Articles | Volume 8, issue 12
https://doi.org/10.5194/amt-8-5301-2015
https://doi.org/10.5194/amt-8-5301-2015
Research article
 | 
18 Dec 2015
Research article |  | 18 Dec 2015

Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China

S. X. Fang, P. P. Tans, M. Steinbacher, L. X. Zhou, and T. Luan

Related authors

Measurement report: Changing characteristics of atmospheric CH4 in the Tibetan Plateau: records from 1994 to 2019 at the Mount Waliguan station
Shuo Liu, Shuangxi Fang, Peng Liu, Miao Liang, Minrui Guo, and Zhaozhong Feng
Atmos. Chem. Phys., 21, 393–413, https://doi.org/10.5194/acp-21-393-2021,https://doi.org/10.5194/acp-21-393-2021, 2021
Short summary
Correlation slopes of GEM / CO, GEM / CO2, and GEM / CH4 and estimated mercury emissions in China, South Asia, the Indochinese Peninsula, and Central Asia derived from observations in northwestern and southwestern China
X. W. Fu, H. Zhang, C.-J. Lin, X. B. Feng, L. X. Zhou, and S. X. Fang
Atmos. Chem. Phys., 15, 1013–1028, https://doi.org/10.5194/acp-15-1013-2015,https://doi.org/10.5194/acp-15-1013-2015, 2015
Short summary
In situ measurement of atmospheric CO2 at the four WMO/GAW stations in China
S. X. Fang, L. X. Zhou, P. P. Tans, P. Ciais, M. Steinbacher, L. Xu, and T. Luan
Atmos. Chem. Phys., 14, 2541–2554, https://doi.org/10.5194/acp-14-2541-2014,https://doi.org/10.5194/acp-14-2541-2014, 2014

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Multi-instrumental analysis of ozone vertical profiles and total columns in South America: comparison between subtropical and equatorial latitudes
Gabriela Dornelles Bittencourt, Hassan Bencherif, Damaris Kirsch Pinheiro, Nelson Begue, Lucas Vaz Peres, José Valentin Bageston, Douglas Lima de Bem, Francisco Raimundo da Silva, and Tristan Millet
Atmos. Meas. Tech., 17, 5201–5220, https://doi.org/10.5194/amt-17-5201-2024,https://doi.org/10.5194/amt-17-5201-2024, 2024
Short summary
Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors
Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi
Atmos. Meas. Tech., 17, 3917–3931, https://doi.org/10.5194/amt-17-3917-2024,https://doi.org/10.5194/amt-17-3917-2024, 2024
Short summary
Detection and long-term quantification of methane emissions from an active landfill
Pramod Kumar, Christopher Caldow, Grégoire Broquet, Adil Shah, Olivier Laurent, Camille Yver-Kwok, Sebastien Ars, Sara Defratyka, Susan Warao Gichuki, Luc Lienhardt, Mathis Lozano, Jean-Daniel Paris, Felix Vogel, Caroline Bouchet, Elisa Allegrini, Robert Kelly, Catherine Juery, and Philippe Ciais
Atmos. Meas. Tech., 17, 1229–1250, https://doi.org/10.5194/amt-17-1229-2024,https://doi.org/10.5194/amt-17-1229-2024, 2024
Short summary
Research of low-cost air quality monitoring models with different machine learning algorithms
Gang Wang, Chunlai Yu, Kai Guo, Haisong Guo, and Yibo Wang
Atmos. Meas. Tech., 17, 181–196, https://doi.org/10.5194/amt-17-181-2024,https://doi.org/10.5194/amt-17-181-2024, 2024
Short summary
Field assessments on impact of CO2 concentration fluctuations along with complex terrain flows on the estimation of the net ecosystem exchange of temperate forests
Dexiong Teng, Jiaojun Zhu, Tian Gao, Fengyuan Yu, Yuan Zhu, Xinhua Zhou, and Bai Yang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-6,https://doi.org/10.5194/amt-2024-6, 2024
Revised manuscript accepted for AMT
Short summary

Cited articles

AGGI: The NOAA Annual Greenhouse Gas Index (AGGI), available at: http://esrl.noaa.gov/gmd/aggi/aggi.html (last access: 3 July 2015), 2014.
Artuso, F., Chamard, P., Piacentino, S., Sferlazzo, D. M., Silvestri, L. D., Sarra, A. D., Meloni, D., and Monteleone, F.: Influence of transport and trends in amtospheric CO2 at Lampedusa, Atmos. Environ., 43, 3044–3051, https://doi.org/10.1016/j.atmosenv.2009.03.027, 2009.
Baumgardner, D., Raga, G., Peralta, O., Rosas, I., Castro, T., Kuhlbusch, T., John, A., and Petzold, A.: Diagnosing black carbon trends in large urban areas using carbon monoxide measurements, J. Geophys. Res., 107, 8342, https://doi.org/10.1029/2001JD000626, 2002.
Brunke, E. G., Labuschagne, C., Parker, B., Scheel, H. E., and Whittlestone, S.: Baseline air mass selection at Cape Point, South Africa: application of 222Rn and other filter criteria to CO2, Atmos. Environ., 38, 5693–5702, https://doi.org/10.1016/j.atmosenv.2004.04.024, 2004.
Cape, J. N., Methven, J., and Hudson, L. E.: The use of trajectory cluster analysis to interpret trace gas measurements at Mace Head, Ireland, Atmos. Environ., 34, 3651–3663, https://doi.org/10.1016/S1352-2310(00)00098-4, 2000.
Download
Short summary
The identification of atmospheric CO2 observation data which are minimally influenced by very local emissions/removals is essential for trend analysis and for the estimation of regional sources and sinks. We compared four data filtering regimes based on the observation records at Lin'an station in China, and found that the use of meteorological parameters was the most favorable. This conclusion will aid regional data selection at the Lin'an station.