Articles | Volume 9, issue 9
https://doi.org/10.5194/amt-9-4701-2016
https://doi.org/10.5194/amt-9-4701-2016
Research article
 | 
21 Sep 2016
Research article |  | 21 Sep 2016

AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations – Part 2: Intercomparisons

Charles Étienne Robert, Christine Bingen, Filip Vanhellemont, Nina Mateshvili, Emmanuel Dekemper, Cédric Tétard, Didier Fussen, Adam Bourassa, and Claus Zehner

Related authors

Stratospheric aerosol radiative forcing simulated by the chemistry climate model EMAC using Aerosol CCI satellite data
Christoph Brühl, Jennifer Schallock, Klaus Klingmüller, Charles Robert, Christine Bingen, Lieven Clarisse, Andreas Heckel, Peter North, and Landon Rieger
Atmos. Chem. Phys., 18, 12845–12857, https://doi.org/10.5194/acp-18-12845-2018,https://doi.org/10.5194/acp-18-12845-2018, 2018
Short summary
Variability and evolution of the midlatitude stratospheric aerosol budget from 22 years of ground-based lidar and satellite observations
Sergey M. Khaykin, Sophie Godin-Beekmann, Philippe Keckhut, Alain Hauchecorne, Julien Jumelet, Jean-Paul Vernier, Adam Bourassa, Doug A. Degenstein, Landon A. Rieger, Christine Bingen, Filip Vanhellemont, Charles Robert, Matthew DeLand, and Pawan K. Bhartia
Atmos. Chem. Phys., 17, 1829–1845, https://doi.org/10.5194/acp-17-1829-2017,https://doi.org/10.5194/acp-17-1829-2017, 2017
Short summary
AerGOM, an improved algorithm for stratospheric aerosol extinction retrieval from GOMOS observations – Part 1: Algorithm description
Filip Vanhellemont, Nina Mateshvili, Laurent Blanot, Charles Étienne Robert, Christine Bingen, Viktoria Sofieva, Francis Dalaudier, Cédric Tétard, Didier Fussen, Emmanuel Dekemper, Erkki Kyrölä, Marko Laine, Johanna Tamminen, and Claus Zehner
Atmos. Meas. Tech., 9, 4687–4700, https://doi.org/10.5194/amt-9-4687-2016,https://doi.org/10.5194/amt-9-4687-2016, 2016
Short summary
OClO slant column densities derived from GOMOS averaged transmittance measurements
C. Tétard, D. Fussen, F. Vanhellemont, C. Bingen, E. Dekemper, N. Mateshvili, D. Pieroux, C. Robert, E. Kyrölä, J. Tamminen, V. Sofieva, A. Hauchecorne, F. Dalaudier, J.-L. Bertaux, O. Fanton d'Andon, G. Barrot, L. Blanot, A. Dehn, and L. Saavedra de Miguel
Atmos. Meas. Tech., 6, 2953–2964, https://doi.org/10.5194/amt-6-2953-2013,https://doi.org/10.5194/amt-6-2953-2013, 2013
Nabro volcano aerosol in the stratosphere over Georgia, South Caucasus from ground-based spectrometry of twilight sky brightness
N. Mateshvili, D. Fussen, G. Mateshvili, I. Mateshvili, F. Vanhellemont, E. Kyrölä, S. Tukiainen, J. Kujanpää, C. Bingen, C. Robert, C. Tétard, and E. Dekemper
Atmos. Meas. Tech., 6, 2563–2576, https://doi.org/10.5194/amt-6-2563-2013,https://doi.org/10.5194/amt-6-2563-2013, 2013

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Estimating hourly ground-level aerosols using Geostationary Environment Monitoring Spectrometer aerosol optical depth: a machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech., 18, 1471–1484, https://doi.org/10.5194/amt-18-1471-2025,https://doi.org/10.5194/amt-18-1471-2025, 2025
Short summary
A global perspective on CO2 satellite observations in high AOD conditions
Timo H. Virtanen, Anu-Maija Sundström, Elli Suhonen, Antti Lipponen, Antti Arola, Christopher O'Dell, Robert R. Nelson, and Hannakaisa Lindqvist
Atmos. Meas. Tech., 18, 929–952, https://doi.org/10.5194/amt-18-929-2025,https://doi.org/10.5194/amt-18-929-2025, 2025
Short summary
Aerosol layer height (ALH) retrievals from oxygen absorption bands: intercomparison and validation among different satellite platforms, GEMS, EPIC, and TROPOMI
Hyerim Kim, Xi Chen, Jun Wang, Zhendong Lu, Meng Zhou, Gregory R. Carmichael, Sang Seo Park, and Jhoon Kim
Atmos. Meas. Tech., 18, 327–349, https://doi.org/10.5194/amt-18-327-2025,https://doi.org/10.5194/amt-18-327-2025, 2025
Short summary
Intercomparison of aerosol optical depth retrievals from GAW-PFR and SKYNET sun photometer networks and the effect of calibration
Angelos Karanikolas, Natalia Kouremeti, Monica Campanelli, Victor Estellés, Masahiro Momoi, Gaurav Kumar, Stephan Nyeki, and Stelios Kazadzis
Atmos. Meas. Tech., 17, 6085–6105, https://doi.org/10.5194/amt-17-6085-2024,https://doi.org/10.5194/amt-17-6085-2024, 2024
Short summary
Evaluation of Aeolus feature mask and particle extinction coefficient profile products using CALIPSO data
Ping Wang, David Patrick Donovan, Gerd-Jan van Zadelhoff, Jos de Kloe, Dorit Huber, and Katja Reissig
Atmos. Meas. Tech., 17, 5935–5955, https://doi.org/10.5194/amt-17-5935-2024,https://doi.org/10.5194/amt-17-5935-2024, 2024
Short summary

Cited articles

Bernath, P. F., McElroy, C. T., Abrams, M. C., Boone, C. D., Butler, C. J., Camy-Peyret, C., Carleer, M., Clerbaux, C., Coheur, P. F., and Colin, R.: Atmospheric Chemistry Experiment (ACE): Mission overview, Geophys. Res. Lett., 32, L15S01, https://doi.org/10.1029/2005GL022386, 2005.
Bertaux, J. L., Kyrölä, E., Fussen, D., Hauchecorne, A., Dalaudier, F., Sofieva, V., Tamminen, J., Vanhellemont, F., Fanton d'Andon, O., Barrot, G., Mangin, A., Blanot, L., Lebrun, J. C., Pérot, K., Fehr, T., Saavedra, L., Leppelmeier, G. W., and Fraisse, R.: Global ozone monitoring by occultation of stars: an overview of GOMOS measurements on ENVISAT, Atmos. Chem. Phys., 10, 12091–12148, https://doi.org/10.5194/acp-10-12091-2010, 2010.
Bodhaine, B. A., Wood, N. B., and Dutton, E. G.: On Rayleigh optical depth calculations, J. Atmos. Ocean. Techn., 16, 1854–1861, 1999.
Bourassa, A. E., Degenstein, D. A., Gattinger, R. L., and Llewellyn, E. J.: Stratospheric aerosol retrieval with optical spectrograph and infrared imaging system limb scatter measurements, J. Geophys. Res., 112, D10217, https://doi.org/10.1029/2006JD008079, 2007.
Damadeo, R. P., Zawodny, J. M., Thomason, L. W., and Iyer, N.: SAGE version 7.0 algorithm: application to SAGE II, Atmos. Meas. Tech., 6, 3539–3561, https://doi.org/10.5194/amt-6-3539-2013, 2013.
Short summary
We compare stratospheric aerosol loading computed with a new computer algorithm with various established datasets to determine the overall agreement. Since the new results are based on observation of starlight through the Earth's atmosphere, various aspects of these measurements can influence the final results. A systematic analysis of these aspects, such as the star brightness and temperature, is carried out to see if, and how, they influence the agreement of the results with other datasets.
Share