Articles | Volume 9, issue 3
Atmos. Meas. Tech., 9, 1377–1398, 2016
https://doi.org/10.5194/amt-9-1377-2016

Special issue: Meso-scale aerosol processes, comparison and validation studies...

Atmos. Meas. Tech., 9, 1377–1398, 2016
https://doi.org/10.5194/amt-9-1377-2016

Research article 01 Apr 2016

Research article | 01 Apr 2016

GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

Myungje Choi et al.

Related authors

Inferring iron oxides species content in atmospheric mineral dust from DSCOVR EPIC observations
Sujung Go, Alexei Lyapustin, Gregory L. Schuster, Myungje Choi, Paul Ginoux, Mian Chin, Olga Kalashnikova, Oleg Dubovik, Jhoon Kim, Arlindo da Silva, Brent Holben, and Jeffrey S. Reid
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2021-599,https://doi.org/10.5194/acp-2021-599, 2021
Revised manuscript under review for ACP
Short summary
Integration of GOCI and AHI Yonsei aerosol optical depth products during the 2016 KORUS-AQ and 2018 EMeRGe campaigns
Hyunkwang Lim, Sujung Go, Jhoon Kim, Myungje Choi, Seoyoung Lee, Chang-Keun Song, and Yasuko Kasai
Atmos. Meas. Tech., 14, 4575–4592, https://doi.org/10.5194/amt-14-4575-2021,https://doi.org/10.5194/amt-14-4575-2021, 2021
Short summary
A global analysis of diurnal variability in dust and dust mixture using CATS observations
Yan Yu, Olga V. Kalashnikova, Michael J. Garay, Huikyo Lee, Myungje Choi, Gregory S. Okin, John E. Yorks, James R. Campbell, and Jared Marquis
Atmos. Chem. Phys., 21, 1427–1447, https://doi.org/10.5194/acp-21-1427-2021,https://doi.org/10.5194/acp-21-1427-2021, 2021
Short summary
Understanding and improving model representation of aerosol optical properties for a Chinese haze event measured during KORUS-AQ
Pablo E. Saide, Meng Gao, Zifeng Lu, Daniel L. Goldberg, David G. Streets, Jung-Hun Woo, Andreas Beyersdorf, Chelsea A. Corr, Kenneth L. Thornhill, Bruce Anderson, Johnathan W. Hair, Amin R. Nehrir, Glenn S. Diskin, Jose L. Jimenez, Benjamin A. Nault, Pedro Campuzano-Jost, Jack Dibb, Eric Heim, Kara D. Lamb, Joshua P. Schwarz, Anne E. Perring, Jhoon Kim, Myungje Choi, Brent Holben, Gabriele Pfister, Alma Hodzic, Gregory R. Carmichael, Louisa Emmons, and James H. Crawford
Atmos. Chem. Phys., 20, 6455–6478, https://doi.org/10.5194/acp-20-6455-2020,https://doi.org/10.5194/acp-20-6455-2020, 2020
Short summary
Development of Korean Air Quality Prediction System version 1 (KAQPS v1) with focuses on practical issues
Kyunghwa Lee, Jinhyeok Yu, Sojin Lee, Mieun Park, Hun Hong, Soon Young Park, Myungje Choi, Jhoon Kim, Younha Kim, Jung-Hun Woo, Sang-Woo Kim, and Chul H. Song
Geosci. Model Dev., 13, 1055–1073, https://doi.org/10.5194/gmd-13-1055-2020,https://doi.org/10.5194/gmd-13-1055-2020, 2020
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Real-time UV index retrieval in Europe using Earth observation-based techniques: system description and quality assessment
Panagiotis G. Kosmopoulos, Stelios Kazadzis, Alois W. Schmalwieser, Panagiotis I. Raptis, Kyriakoula Papachristopoulou, Ilias Fountoulakis, Akriti Masoom, Alkiviadis F. Bais, Julia Bilbao, Mario Blumthaler, Axel Kreuter, Anna Maria Siani, Kostas Eleftheratos, Chrysanthi Topaloglou, Julian Gröbner, Bjørn Johnsen, Tove M. Svendby, Jose Manuel Vilaplana, Lionel Doppler, Ann R. Webb, Marina Khazova, Hugo De Backer, Anu Heikkilä, Kaisa Lakkala, Janusz Jaroslawski, Charikleia Meleti, Henri Diémoz, Gregor Hülsen, Barbara Klotz, John Rimmer, and Charalampos Kontoes
Atmos. Meas. Tech., 14, 5657–5699, https://doi.org/10.5194/amt-14-5657-2021,https://doi.org/10.5194/amt-14-5657-2021, 2021
Short summary
Evaluation of UV–visible MAX-DOAS aerosol profiling products by comparison with ceilometer, sun photometer, and in situ observations in Vienna, Austria
Stefan F. Schreier, Tim Bösch, Andreas Richter, Kezia Lange, Michael Revesz, Philipp Weihs, Mihalis Vrekoussis, and Christoph Lotteraner
Atmos. Meas. Tech., 14, 5299–5318, https://doi.org/10.5194/amt-14-5299-2021,https://doi.org/10.5194/amt-14-5299-2021, 2021
Short summary
Experimental assessment of a micro-pulse lidar system in comparison with reference lidar measurements for aerosol optical properties retrieval
Carmen Córdoba-Jabonero, Albert Ansmann, Cristofer Jiménez, Holger Baars, María-Ángeles López-Cayuela, and Ronny Engelmann
Atmos. Meas. Tech., 14, 5225–5239, https://doi.org/10.5194/amt-14-5225-2021,https://doi.org/10.5194/amt-14-5225-2021, 2021
Short summary
Characterization of aerosol size properties from measurements of spectral optical depth: a global validation of the GRASP-AOD code using long-term AERONET data
Benjamin Torres and David Fuertes
Atmos. Meas. Tech., 14, 4471–4506, https://doi.org/10.5194/amt-14-4471-2021,https://doi.org/10.5194/amt-14-4471-2021, 2021
Short summary
Retrieval of aerosol fine-mode fraction over China from satellite multiangle polarized observations: validation and comparison
Yang Zhang, Zhengqiang Li, Zhihong Liu, Yongqian Wang, Lili Qie, Yisong Xie, Weizhen Hou, and Lu Leng
Atmos. Meas. Tech., 14, 1655–1672, https://doi.org/10.5194/amt-14-1655-2021,https://doi.org/10.5194/amt-14-1655-2021, 2021
Short summary

Cited articles

Ahn, J. H., Park, Y. J., Ryu, J. H., Lee, B., and Oh, I. S.: Development of Atmospheric Correction Algorithm for Geostationary Ocean Color Imager (GOCI), Ocean Sci. J., 47, 247–259, 2012.
Choi, J. K., Park, Y. J., Ahn, J. H., Lim, H. S., Eom, J., and Ryu, J. H.: GOCI, the world's first geostationary ocean color observation satellite, for the monitoring of temporal variability in coastal water turbidity, J. Geophys. Res.-Oceans, 117, C09004, https://doi.org/10.1029/2012JC008046, 2012.
Ciren, P. and Kondragunta, S.: Dust aerosol index (DAI) algorithm for MODIS, J. Geophys. Res.-Atmos., 119, 4770-4792, 2014.
Cox, C. and Munk, W.: Statistics of the sea surface derived from sun glitter, J. Marine Res., 13, 198–227, 1954.
Dubovik, O. and King, M. D.: A flexible inversion algorithm for retrieval of aerosol optical properties from Sun and sky radiance measurements, J. Geophys. Res.-Atmos., 105, 20673–20696, 2000.
Short summary
The Geostationary Ocean Color Imager (GOCI) is the first ocean color sensor in geostationary orbit. It enables hourly aerosol optical properties to be observed in high spatial resolution. This study presents improvements of the GOCI Yonsei Aerosol Retrieval (YAER) algorithm and its validation results using ground-based and other satellite-based observation products during DRAGON-NE Asia 2012 Campaign. Retrieval errors are also analyzed according to various factors through the validation studies.