 1721–1738, https://doi.org/10.5194/amt-17-1721-2024, https://doi.org/10.5194/amt-17-1721-2024, 2024
Short summary
Short summary
We propose a method to determine depolarization parameters using observations from a reference instrument at a nearby location, needed for systems where a priori knowledge of cross-talk parameters is not available. It uses three-parameter equations to compare VDR between two co-located lidars at dust and molecular layers. It can be applied retrospectively to existing data acquired during campaigns. Its application to Cimel CE376 corrected VDR bias at high- and low-depolarizing layers.
Otto Hasekamp, Pavel Litvinov, Guangliang Fu, Cheng Chen, and Oleg Dubovik
Atmos. Meas. Tech., 17, 1497–1525, https://doi.org/10.5194/amt-17-1497-2024, https://doi.org/10.5194/amt-17-1497-2024, 2024
Short summary
Short summary
Aerosols are particles in the atmosphere that cool the climate by reflecting and absorbing sunlight (direct effect) and changing cloud properties (indirect effect). The scale of aerosol cooling is uncertain, hampering accurate climate predictions. We compare two algorithms for the retrieval of aerosol properties from multi-angle polarimetric measurements: Generalized Retrieval of Atmosphere and Surface Properties (GRASP) and Remote sensing of Trace gas and Aerosol Products (RemoTAP).
Qiantao Liu, Zhongwei Huang, Jiqiao Liu, Weibiao Chen, Qingqing Dong, Songhua Wu, Guangyao Dai, Meishi Li, Wuren Li, Ze Li, Xiaodong Song, and Yuan Xie
Atmos. Meas. Tech., 17, 1403–1417, https://doi.org/10.5194/amt-17-1403-2024, https://doi.org/10.5194/amt-17-1403-2024, 2024
Short summary
Short summary
The achieved results revealed that the ACDL observations were in good agreement with the ground-based lidar measurements during dust events. The heights of cloud top and bottom from these two measurements were well matched and comparable. This study proves that the ACDL provides reliable observations of aerosol and cloud in the presence of various climatic conditions, which helps to further evaluate the impacts of aerosol on climate and the environment, as well as on the ecosystem in the future.
Joseph Michalsky and Glen McConville
Atmos. Meas. Tech., 17, 1017–1022, https://doi.org/10.5194/amt-17-1017-2024, https://doi.org/10.5194/amt-17-1017-2024, 2024
Short summary
Short summary
The ozone in the atmosphere is measured by looking at the sun and measuring how diminished the light in the ultraviolet is relative to how bright it is above the Earth's atmosphere. This typically uses spectral instruments that are either costly or no longer manufactured. This paper uses a relatively inexpensive interference filter instrument to perform the same task. Daily ozone measurements with the latter and this filter instrument are compared. Aerosols are calculated as a by-product.
Hyerim Kim, Xi Chen, Jun Wang, Zhendong Lu, Meng Zhou, Gregory Carmichael, Sang Seo Park, and Jhoon Kim
EGUsphere, https://doi.org/10.5194/egusphere-2023-3115, https://doi.org/10.5194/egusphere-2023-3115, 2024
Short summary
Short summary
We compare aerosol layer height (ALH) derived from satellite platforms (GEMS, EPIC, TROPOMI). Validation against CALIOP shows high correlation for EPIC and TROPOMI (R > 0.7, overestimation ~0.8 km), while GEMS displays minimal bias (0.1 km) with a lower correlation (R = 0.64). Categorizing GEMS ALH with UVAI ≥ 3 improves agreement. GEMS exhibits a narrower ALH range and lower mean value than TROPOMI and EPIC. Diurnal variation of EPIC and GEMS ALH aligns with the boundary layer development.
Robert R. Nelson, Marcin L. Witek, Michael J. Garay, Michael A. Bull, James A. Limbacher, Ralph A. Kahn, and David J. Diner
Atmos. Meas. Tech., 16, 4947–4960, https://doi.org/10.5194/amt-16-4947-2023, https://doi.org/10.5194/amt-16-4947-2023, 2023
Short summary
Short summary
Shallow and coastal waters are nutrient-rich and turbid due to runoff. They are also located in areas where the atmosphere has more aerosols than open-ocean waters. NASA's Multi-angle Imaging SpectroRadiometer (MISR) has been monitoring aerosols for over 23 years but does not report results over shallow waters. We developed a new algorithm that uses all four of MISR’s bands and considers light leaving water surfaces. This algorithm performs well and increases over-water measurements by over 7 %.
Óscar Alvárez, África Barreto, Omaira E. García, Frank Hase, Rosa D. García, Julian Gröbner, Sergio F. León-Luis, Eliezer Sepúlveda, Virgilio Carreño, Antonio Alcántara, Ramón Ramos, A. Fernando Almansa, Stelios Kazadzis, Noémie Taquet, Carlos Toledano, and Emilio Cuevas
Atmos. Meas. Tech., 16, 4861–4884, https://doi.org/10.5194/amt-16-4861-2023, https://doi.org/10.5194/amt-16-4861-2023, 2023
Short summary
Short summary
In this work, we have extended the capabilities of a portable Fourier transform infrared (FTIR) instrument, which was originally designed to provide high-quality greenhouse gas monitoring within COCCON (COllaborative Carbon Column Observing Network). The extension allows the spectrometer to now also provide coincidentally column-integrated aerosol information. This addition of a reference instrument to a global network will be utilised to enhance our understanding of atmospheric chemistry.
Julian Gröbner, Natalia Kouremeti, Gregor Hülsen, Ralf Zuber, Mario Ribnitzky, Saulius Nevas, Peter Sperfeld, Kerstin Schwind, Philipp Schneider, Stelios Kazadzis, África Barreto, Tom Gardiner, Kavitha Mottungan, David Medland, and Marc Coleman
Atmos. Meas. Tech., 16, 4667–4680, https://doi.org/10.5194/amt-16-4667-2023, https://doi.org/10.5194/amt-16-4667-2023, 2023
Short summary
Short summary
Spectral solar irradiance measurements traceable to the International System of Units (SI) allow for intercomparability between instruments and for their validation according to metrological standards. Here we also validate and reduce the uncertainties of the top-of-atmosphere TSIS-1 Hybrid Solar Reference Spectrum (HSRS). The management of large networks, e.g. AERONET or GAW-PFR, will benefit from reducing logistical overhead, improving their resilience and achieving metrological traceability.
Longlong Wang, Zhenping Yin, Zhichao Bu, Anzhou Wang, Song Mao, Yang Yi, Detlef Müller, Yubao Chen, and Xuan Wang
Atmos. Meas. Tech., 16, 4307–4318, https://doi.org/10.5194/amt-16-4307-2023, https://doi.org/10.5194/amt-16-4307-2023, 2023
Short summary
Short summary
We report the lidar inter-comparison results with a reference lidar at 1064 nm, in order to homogenize the signals provided by different lidar systems for establishing a lidar network in China. The profiles of relative deviation of lidar signals are less than 5 % within 500–2000 m and 10 % within 2000–5000 m, increasing confidence in the reliability of the signals provided by each lidar system in the channels at 1064 nm for a future lidar network in China.
Jincheol Park, Jia Jung, Yunsoo Choi, Hyunkwang Lim, Minseok Kim, Kyunghwa Lee, Yun Gon Lee, and Jhoon Kim
Atmos. Meas. Tech., 16, 3039–3057, https://doi.org/10.5194/amt-16-3039-2023, https://doi.org/10.5194/amt-16-3039-2023, 2023
Short summary
Short summary
In response to the recent release of new geostationary platform-derived observational data generated by the Geostationary Environment Monitoring Spectrometer (GEMS) and its sister instruments, this study utilized the GEMS data fusion product and its proxy data in adjusting aerosol precursor emissions over East Asia. The use of spatiotemporally more complete observation references in updating the emissions resulted in more promising model performances in estimating aerosol loadings in East Asia.
Amanda Gumber, Jeffrey S. Reid, Robert E. Holz, Thomas F. Eck, N. Christina Hsu, Robert C. Levy, Jianglong Zhang, and Paolo Veglio
Atmos. Meas. Tech., 16, 2547–2573, https://doi.org/10.5194/amt-16-2547-2023, https://doi.org/10.5194/amt-16-2547-2023, 2023
Short summary
Short summary
The purpose of this study is to create and evaluate a gridded dataset composed of multiple satellite instruments and algorithms to be used for data assimilation. An important part of aerosol data assimilation is having consistent measurements, especially for severe aerosol events. This study evaluates 4 years of data from MODIS, VIIRS, and AERONET with a focus on aerosol severe event detection from a regional and global perspective.
Antonis Gkikas, Anna Gialitaki, Ioannis Binietoglou, Eleni Marinou, Maria Tsichla, Nikolaos Siomos, Peristera Paschou, Anna Kampouri, Kalliopi Artemis Voudouri, Emmanouil Proestakis, Maria Mylonaki, Christina-Anna Papanikolaou, Konstantinos Michailidis, Holger Baars, Anne Grete Straume, Dimitris Balis, Alexandros Papayannis, Tomasso Parrinello, and Vassilis Amiridis
Atmos. Meas. Tech., 16, 1017–1042, https://doi.org/10.5194/amt-16-1017-2023, https://doi.org/10.5194/amt-16-1017-2023, 2023
Short summary
Short summary
We perform an assessment analysis of the Aeolus Standard Correct Algorithm (SCA) backscatter coefficient retrievals against reference observations acquired at three Greek lidar stations (Athens, Thessaloniki and Antikythera) of the PANACEA network. Overall, 43 cases are analysed, whereas specific aerosol scenarios in the vicinity of Antikythera island (SW Greece) are emphasised. All key Cal/Val aspects and recommendations, and the ongoing related activities, are thoroughly discussed.
Bastiaan van Diedenhoven, Otto P. Hasekamp, Brian Cairns, Gregory L. Schuster, Snorre Stamnes, Michael Shook, and Luke Ziemba
Atmos. Meas. Tech., 15, 7411–7434, https://doi.org/10.5194/amt-15-7411-2022, https://doi.org/10.5194/amt-15-7411-2022, 2022
Short summary
Short summary
The strong variability in the chemistry of atmospheric particulate matter affects the amount of water aerosols absorb and their effect on climate. We present a remote sensing method to determine the amount of water in particulate matter. Its application to airborne instruments indicates that the observed aerosols have rather low water contents and low fractions of soluble particles. Future satellites will be able to yield global aerosol water uptake data.
Milagros E. Herrera, Oleg Dubovik, Benjamin Torres, Tatyana Lapyonok, David Fuertes, Anton Lopatin, Pavel Litvinov, Cheng Chen, Jose Antonio Benavent-Oltra, Juan L. Bali, and Pablo R. Ristori
Atmos. Meas. Tech., 15, 6075–6126, https://doi.org/10.5194/amt-15-6075-2022, https://doi.org/10.5194/amt-15-6075-2022, 2022
Short summary
Short summary
This study deals with the dynamic error estimates of the aerosol-retrieved properties by the GRASP algorithm, which are provided for directly retrieved and derived parameters. Moreover, GRASP provides full covariance matrices that appear to be a useful approach for optimizing observation schemes and retrieval set-ups. The validation of the retrieved dynamic error estimates is done through real and synthetic measurements using sun photometer and lidar observations.
Angelos Karanikolas, Natalia Kouremeti, Julian Gröbner, Luca Egli, and Stelios Kazadzis
Atmos. Meas. Tech., 15, 5667–5680, https://doi.org/10.5194/amt-15-5667-2022, https://doi.org/10.5194/amt-15-5667-2022, 2022
Short summary
Short summary
The aim of this work is to investigate the limitations of calculating long-term trends of a parameter that quantifies the overall effect of atmospheric aerosols on the solar radiation. A main finding is that even instruments with good agreement between their observations can show significantly different linear trends. By calculating time-varying trends, the trend agreement is shown to improve. We also show that different methods of trend estimation can result in significant trend differences.
Larisa Sogacheva, Matthieu Denisselle, Pekka Kolmonen, Timo H. Virtanen, Peter North, Claire Henocq, Silvia Scifoni, and Steffen Dransfeld
Atmos. Meas. Tech., 15, 5289–5322, https://doi.org/10.5194/amt-15-5289-2022, https://doi.org/10.5194/amt-15-5289-2022, 2022
Short summary
Short summary
The aim of this study was to provide global characterisation of a new SYNERGY aerosol product derived from the data from the OLCI and SLSTR sensors aboard the Sentinel-3A and Sentinel-3B satellites. Over ocean, the performance of SYNERGY-retrieved AOD is good. Reduced performance over land was expected since the surface reflectance and angular distribution of scattering are more difficult to treat. Validation statistics are often slightly better for S3B and in the Southern Hemisphere.
Shikuan Jin, Yingying Ma, Cheng Chen, Oleg Dubovik, Jin Hong, Boming Liu, and Wei Gong
Atmos. Meas. Tech., 15, 4323–4337, https://doi.org/10.5194/amt-15-4323-2022, https://doi.org/10.5194/amt-15-4323-2022, 2022
Short summary
Short summary
Aerosol parameter retrievals have always been a research focus. In this study, we used an advanced aerosol algorithms (GRASP, developed by Oleg Dubovik) to test the ability of DPC/Gaofen-5 (the first polarized multi-angle payload developed in China) images to obtain aerosol parameters. The results show that DPC/GRASP achieves good results (R > 0.9). This research will contribute to the development of hardware and algorithms for aerosols
Zhujun Li, David Painemal, Gregory Schuster, Marian Clayton, Richard Ferrare, Mark Vaughan, Damien Josset, Jayanta Kar, and Charles Trepte
Atmos. Meas. Tech., 15, 2745–2766, https://doi.org/10.5194/amt-15-2745-2022, https://doi.org/10.5194/amt-15-2745-2022, 2022
Short summary
Short summary
For more than 15 years, CALIPSO has revolutionized our understanding of the role of aerosols in climate. Here we evaluate CALIPSO aerosol typing over the ocean using an independent CALIPSO–CloudSat product. The analysis suggests that CALIPSO correctly categorizes clean marine aerosol over the open ocean, elevated smoke over the SE Atlantic, and dust over the tropical Atlantic. Similarities between clean and dusty marine over the open ocean implies that algorithm modifications are warranted.
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021, https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Short summary
Large-scale retrievals of the ultraviolet index (UVI) in real time by exploiting the modern Earth observation data and techniques are capable of forming operational early warning systems that raise awareness among citizens of the health implications of high UVI doses. In this direction a novel UVI operating system, the so-called UVIOS, was introduced for massive outputs, while its performance was tested against ground-based measurements revealing a dependence on the input quality and resolution.
Stefan F. Schreier, Tim Bösch, Andreas Richter, Kezia Lange, Michael Revesz, Philipp Weihs, Mihalis Vrekoussis, and Christoph Lotteraner
Atmos. Meas. Tech., 14, 5299–5318, https://doi.org/10.5194/amt-14-5299-2021, https://doi.org/10.5194/amt-14-5299-2021, 2021
Short summary
Short summary
This paper reports on the evaluation of aerosol profiling products retrieved from ground-based MAX-DOAS instruments using the BOREAS algorithm. Aerosol extinction profiles, near-surface aerosol extinction, and aerosol optical depth are compared to measurements collected with ceilometer, sun photometer, and in situ instruments. We show that these MAX-DOAS aerosol profiling products provide useful information to study spatial and temporal variations above the urban area of Vienna.
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021, https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Short summary
An experimental assessment of a polarized micro-pulse lidar (P-MPL) in comparison to reference lidars is presented regarding the retrieval of aerosol optical properties. The evaluation is focused on both the optimally determined overlap function and volume linear depolarization ratio. A P-MPL overlap must be regularly estimated to derive suitable aerosol products (backscatter, extinction, and particle depolarization ratio). This methodology can be easily applied to other P-MPL systems.
Benjamin Torres and David Fuertes
Atmos. Meas. Tech., 14, 4471–4506, https://doi.org/10.5194/amt-14-4471-2021, https://doi.org/10.5194/amt-14-4471-2021, 2021
Short summary
Short summary
The article shows the capacity of the new GRASP-AOD approach to be used for large datasets of aerosol optical depth from ground-based observations, through a comparison with standard AERONET codes. This new approach reduces the requirements in terms of measurements (no need of scattering information) to derive some basic aerosol size and optical properties. A broad use of this algorithm would increase the datasets of aerosol properties from ground-based observations.
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021, https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary
Short summary
The aerosol fine-mode fraction (FMF) is an important parameter reflecting the content of man-made aerosols. This study carried out the retrieval of FMF in China based on multi-angle polarization data and validated the results. The results of this study can contribute to the FMF retrieval algorithm of multi-angle polarization sensors. At the same time, a high-precision FMF dataset of China was obtained, which can provide basic data for atmospheric environment research.
Myrto Gratsea, Tim Bösch, Panagiotis Kokkalis, Andreas Richter, Mihalis Vrekoussis, Stelios Kazadzis, Alexandra Tsekeri, Alexandros Papayannis, Maria Mylonaki, Vassilis Amiridis, Nikos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Meas. Tech., 14, 749–767, https://doi.org/10.5194/amt-14-749-2021, https://doi.org/10.5194/amt-14-749-2021, 2021
Sabrina P. Cochrane, K. Sebastian Schmidt, Hong Chen, Peter Pilewskie, Scott Kittelman, Jens Redemann, Samuel LeBlanc, Kristina Pistone, Meloë Kacenelenbogen, Michal Segal Rozenhaimer, Yohei Shinozuka, Connor Flynn, Amie Dobracki, Paquita Zuidema, Steven Howell, Steffen Freitag, and Sarah Doherty
Atmos. Meas. Tech., 14, 567–593, https://doi.org/10.5194/amt-14-567-2021, https://doi.org/10.5194/amt-14-567-2021, 2021
Short summary
Short summary
Based on observations from the 2016 and 2017 field campaigns of ORACLES (ObseRvations of Aerosols above CLouds and their intEractionS), this work establishes an observationally driven link from mid-visible aerosol optical depth (AOD) and other scene parameters to broadband shortwave irradiance (and by extension the direct aerosol radiative effect, DARE). The majority of the case-to-case DARE variability within the ORACLES dataset is attributable to the dependence on AOD and scene albedo.
Omar Torres, Hiren Jethva, Changwoo Ahn, Glen Jaross, and Diego G. Loyola
Atmos. Meas. Tech., 13, 6789–6806, https://doi.org/10.5194/amt-13-6789-2020, https://doi.org/10.5194/amt-13-6789-2020, 2020
Short summary
Short summary
TROPOMI measures the quantity of small suspended particles (aerosols). We describe initial results of aerosol measurements using a NASA algorithm that retrieves the UV aerosol index, aerosol optical depth, and single-scattering albedo. An evaluation of derived products using sun-photometer observations shows close agreement. We also use these results to discuss important biomass burning and wildfire events around the world that got the attention of scientists and news media alike.
Priyanka deSouza, Ralph A. Kahn, James A. Limbacher, Eloise A. Marais, Fábio Duarte, and Carlo Ratti
Atmos. Meas. Tech., 13, 5319–5334, https://doi.org/10.5194/amt-13-5319-2020, https://doi.org/10.5194/amt-13-5319-2020, 2020
Short summary
Short summary
This paper presents a novel method to constrain the size distribution derived from low-cost optical particle counters (OPCs) using satellite data to develop higher-quality particulate matter (PM) estimates. Such estimates can enable cities that do not have access to expensive reference air quality monitors, especially those in the global south, to develop effective air quality management plans.
Dmitry M. Kabanov, Christoph Ritter, and Sergey M. Sakerin
Atmos. Meas. Tech., 13, 5303–5317, https://doi.org/10.5194/amt-13-5303-2020, https://doi.org/10.5194/amt-13-5303-2020, 2020
Short summary
Short summary
Long-term photometer measurements of two sites on Spitsbergen, Barentsburg and Ny-Ålesund, in the European Arctic are presented and compared. We find slightly higher aerosol optical depths at Barentsburg and attribute this to a higher concentration of small particles.
Shi Kuang, Bo Wang, Michael J. Newchurch, Kevin Knupp, Paula Tucker, Edwin W. Eloranta, Joseph P. Garcia, Ilya Razenkov, John T. Sullivan, Timothy A. Berkoff, Guillaume Gronoff, Liqiao Lei, Christoph J. Senff, Andrew O. Langford, Thierry Leblanc, and Vijay Natraj
Atmos. Meas. Tech., 13, 5277–5292, https://doi.org/10.5194/amt-13-5277-2020, https://doi.org/10.5194/amt-13-5277-2020, 2020
Short summary
Short summary
Ozone lidar is a state-of-the-art remote-sensing instrument to measure atmospheric ozone concentrations with high spatiotemporal resolution. In this study, we show that an ozone lidar can also provide reliable aerosol measurements through intercomparison with colocated aerosol lidar observations.
Laaziz El Amraoui, Bojan Sič, Andrea Piacentini, Virginie Marécal, Nicolas Frebourg, and Jean-Luc Attié
Atmos. Meas. Tech., 13, 4645–4667, https://doi.org/10.5194/amt-13-4645-2020, https://doi.org/10.5194/amt-13-4645-2020, 2020
Short summary
Short summary
The aim of this paper is to present the assimilation of lidar observations from the CALIOP instrument onboard the CALIPSO satellite in the chemistry-transport model of Météo-France, MOCAGE. We presented the first results of the assimilation of the extinction coefficient observations of the CALIOP lidar instrument during the pre-ChArMEx-TRAQA field campaign. We evaluated the added value of the assimilation product to better document a desert dust transport event compared to the model free run.
Carl Malings, Daniel M. Westervelt, Aliaksei Hauryliuk, Albert A. Presto, Andrew Grieshop, Ashley Bittner, Matthias Beekmann, and R. Subramanian
Atmos. Meas. Tech., 13, 3873–3892, https://doi.org/10.5194/amt-13-3873-2020, https://doi.org/10.5194/amt-13-3873-2020, 2020
Short summary
Short summary
Most air quality information comes from accurate but expensive instruments. These can be supplemented by lower-cost sensors to increase the density of ground data and expand monitoring into less well-instrumented areas, like sub-Saharan Africa. In this paper, we look at how low-cost sensor data can be combined with satellite information on air quality (which requires ground data to properly calibrate measurements) and assess the benefits these low-cost sensors provide in this context.
Zhong Chen, Pawan K. Bhartia, Omar Torres, Glen Jaross, Robert Loughman, Matthew DeLand, Peter Colarco, Robert Damadeo, and Ghassan Taha
Atmos. Meas. Tech., 13, 3471–3485, https://doi.org/10.5194/amt-13-3471-2020, https://doi.org/10.5194/amt-13-3471-2020, 2020
Short summary
Short summary
The scope of the paper is the evaluation of stratospheric aerosols derived from the OMPS/LP instrument via comparison with independent datasets from the SAGE III/ISS instrument. Results show very good agreement for extinction profiles between an altitude of 19 and 27 km, to within ±25 %, and show systematic differences (LP-SAGE III/ISS) above 28 km and below 19 km (greater than ±25 %).
Steven Albers, Stephen M. Saleeby, Sonia Kreidenweis, Qijing Bian, Peng Xian, Zoltan Toth, Ravan Ahmadov, Eric James, and Steven D. Miller
Atmos. Meas. Tech., 13, 3235–3261, https://doi.org/10.5194/amt-13-3235-2020, https://doi.org/10.5194/amt-13-3235-2020, 2020
Short summary
Short summary
A fast 3D visible-light forward operator is used to realistically visualize, validate, and potentially assimilate ground- and space-based camera and satellite imagery with NWP models. Three-dimensional fields of hydrometeors, aerosols, and 2D land surface variables are considered in the generation of radiance fields and RGB imagery from a variety of vantage points.
Swadhin Nanda, Martin de Graaf, J. Pepijn Veefkind, Maarten Sneep, Mark ter Linden, Jiyunting Sun, and Pieternel F. Levelt
Atmos. Meas. Tech., 13, 3043–3059, https://doi.org/10.5194/amt-13-3043-2020, https://doi.org/10.5194/amt-13-3043-2020, 2020
Short summary
Short summary
This paper presents a first validation of the TROPOspheric Monitoring Instrument (TROPOMI) aerosol layer height (ALH) product, which is an estimate of the height of an aerosol layer using a spectrometer on board ESA's Sentinel-5 Precursor satellite mission. Comparison between the TROPOMI ALH product and co-located aerosol extinction heights from the CALIOP instrument on board NASA's CALIPSO mission show good agreement for selected cases over the ocean and large differences over land.
Debora Griffin, Christopher Sioris, Jack Chen, Nolan Dickson, Andrew Kovachik, Martin de Graaf, Swadhin Nanda, Pepijn Veefkind, Enrico Dammers, Chris A. McLinden, Paul Makar, and Ayodeji Akingunola
Atmos. Meas. Tech., 13, 1427–1445, https://doi.org/10.5194/amt-13-1427-2020, https://doi.org/10.5194/amt-13-1427-2020, 2020
Short summary
Short summary
This study looks into validating the aerosol layer height product from the recently launched TROPOspheric Monitoring Instrument (TROPOMI) for forest fire plume through comparisons with two other satellite products, and interpreting differences due to the individual measurement techniques. These satellite observations are compared to predicted plume heights from Environment and Climate Change's air quality forecast model.
Jonas Witthuhn, Anja Hünerbein, and Hartwig Deneke
Atmos. Meas. Tech., 13, 1387–1412, https://doi.org/10.5194/amt-13-1387-2020, https://doi.org/10.5194/amt-13-1387-2020, 2020
Short summary
Short summary
Reliable reference measurements over ocean are essential for the evaluation and improvement of satellite- and model-based aerosol datasets. Here, a uniqe set of shipborne reference aerosol products obtained from Microtops sunphotometer and GUVis-3511 shadowband radiometer observations are compared to aerosol products from the MODIS and SEVIRI satellite sensors, and the CAMS reanalysis over the Atlantic Ocean. The present evaluation highlights the importance of an aerosol-type based analysis.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Ekaterina Y. Zhdanova, Natalia Y. Chubarova, and Alexei I. Lyapustin
Atmos. Meas. Tech., 13, 877–891, https://doi.org/10.5194/amt-13-877-2020, https://doi.org/10.5194/amt-13-877-2020, 2020
Short summary
Short summary
We estimated the distribution of aerosol optical thickness (AOT) with a spatial resolution of 1 km over the Moscow megacity using the MAIAC satellite aerosol product from May to September over the years 2000–2017. We revealed that the MAIAC product is a reliable instrument for assessing the spatial features of urban aerosol pollution and its temporal dynamics. The local aerosol effect is about 0.02–0.04 in AOT in the visible spectral range over the Moscow megacity.
Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare
Atmos. Meas. Tech., 13, 553–573, https://doi.org/10.5194/amt-13-553-2020, https://doi.org/10.5194/amt-13-553-2020, 2020
Short summary
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Andrew M. Sayer, Yves Govaerts, Pekka Kolmonen, Antti Lipponen, Marta Luffarelli, Tero Mielonen, Falguni Patadia, Thomas Popp, Adam C. Povey, Kerstin Stebel, and Marcin L. Witek
Atmos. Meas. Tech., 13, 373–404, https://doi.org/10.5194/amt-13-373-2020, https://doi.org/10.5194/amt-13-373-2020, 2020
Short summary
Short summary
Satellite measurements of the Earth are routinely processed to estimate useful quantities; one example is the amount of atmospheric aerosols (which are particles such as mineral dust, smoke, volcanic ash, or sea spray). As with all measurements and inferred quantities, there is some degree of uncertainty in this process.
There are various methods to estimate these uncertainties. A related question is the following: how reliable are these estimates? This paper presents a method to assess them.
Cited articles
Althausen, D., Engelmann, R., Baars, H., Heese, B., Ansmann, A.,
Müller, D., and Komppula, M.: Portable Raman lidar PollyXT for automated
profiling of aerosol backscatter, extinction, and depolarization, J. Atmos. Ocean. Tech., 26, 2366–2378,
https://doi.org/10.1175/2009jtecha1304.1, 2009.
Ångstrom, A.: The Parameters of Atmospheric Turbidity, Tellus, 16,
64–75, https://doi.org/10.1111/j.2153-3490.1964.tb00144.x,
1964.
Ansmann, A. and Müller, D.: Lidar and atmospheric aerosol particles,
in: Lidar, Springer, 105–141, 2005.
Ansmann, A., Riebesell, M., Wandinger, U., Weitkamp, C., Voss, E., Lahmann,
W., and Michaelis, W.: Combined Raman Elastic-Backscatter Lidar for Vertical
Profiling of Moisture, Aerosol Extinction, Backscatter, and Lidar Ratio,
Appl. Phys. B-Photo., 55, 18–28, https://doi.org/10.1007/Bf00348608, 1992.
Ansmann, A., Wagner, F., Müller, D., Althausen, D., Herber, A., von
Hoyningen-Huene, W., and Wandinger, U.: European pollution outbreaks during
ACE 2: Optical particle properties inferred from multiwavelength lidar and
star-Sun photometry, J. Geophys. Res.-Atmos., 107, AAC
8-1–AAC 8-14, https://doi.org/10.1029/2001jd001109, 2002.
Baars, H., Ansmann, A., Althausen, D., Engelmann, R., Heese, B., Muller, D.,
Artaxo, P., Paixao, M., Pauliquevis, T., and Souza, R.: Aerosol profiling
with lidar in the Amazon Basin during the wet and dry season, J. Geophys.
Res.-Atmos., 117, D21201, https://doi.org/10.1029/2012jd018338, 2012.
Baars, H., Kanitz, T., Engelmann, R., Althausen, D., Heese, B., Komppula, M., Preißler, J., Tesche, M., Ansmann, A., Wandinger, U., Lim, J.-H., Ahn, J. Y., Stachlewska, I. S., Amiridis, V., Marinou, E., Seifert, P., Hofer, J., Skupin, A., Schneider, F., Bohlmann, S., Foth, A., Bley, S., Pfüller, A., Giannakaki, E., Lihavainen, H., Viisanen, Y., Hooda, R. K., Pereira, S. N., Bortoli, D., Wagner, F., Mattis, I., Janicka, L., Markowicz, K. M., Achtert, P., Artaxo, P., Pauliquevis, T., Souza, R. A. F., Sharma, V. P., van Zyl, P. G., Beukes, J. P., Sun, J., Rohwer, E. G., Deng, R., Mamouri, R.-E., and Zamorano, F.: An overview of the first decade of PollyNET: an emerging network of automated Raman-polarization lidars for continuous aerosol profiling, Atmos. Chem. Phys., 16, 5111–5137, https://doi.org/10.5194/acp-16-5111-2016, 2016.
Barreto, Á., Cuevas, E., Granados-Muñoz, M.-J., Alados-Arboledas, L., Romero, P. M., Gröbner, J., Kouremeti, N., Almansa, A. F., Stone, T., Toledano, C., Román, R., Sorokin, M., Holben, B., Canini, M., and Yela, M.: The new sun-sky-lunar Cimel CE318-T multiband photometer – a comprehensive performance evaluation, Atmos. Meas. Tech., 9, 631–654, https://doi.org/10.5194/amt-9-631-2016, 2016.
Bland, J. M. and Altman, D.: Statistical methods for assessing agreement
between two methods of clinical measurement, Lancet, 327, 307–310,
https://doi.org/10.1016/s0140-6736(86)90837-8, 1986.
Bohlmann, S., Baars, H., Radenz, M., Engelmann, R., and Macke, A.: Ship-borne aerosol profiling with lidar over the Atlantic Ocean: from pure marine conditions to complex dust-smoke mixtures, Atmos. Chem. Phys., 18, 9661–9679, https://doi.org/10.5194/acp-18-9661-2018, 2018.
Draxler, R. R.: Hysplit (hybrid single-particle lagrangian integrated
trajectory) model access via NOAA ARL ready website, available at: https://ready.arl.noaa.gov/HYSPLIT.php (last access: 28 February 2019), 2011.
Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill,
N. T., Slutsker, I., and Kinne, S.: Wavelength dependence of the optical
depth of biomass burning, urban, and desert dust aerosols, J. Geophys.
Res.-Atmos., 104, 31333–31349, https://doi.org/10.1029/1999jd900923, 1999.
Engelmann, R., Kanitz, T., Baars, H., Heese, B., Althausen, D., Skupin, A., Wandinger, U., Komppula, M., Stachlewska, I. S., Amiridis, V., Marinou, E., Mattis, I., Linné, H., and Ansmann, A.: The automated multiwavelength Raman polarization and water-vapor lidar PollyXT: the neXT generation, Atmos. Meas. Tech., 9, 1767–1784, https://doi.org/10.5194/amt-9-1767-2016, 2016.
Fargion, G. S., McClain, C. R., Fukushima, H., Nicolas, J. M., and Barnes,
R. A.: Ocean color instrument intercomparisons and cross-calibrations by the
SIMBIOS Project, Sensors, Systems, and Next-Generation Satellites III, in: Sensors, Systems, and Next-Generation Satellites III, International Society for Optics and Photonics, https://doi.org/10.1117/12.494210,
397–403, 1999.
Fernald, F. G., Herman, B. M., and Reagan, J. A.: Determination of aerosol
height distributions by lidar, J. Appl. Meteorol., 11, 482–489,
1972.
Freudenthaler, V., Esselborn, M., Wiegner, M., Heese, B., Tesche, M.,
Ansmann, A., Muller, D., Althausen, D., Wirth, M., Fix, A., Ehret, G.,
Knippertz, P., Toledano, C., Gasteiger, J., Garhammer, M., and Seefeldner,
M.: Depolarization ratio profiling at several wavelengths in pure Saharan
dust during SAMUM 2006, Tellus B,
61, 165–179, https://doi.org/10.1111/j.1600-0889.2008.00396.x,
2009.
Giavarina, D.: Understanding bland altman analysis, Biochem. Medica, 25, 141–151, https://doi.org/10.11613/bm.2015.015, 2015.
Goloub, P., Blarel, L., Dubios, G., Popovici, I., Podvin, T., Torres, B.,
Victori, S., Maupin, F., and Pikridas, M.: Current results on mobile system
prototype development for Aerosol Cal/Val activities, ESA/IDEAS Project WP
3440-1/3/5, 12 December 2017.
Groß, S., Tesche, M., Freudenthaler, V., Toledano, C., Wiegner, M.,
Ansmann, A., Althausen, D., and Seefeldner, M.: Characterization of Saharan
dust, marine aerosols and mixtures of biomass-burning aerosols and dust by
means of multi-wavelength depolarization and Raman lidar measurements during
SAMUM 2, Tellus B, 63, 706–724,
https://doi.org/10.3402/tellusb.v63i4.16369, 2011a.
Groß, S., Wiegner, M., Freudenthaler, V., and Toledano, C.: Lidar ratio
of Saharan dust over Cape Verde Islands: Assessment and error calculation,
J. Geophys. Res.-Atmos., 116, D15203, https://doi.org/10.1029/2010JD015435, 2011b.
Haarig, M., Ansmann, A., Gasteiger, J., Kandler, K., Althausen, D., Baars, H., Radenz, M., and Farrell, D. A.: Dry versus wet marine particle optical properties: RH dependence of depolarization ratio, backscatter, and extinction from multiwavelength lidar measurements during SALTRACE, Atmos. Chem. Phys., 17, 14199–14217, https://doi.org/10.5194/acp-17-14199-2017, 2017.
Holben, B. N., Tanre, D., Smirnov, A., Eck, T., Slutsker, I., Abuhassan, N.,
Newcomb, W., Schafer, J., Chatenet, B., and Lavenu, F.: An emerging
ground-based aerosol climatology: Aerosol optical depth from AERONET,
J. Geophys. Res.-Atmos., 106, 12067–12097, https://doi.org/10.1029/2001jd900014, 2001.
Hsu, N., Jeong, M. J., Bettenhausen, C., Sayer, A., Hansell, R., Seftor, C., Huang, J., and Tsay, S. C.: Enhanced Deep Blue aerosol retrieval algorithm: The second generation, J. Geophys. Res.-Atmos., 118, 9296–9315, https://doi.org/10.1002/jgrd.50712, 2013.
Hughes, H. G., Ferguson, J. A., and Stephens, D. H.: Sensitivity of a lidar
inversion algorithm to parameters relating atmospheric backscatter and
extinction, Appl. Optics, 24, 1609–1613, https://doi.org/10.1364/ao.24.001609, 1985.
Ichoku, C., Levy, R., Kaufman, Y. J., Remer, L. A., Li, R. R., Martins, V.
J., Holben, B. N., Abuhassan, N., Slutsker, I., and Eck, T. F.: Analysis of
the performance characteristics of the five-channel Microtops II Sun
photometer for measuring aerosol optical thickness and precipitable water
vapor, J. Geophys. Res.-Atmos., 107, AAC 5-1–AAC 5-17,
https://doi.org/10.1029/2001jd001302, 2002.
Kafle, D. and Coulter, R.: Micropulse lidar-derived aerosol optical depth
climatology at ARM sites worldwide, J. Geophys. Res.-Atmos., 118, 7293–7308, https://doi.org/10.1002/jgrd.50536, 2013.
Kanamitsu, M.: Description of the NMC global data assimilation and forecast
system, Weather Forecast., 4, 335–342,
1989.
Kanitz, T.: Vertical distribution of aerosols above the Atlantic Ocean,
Punta Arenas (Chile), and Stellenbosch (South Africa), Characterization,
solar radiative effects and ice nucleating properties, https://doi.org/10.14279/depositonce-3386, 2012.
Kanitz, T., Ansmann, A., Engelmann, R., and Althausen, D.: North-south cross
sections of the vertical aerosol distribution over the Atlantic Ocean from
multiwavelength Raman/polarization lidar during Polarstern cruises, J.
Geophys. Res.-Atmos., 118, 2643–2655, https://doi.org/10.1002/jgrd.50273, 2013.
Karol, Y., Tanré, D., Goloub, P., Vervaerde, C., Balois, J. Y., Blarel, L., Podvin, T., Mortier, A., and Chaikovsky, A.: Airborne sun photometer PLASMA: concept, measurements, comparison of aerosol extinction vertical profile with lidar, Atmos. Meas. Tech., 6, 2383–2389, https://doi.org/10.5194/amt-6-2383-2013, 2013.
Knobelspiesse, K., Tan, Q., Bruegge, C., Cairns, B., Chowdhary, J., van
Diedenhoven, B., Diner, D., Ferrare, R., van Harten, G., and Jovanovic, V.:
Intercomparison of airborne multi-angle polarimeter observations from the
Polarimeter Definition Experiment, Appl. Optics, 58, 650–669, https://doi.org/10.1364/ao.58.000650, 2019.
Knobelspiesse, K. D., Pietras, C., Fargion, G. S., Wang, M., Frouin, R.,
Miller, M. A., Subramaniam, A., and Balch, W. M.: Maritime aerosol optical
thickness measured by handheld sun photometers, Remote Sens.
Environ., 93, 87–106,
https://doi.org/10.1016/j.rse.2004.06.018, 2004.
Livingston, J. M., Russell, P. B., Reid, J. S., Redemann, J., Schmid, B.,
Allen, D. A., Torres, O., Levy, R. C., Remer, L. A., and Holben, B. N.:
Airborne Sun photometer measurements of aerosol optical depth and columnar
water vapor during the Puerto Rico Dust Experiment and comparison with land,
aircraft, and satellite measurements, J. Geophys. Res.-Atmos., 108, D19, https://doi.org/10.1029/2002jd002520, 2003.
Macke, A., Kalisch, J., Zoll, Y., and Bumke, K.: Radiative effects of the
cloudy atmosphere from ground and satellite based observations, EPJ Web of
Conferences, 83–94, 2010.
MAN: AERONET Maritime Aerosol Network database, available at: https://aeronet.gsfc.nasa.gov/new_web/maritime_aerosol_network.html, last access: 4 February 2019.
Mattis, I., Ansmann, A., Müller, D., Wandinger, U., and Althausen, D.:
Multiyear aerosol observations with dual-wavelength Raman lidar in the
framework of EARLINET, J. Geophys. Res.-Atmos., 109, D13,
https://doi.org/10.1029/2004jd004600, 2004.
Morys, M., Mims III, F. M., Hagerup, S., Anderson, S. E., Baker, A., Kia,
J., and Walkup, T.: Design, calibration, and performance of MICROTOPS II
handheld ozone monitor and Sun photometer, J. Geophys. Res.-Atmos., 106, 14573–14582, https://doi.org/10.1029/2001jd900103, 2001.
Müller, D., Ansmann, A., Mattis, I., Tesche, M., Wandinger, U.,
Althausen, D., and Pisani, G.: Aerosol-type-dependent lidar ratios observed
with Raman lidar, J. Geophys. Res.-Atmos., 112,
D16, https://doi.org/10.1029/2006jd008292, 2007.
PollyNET: PollyNET lidar database, available at: http://polly.rsd.tropos.de/, last access: 28 February 2019.
Rittmeister, F., Ansmann, A., Engelmann, R., Skupin, A., Baars, H., Kanitz, T., and Kinne, S.: Profiling of Saharan dust from the Caribbean to western Africa – Part 1: Layering structures and optical properties from shipborne polarization/Raman lidar observations, Atmos. Chem. Phys., 17, 12963–12983, https://doi.org/10.5194/acp-17-12963-2017, 2017.
Satheesh, S. and Moorthy, K. K.: Radiative effects of natural aerosols: A
review, Atmos. Environ., 39, 2089–2110, 2005.
Sayer, A., Hsu, N., Lee, J., Bettenhausen, C., Kim, W., and Smirnov, A.: Satellite Ocean Aerosol Retrieval (SOAR) Algorithm Extension to S‐NPP VIIRS as Part of the “Deep Blue” Aerosol Project, J. Geophys. Res.-Atmospheres, 123, 380–400, https://doi.org/10.1002/2017jd027412, 2018.
Schmithüsen, H.: Radiosonde measurements during POLARSTERN cruise PS113 (ANT-XXXIII/4), https://doi.org/10.1594/PANGAEA.903864, 2019a.
Schmithüsen, H.: Radiosonde measurements during POLARSTERN cruise PS116, https://doi.org/10.1594/PANGAEA.903888, 2019b.
Shin, S.-K., Tesche, M., Kim, K., Kezoudi, M., Tatarov, B., Müller, D., and Noh, Y.: On the spectral depolarisation and lidar ratio of mineral dust provided in the AERONET version 3 inversion product, Atmos. Chem. Phys., 18, 12735–12746, https://doi.org/10.5194/acp-18-12735-2018, 2018.
Smirnov, A., Holben, B. N., Kaufman, Y. J., Dubovik, O., Eck, T. F.,
Slutsker, I., Pietras, C., and Halthore, R. N.: Optical properties of
atmospheric aerosol in maritime environments, J. Atmos.
Sci., 59, 501–523, 2002.
Smirnov, A., Holben, B. N., Slutsker, I., Giles, D. M., McClain, C. R., Eck,
T. F., Sakerin, S. M., Macke, A., Croot, P., Zibordi, G., Quinn, P. K.,
Sciare, J., Kinne, S., Harvey, M., Smyth, T. J., Piketh, S., Zielinski, T.,
Proshutinsky, A., Goes, J. I., Nelson, N. B., Larouche, P., Radionov, V. F.,
Goloub, P., Moorthy, K. K., Matarrese, R., Robertson, E. J., and Jourdin,
F.: Maritime Aerosol Network as a component of Aerosol Robotic Network, J.
Geophys. Res.-Atmos., 114, D6, https://doi.org/10.1029/2008jd011257,
2009.
Smirnov, A., Holben, B. N., Giles, D. M., Slutsker, I., O'Neill, N. T., Eck, T. F., Macke, A., Croot, P., Courcoux, Y., Sakerin, S. M., Smyth, T. J., Zielinski, T., Zibordi, G., Goes, J. I., Harvey, M. J., Quinn, P. K., Nelson, N. B., Radionov, V. F., Duarte, C. M., Losno, R., Sciare, J., Voss, K. J., Kinne, S., Nalli, N. R., Joseph, E., Krishna Moorthy, K., Covert, D. S., Gulev, S. K., Milinevsky, G., Larouche, P., Belanger, S., Horne, E., Chin, M., Remer, L. A., Kahn, R. A., Reid, J. S., Schulz, M., Heald, C. L., Zhang, J., Lapina, K., Kleidman, R. G., Griesfeller, J., Gaitley, B. J., Tan, Q., and Diehl, T. L.: Maritime aerosol network as a component of AERONET – first results and comparison with global aerosol models and satellite retrievals, Atmos. Meas. Tech., 4, 583–597, https://doi.org/10.5194/amt-4-583-2011, 2011.
Stocker, T.: Climate change 2013: the physical science basis: Working Group
I contribution to the Fifth assessment report of the Intergovernmental Panel
on Climate Change, Cambridge University Press, 2014.
Tesche, M., Ansmann, A., Muller, D., Althausen, D., Mattis, I., Heese, B.,
Freudenthaler, V., Wiegner, M., Esselborn, M., Pisani, G., and Knippertz,
P.: Vertical profiling of Saharan dust with Raman lidars and airborne HSRL
in southern Morocco during SAMUM, Tellus B, 61, 144–164, https://doi.org/10.1111/j.1600-0889.2008.00390.x, 2009.
Toledano, C., Cachorro, V., Berjon, A., De Frutos, A., Sorribas, M., De la
Morena, B., and Goloub, P.: Aerosol optical depth and Ångström
exponent climatology at El Arenosillo AERONET site (Huelva, Spain),
Q. J. Roy. Meteor. Soc., 133,
795–807, https://doi.org/10.1002/qj.54, 2007.
Willmott, C. J.: Some comments on the evaluation of model performance,
B. Am. Meteorol. Soc., 63, 1309–1313,
1982.
WMO: WMO/GAW Experts Workshop on a Global Surface-Based Network for Long Term Observations of Column Aerosol Optical Properties, edited by:
Baltensperger, U., Barrie, L., and Wehrli, C., WMO/TD No. 1287, GAW Report No. 162, 2005.
Short summary
A new shipborne Sun–sky–lunar photometer was validated through comparisons with collocated MICROTOPS II and multiwavelength Raman polarization lidar measurements during two trans-Atlantic cruises. A full diurnal cycle of mixed dust–smoke episode was captured by both the shipborne photometer and lidar. The coefficient of determination for the linear regression between MICROTOPS II and the shipborne photometer was 0.993 for AOD at 500 nm based on the entire dataset.
A new shipborne Sun–sky–lunar photometer was validated through comparisons with collocated...