Research article 15 Jul 2020
Research article | 15 Jul 2020
Integration and calibration of non-dispersive infrared (NDIR) CO2 low-cost sensors and their operation in a sensor network covering Switzerland
Michael Müller et al.
Related authors
Alessandro Bigi, Michael Mueller, Stuart K. Grange, Grazia Ghermandi, and Christoph Hueglin
Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, https://doi.org/10.5194/amt-11-3717-2018, 2018
Short summary
Short summary
Low cost sensors for monitoring atmospheric pollution are growing in popularity worldwide. Nonetheless, the expectations from these devices were seldom met, thus urging for more research. This study focuses on sensor performance within the realistic framework of an initial calibration next to a reference instrument and the subsequent distant deployment. Within this framework, we assessed the uncertainty of these sensors and their suitability to map intra-urban gradients of NO/NO2.
P. Morten Hundt, Michael Müller, Markus Mangold, Béla Tuzson, Philipp Scheidegger, Herbert Looser, Christoph Hüglin, and Lukas Emmenegger
Atmos. Meas. Tech., 11, 2669–2681, https://doi.org/10.5194/amt-11-2669-2018, https://doi.org/10.5194/amt-11-2669-2018, 2018
Short summary
Short summary
NO2 is a pollutant that regularly exceeds its limit values in European cities. We developed a compact, mobile laser spectrometer that measures NO2 concentrations and installed it on a tram in Zurich. Mobile operation resulted in NO2 concentration data with high spatio-temporal resolution. The data were validated against fixed air-quality monitoring sites and provided detailed insights into the spatio-temporal concentration distribution of NO2 in an urban environment.
Michael Mueller, Jonas Meyer, and Christoph Hueglin
Atmos. Meas. Tech., 10, 3783–3799, https://doi.org/10.5194/amt-10-3783-2017, https://doi.org/10.5194/amt-10-3783-2017, 2017
Short summary
Short summary
This study describes the design of a sensor unit featuring NO2 and O3 sensors for applications such as ambient air quality monitoring. The paper presents the sensor calibration, the testing procedure and the long-term deployment of the sensor units in the city of Zurich.
Main conclusions are the necessity of a proper mathematical description of the sensors as well as a concept to monitor sensor performance during operation, e.g. by linking low-cost sensors to traditional infrastructure.
Manuel Graf, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Thomas Peter, Ruud Dirksen, Lukas Emmenegger, and Béla Tuzson
Atmos. Meas. Tech., 14, 1365–1378, https://doi.org/10.5194/amt-14-1365-2021, https://doi.org/10.5194/amt-14-1365-2021, 2021
Short summary
Short summary
Water vapor is the most important natural greenhouse gas. The accurate and frequent measurement of its abundance, especially in the upper troposphere and lower stratosphere (UTLS), is technically challenging. We developed and characterized a mid-IR absorption spectrometer for highly accurate water vapor measurements in the UTLS. The instrument is sufficiently small and lightweight (3.9 kg) to be carried by meteorological balloons, which enables frequent and cost-effective soundings.
Gang Chen, Yulia Sosedova, Francesco Canonaco, Roman Fröhlich, Anna Tobler, Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Christoph Hueglin, Peter Graf, Urs Baltensperger, Jay G. Slowik, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1263, https://doi.org/10.5194/acp-2020-1263, 2020
Preprint under review for ACP
Short summary
Short summary
We used a recently developed state-of-the-art rolling mechanism for the first time at a rural site, southern alpine valley (Magadino) to get a more realistic and detailed information of the organic aerosol sources. This work highlights the strength of this novel source apportionment technique by comparing with the results derived from conventional seasonal PMF. Overall, this detailed interpretation of chemical speciation monitor (ACSM) data could be a role model for similar analysis.
Antoine Berchet, Espen Sollum, Rona L. Thompson, Isabelle Pison, Joël Thanwerdas, Grégoire Broquet, Frédéric Chevallier, Tuula Aalto, Peter Bergamaschi, Dominik Brunner, Richard Engelen, Audrey Fortems-Cheiney, Christoph Gerbig, Christine Groot Zwaaftink, Jean-Matthieu Haussaire, Stephan Henne, Sander Houweling, Ute Karstens, Werner L. Kutsch, Ingrid T. Luijkx, Guillaume Monteil, Paul I. Palmer, Jacob C. A. van Peet, Wouter Peters, Philippe Peylin, Elise Potier, Christian Rödenbeck, Marielle Saunois, Marko Scholze, Aki Tsuruta, and Yuanhong Zhao
Geosci. Model Dev. Discuss., https://doi.org/10.5194/gmd-2020-407, https://doi.org/10.5194/gmd-2020-407, 2020
Preprint under review for GMD
Short summary
Short summary
We present here a Community Inversion Framework (CIF) to help rationalize development efforts and leverage the strengths of individual inversion systems into a comprehensive framework. The CIF is a programming protocol to allow various inversion bricks to be exchanged among researchers.
The ensemble of bricks makes a flexible, transparent and open-source python-based tool. We describe the main structure and functionalities and demonstrate it in a simple academic case.
Ana Maria Roxana Petrescu, Chunjing Qiu, Philippe Ciais, Rona L. Thompson, Philippe Peylin, Matthew J. McGrath, Efisio Solazzo, Greet Janssens-Maenhout, Francesco N. Tubiello, Peter Bergamaschi, Dominik Brunner, Glen P. Peters, Lena Höglund-Isaksson, Pierre Regnier, Ronny Lauerwald, David Bastviken, Aki Tsuruta, Wilfried Winiwarter, Prabir K. Patra, Matthias Kuhnert, Gabriel D. Oreggioni, Monica Crippa, Marielle Saunois, Lucia Perugini, Tiina Markkanen, Tuula Aalto, Christine D. Groot Zwaaftink, Yuanzhi Yao, Chris Wilson, Giulia Conchedda, Dirk Günther, Adrian Leip, Pete Smith, Jean-Matthieu Haussaire, Antti Leppänen, Alistair J. Manning, Joe McNorton, Patrick Brockmann, and Han Dolman
Earth Syst. Sci. Data Discuss., https://doi.org/10.5194/essd-2020-367, https://doi.org/10.5194/essd-2020-367, 2020
Preprint under review for ESSD
Short summary
Short summary
This study is topical and provides a state-of-the-art scientific overview of data availability from bottom-up and top-down CH4 and N2O emissions in the EU27 and UK. The data integrates recent emission inventories with process-based model data and regional/global inversions for the European domain, aiming at reconciling them with official country-level UNFCCC national GHG inventories in support to policy and to facilitate real-time verification procedures.
Gerrit Kuhlmann, Dominik Brunner, Grégoire Broquet, and Yasjka Meijer
Atmos. Meas. Tech., 13, 6733–6754, https://doi.org/10.5194/amt-13-6733-2020, https://doi.org/10.5194/amt-13-6733-2020, 2020
Short summary
Short summary
The European CO2M mission is a proposed constellation of CO2 imaging satellites expected to monitor CO2 emissions of large cities. Using synthetic observations, we show that a constellation of two or more satellites should be able to quantify Berlin's annual emissions with 10–20 % accuracy, even when considering atmospheric transport model errors. We therefore expect that CO2M will make an important contribution to the monitoring and verification of CO2 emissions from cities worldwide.
Bernhard Bereiter, Béla Tuzson, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Lars Mächler, Daniel Baggenstos, Jochen Schmitt, Hubertus Fischer, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 6391–6406, https://doi.org/10.5194/amt-13-6391-2020, https://doi.org/10.5194/amt-13-6391-2020, 2020
Short summary
Short summary
The record of past greenhouse gas composition from ice cores is crucial for our understanding of global climate change. Deciphering this archive requires highly accurate and spatially resolved analysis of the very small amount of gas that is trapped in the ice. This is achieved with a mid-IR laser absorption spectrometer that provides simultaneous, high-precision measurements of CH4, N2O, CO2, and δ13C(CO2) and which will be coupled to a quantitative sublimation extraction method.
Stuart K. Grange, James D. Lee, Will S. Drysdale, Alastair C. Lewis, Christoph Hueglin, Lukas Emmenegger, and David C. Carslaw
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2020-1171, https://doi.org/10.5194/acp-2020-1171, 2020
Revised manuscript accepted for ACP
Short summary
Short summary
The changes in mobility across Europe due to the COVID-19 lockdowns had consequences for air quality. We compare what was experienced, to estimates of
what would have beenwithout the lockdowns. Nitrogen dioxide (NO2), an important vehicle-sourced pollutant, decreased by a third. However, ozone (O3) increased in response to the lower NO2. Because NO2 is decreasing over time, increases in O3 can be expected in European urban areas and will require management to avoid future negative outcomes.
Ying Zhu, Jia Chen, Xiao Bi, Gerrit Kuhlmann, Ka Lok Chan, Florian Dietrich, Dominik Brunner, Sheng Ye, and Mark Wenig
Atmos. Chem. Phys., 20, 13241–13251, https://doi.org/10.5194/acp-20-13241-2020, https://doi.org/10.5194/acp-20-13241-2020, 2020
Short summary
Short summary
Average NO2 concentration of on-street mobile measurements (MMs) near the monitoring stations (MSs) was found to be considerably higher than the MSs data. The common measurement height (H) and distance (D) of the MSs result in 27 % lower average concentrations in total than the concentration of our MMs. Another 21 % difference remained after correcting the influence of the measuring H and D. This result makes our city-wide measurements for capturing the full range of concentrations necessary.
Béla Tuzson, Manuel Graf, Jonas Ravelid, Philipp Scheidegger, André Kupferschmid, Herbert Looser, Randulph Paulo Morales, and Lukas Emmenegger
Atmos. Meas. Tech., 13, 4715–4726, https://doi.org/10.5194/amt-13-4715-2020, https://doi.org/10.5194/amt-13-4715-2020, 2020
Short summary
Short summary
We describe a lightweight (2 kg) mid-IR laser spectrometer for airborne, in situ atmospheric methane (CH4) measurements. The instrument, based on an open-path circular multipass cell, provides fast response (1 Hz) and sub-parts-per-billion precision. It can easily be mounted on a drone, giving access to highly resolved 4D (spatial and temporal) data. The performance was assessed during field deployments involving artificial CH4 releases and vertical concentration gradients in the PBL.
Paolo Laj, Alessandro Bigi, Clémence Rose, Elisabeth Andrews, Cathrine Lund Myhre, Martine Collaud Coen, Yong Lin, Alfred Wiedensohler, Michael Schulz, John A. Ogren, Markus Fiebig, Jonas Gliß, Augustin Mortier, Marco Pandolfi, Tuukka Petäja, Sang-Woo Kim, Wenche Aas, Jean-Philippe Putaud, Olga Mayol-Bracero, Melita Keywood, Lorenzo Labrador, Pasi Aalto, Erik Ahlberg, Lucas Alados Arboledas, Andrés Alastuey, Marcos Andrade, Begoña Artíñano, Stina Ausmeel, Todor Arsov, Eija Asmi, John Backman, Urs Baltensperger, Susanne Bastian, Olaf Bath, Johan Paul Beukes, Benjamin T. Brem, Nicolas Bukowiecki, Sébastien Conil, Cedric Couret, Derek Day, Wan Dayantolis, Anna Degorska, Konstantinos Eleftheriadis, Prodromos Fetfatzis, Olivier Favez, Harald Flentje, Maria I. Gini, Asta Gregorič, Martin Gysel-Beer, A. Gannet Hallar, Jenny Hand, Andras Hoffer, Christoph Hueglin, Rakesh K. Hooda, Antti Hyvärinen, Ivo Kalapov, Nikos Kalivitis, Anne Kasper-Giebl, Jeong Eun Kim, Giorgos Kouvarakis, Irena Kranjc, Radovan Krejci, Markku Kulmala, Casper Labuschagne, Hae-Jung Lee, Heikki Lihavainen, Neng-Huei Lin, Gunter Löschau, Krista Luoma, Angela Marinoni, Sebastiao Martins Dos Santos, Frank Meinhardt, Maik Merkel, Jean-Marc Metzger, Nikolaos Mihalopoulos, Nhat Anh Nguyen, Jakub Ondracek, Noemi Pérez, Maria Rita Perrone, Jean-Eudes Petit, David Picard, Jean-Marc Pichon, Veronique Pont, Natalia Prats, Anthony Prenni, Fabienne Reisen, Salvatore Romano, Karine Sellegri, Sangeeta Sharma, Gerhard Schauer, Patrick Sheridan, James Patrick Sherman, Maik Schütze, Andreas Schwerin, Ralf Sohmer, Mar Sorribas, Martin Steinbacher, Junying Sun, Gloria Titos, Barbara Toczko, Thomas Tuch, Pierre Tulet, Peter Tunved, Ville Vakkari, Fernando Velarde, Patricio Velasquez, Paolo Villani, Sterios Vratolis, Sheng-Hsiang Wang, Kay Weinhold, Rolf Weller, Margarita Yela, Jesus Yus-Diez, Vladimir Zdimal, Paul Zieger, and Nadezda Zikova
Atmos. Meas. Tech., 13, 4353–4392, https://doi.org/10.5194/amt-13-4353-2020, https://doi.org/10.5194/amt-13-4353-2020, 2020
Short summary
Short summary
The paper establishes the fiducial reference of the GAW aerosol network providing the fully characterized value chain to the provision of four climate-relevant aerosol properties from ground-based sites. Data from almost 90 stations worldwide are reported for a reference year, 2017, providing a unique and very robust view of the variability of these variables worldwide. Current gaps in the GAW network are analysed and requirements for the Global Climate Monitoring System are proposed.
Marc Schwaerzel, Claudia Emde, Dominik Brunner, Randulph Morales, Thomas Wagner, Alexis Berne, Brigitte Buchmann, and Gerrit Kuhlmann
Atmos. Meas. Tech., 13, 4277–4293, https://doi.org/10.5194/amt-13-4277-2020, https://doi.org/10.5194/amt-13-4277-2020, 2020
Short summary
Short summary
Horizontal homogeneity is often assumed for trace gases remote sensing, although it is not valid where trace gas concentrations have high spatial variability, e.g., in cities. We show the importance of 3D effects for MAX-DOAS and airborne imaging spectrometers using 3D-box air mass factors implemented in the MYSTIC radiative transfer solver. In both cases, 3D information is invaluable for interpreting the measurements, as not considering 3D effects can lead to misinterpretation of measurements.
Eirini Boleti, Christoph Hueglin, Stuart K. Grange, André S. H. Prévôt, and Satoshi Takahama
Atmos. Chem. Phys., 20, 9051–9066, https://doi.org/10.5194/acp-20-9051-2020, https://doi.org/10.5194/acp-20-9051-2020, 2020
Short summary
Short summary
Long-term temporal evolution of ozone concentrations between 2000 and 2015 in Europe was estimated using a signal decomposition technique. The seasonal cycles are correlated with local climate conditions and vary according to geographic region, while ozone levels are indicative of distance to emission sources. The site's environment plays a key role in ozone trends, with the most polluted environments showing the least reduction in ozone, while in less polluted areas ozone has decreased.
Martine Collaud Coen, Elisabeth Andrews, Andrés Alastuey, Todor Petkov Arsov, John Backman, Benjamin T. Brem, Nicolas Bukowiecki, Cédric Couret, Konstantinos Eleftheriadis, Harald Flentje, Markus Fiebig, Martin Gysel-Beer, Jenny L. Hand, András Hoffer, Rakesh Hooda, Christoph Hueglin, Warren Joubert, Melita Keywood, Jeong Eun Kim, Sang-Woo Kim, Casper Labuschagne, Neng-Huei Lin, Yong Lin, Cathrine Lund Myhre, Krista Luoma, Hassan Lyamani, Angela Marinoni, Olga L. Mayol-Bracero, Nikos Mihalopoulos, Marco Pandolfi, Natalia Prats, Anthony J. Prenni, Jean-Philippe Putaud, Ludwig Ries, Fabienne Reisen, Karine Sellegri, Sangeeta Sharma, Patrick Sheridan, James Patrick Sherman, Junying Sun, Gloria Titos, Elvis Torres, Thomas Tuch, Rolf Weller, Alfred Wiedensohler, Paul Zieger, and Paolo Laj
Atmos. Chem. Phys., 20, 8867–8908, https://doi.org/10.5194/acp-20-8867-2020, https://doi.org/10.5194/acp-20-8867-2020, 2020
Short summary
Short summary
Long-term trends of aerosol radiative properties (52 stations) prove that aerosol load has significantly decreased over the last 20 years. Scattering trends are negative in Europe (EU) and North America (NA), not ss in Asia, and show a mix of positive and negative trends at polar stations. Absorption has mainly negative trends. The single scattering albedo has positive trends in Asia and eastern EU and negative in western EU and NA, leading to a global positive median trend of 0.02 % per year.
Longfei Yu, Eliza Harris, Stephan Henne, Sarah Eggleston, Martin Steinbacher, Lukas Emmenegger, Christoph Zellweger, and Joachim Mohn
Atmos. Chem. Phys., 20, 6495–6519, https://doi.org/10.5194/acp-20-6495-2020, https://doi.org/10.5194/acp-20-6495-2020, 2020
Short summary
Short summary
We observed the isotopic composition of nitrous oxide in the unpolluted air at Jungfraujoch for 5 years. Our results indicate a clear seasonal pattern in the isotopic composition, corresponding with that in atmospheric nitrous oxide levels. This is most likely due to temporal variations in both emission processes and air mass sources for Jungfraujoch. Our findings are of importance to global nitrous oxide modelling and to better understanding of long-term trends in atmospheric nitrous oxide.
Michael Jähn, Gerrit Kuhlmann, Qing Mu, Jean-Matthieu Haussaire, David Ochsner, Katherine Osterried, Valentin Clément, and Dominik Brunner
Geosci. Model Dev., 13, 2379–2392, https://doi.org/10.5194/gmd-13-2379-2020, https://doi.org/10.5194/gmd-13-2379-2020, 2020
Short summary
Short summary
Emission inventories of air pollutants and greenhouse gases are widely used as input for atmospheric chemistry transport models. However, the pre-processing of these data is both time-consuming and requires a large amount of disk storage. To overcome this issue, a Python package has been developed and tested for two different models. There, the inventory is projected to the model grid and scaling factors are provided. This approach saves computational time while remaining numerically equivalent.
Stuart K. Grange, Hanspeter Lötscher, Andrea Fischer, Lukas Emmenegger, and Christoph Hueglin
Atmos. Meas. Tech., 13, 1867–1885, https://doi.org/10.5194/amt-13-1867-2020, https://doi.org/10.5194/amt-13-1867-2020, 2020
Short summary
Short summary
Black carbon (BC) is an important atmospheric pollutant and can be monitored by instruments called aethalometers. A pragmatic data processing technique called the
aethalometer modelcan be used to apportion aethalometer observations into traffic and woodburning components. We present an exploratory data analysis evaluating the aethalometer model and use the outputs for BC trend analysis across Switzerland. The aethalometer model's robustness and utility for such analyses is discussed.
Gianluca Mussetti, Dominik Brunner, Stephan Henne, Jonas Allegrini, E. Scott Krayenhoff, Sebastian Schubert, Christian Feigenwinter, Roland Vogt, Andreas Wicki, and Jan Carmeliet
Geosci. Model Dev., 13, 1685–1710, https://doi.org/10.5194/gmd-13-1685-2020, https://doi.org/10.5194/gmd-13-1685-2020, 2020
Short summary
Short summary
Street trees are regarded as a powerful measure to reduce excessive heat in cities. To enable city-wide studies of the cooling effect of street trees, we developed a coupled urban climate model with explicit representation of street trees (COSMO-BEP-Tree). The model compares well with surface, flux and satellite observations and responds realistically to changes in tree characteristics. Street trees largely impact energy fluxes and wind speed, while air temperatures are only slightly reduced.
Pragati Rai, Markus Furger, Jay G. Slowik, Francesco Canonaco, Roman Fröhlich, Christoph Hüglin, María Cruz Minguillón, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Chem. Phys., 20, 1657–1674, https://doi.org/10.5194/acp-20-1657-2020, https://doi.org/10.5194/acp-20-1657-2020, 2020
Short summary
Short summary
A source apportionment study of hourly resolved elements in PM10 measured at a traffic-influenced site in Härkingen, Switzerland, using positive matrix factorization (PMF) and multilinear engine-2 (ME-2) offered resolution of robust and unambiguous factor profiles and contributions. We show that the rotational control available in ME-2 provides a means for treating extreme events such as fireworks within a PMF analysis.
Marco Pandolfi, Dennis Mooibroek, Philip Hopke, Dominik van Pinxteren, Xavier Querol, Hartmut Herrmann, Andrés Alastuey, Olivier Favez, Christoph Hüglin, Esperanza Perdrix, Véronique Riffault, Stéphane Sauvage, Eric van der Swaluw, Oksana Tarasova, and Augustin Colette
Atmos. Chem. Phys., 20, 409–429, https://doi.org/10.5194/acp-20-409-2020, https://doi.org/10.5194/acp-20-409-2020, 2020
Short summary
Short summary
In the last scientific assessment report from the LRTAP Convention, it is stated that because non-urban sources are often major contributors to urban pollution, many cities will be unable to meet WHO guideline levels for air pollutants through local action alone. Consequently, it is very important to estimate how much the local and non-local sources contribute to urban pollution in order to design global strategies to reduce the levels of pollutants in European cities.
Gerrit Kuhlmann, Grégoire Broquet, Julia Marshall, Valentin Clément, Armin Löscher, Yasjka Meijer, and Dominik Brunner
Atmos. Meas. Tech., 12, 6695–6719, https://doi.org/10.5194/amt-12-6695-2019, https://doi.org/10.5194/amt-12-6695-2019, 2019
Short summary
Short summary
The Copernicus Anthropogenic CO2 Monitoring (CO2M) mission is a proposed constellation of imaging satellites with a CO2 instrument as main payload and optionally instruments for NO2, CO and aerosols. This study demonstrates the huge benefit of an NO2 instrument for detecting city plumes and weak point sources. Its main advantages are the higher signal-to-noise ratio and the lower sensitivity to clouds that significantly increases the number of observations available for quantifying CO2 emission.
Giulia Stefenelli, Veronika Pospisilova, Felipe D. Lopez-Hilfiker, Kaspar R. Daellenbach, Christoph Hüglin, Yandong Tong, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 19, 14825–14848, https://doi.org/10.5194/acp-19-14825-2019, https://doi.org/10.5194/acp-19-14825-2019, 2019
Ignacio Pisso, Espen Sollum, Henrik Grythe, Nina I. Kristiansen, Massimo Cassiani, Sabine Eckhardt, Delia Arnold, Don Morton, Rona L. Thompson, Christine D. Groot Zwaaftink, Nikolaos Evangeliou, Harald Sodemann, Leopold Haimberger, Stephan Henne, Dominik Brunner, John F. Burkhart, Anne Fouilloux, Jerome Brioude, Anne Philipp, Petra Seibert, and Andreas Stohl
Geosci. Model Dev., 12, 4955–4997, https://doi.org/10.5194/gmd-12-4955-2019, https://doi.org/10.5194/gmd-12-4955-2019, 2019
Short summary
Short summary
We present the latest release of the Lagrangian transport model FLEXPART, which simulates the transport, diffusion, dry and wet deposition, radioactive decay, and 1st-order chemical reactions of atmospheric tracers. The model has been recently updated both technically and in the representation of physicochemical processes. We describe the changes, document the most recent input and output files, provide working examples, and introduce testing capabilities.
Christoph Zellweger, Rainer Steinbrecher, Olivier Laurent, Haeyoung Lee, Sumin Kim, Lukas Emmenegger, Martin Steinbacher, and Brigitte Buchmann
Atmos. Meas. Tech., 12, 5863–5878, https://doi.org/10.5194/amt-12-5863-2019, https://doi.org/10.5194/amt-12-5863-2019, 2019
Short summary
Short summary
We analysed results obtained through CO and N2O performance audits conducted within the framework of the Global Atmosphere Watch (GAW) quality management system of the World Meteorology Organization (WMO). The results reveal that current spectroscopic measurement techniques have clear advantages with respect to data quality objectives compared to more traditional methods. Further, they allow for a smooth continuation of historic CO and N2O time series.
Erkan Ibraim, Benjamin Wolf, Eliza Harris, Rainer Gasche, Jing Wei, Longfei Yu, Ralf Kiese, Sarah Eggleston, Klaus Butterbach-Bahl, Matthias Zeeman, Béla Tuzson, Lukas Emmenegger, Johan Six, Stephan Henne, and Joachim Mohn
Biogeosciences, 16, 3247–3266, https://doi.org/10.5194/bg-16-3247-2019, https://doi.org/10.5194/bg-16-3247-2019, 2019
Short summary
Short summary
Nitrous oxide (N2O) is an important greenhouse gas and the major stratospheric ozone-depleting substance; therefore, mitigation of anthropogenic N2O emissions is needed. To trace N2O-emitting source processes, in this study, we observed N2O isotopocules above an intensively managed grassland research site with a recently developed laser spectroscopy method. Our results indicate that the domain of denitrification or nitrifier denitrification was the major N2O source.
Lu Qi, Mindong Chen, Giulia Stefenelli, Veronika Pospisilova, Yandong Tong, Amelie Bertrand, Christoph Hueglin, Xinlei Ge, Urs Baltensperger, André S. H. Prévôt, and Jay G. Slowik
Atmos. Chem. Phys., 19, 8037–8062, https://doi.org/10.5194/acp-19-8037-2019, https://doi.org/10.5194/acp-19-8037-2019, 2019
Short summary
Short summary
Current understanding of OA sources is limited by the chemical resolution of existing real-time measurement technology. We describe the first wintertime deployment of a novel extractive electrospray ionization time-of-flight mass spectrometer, which provides near-molecular OA measurements with high time resolution. We show that biomass combustion strongly influences winter OA. Via factor analysis, aging-dependent signatures and time contributions of biomass-combustion-derived OA are resolved.
Dominik Brunner, Gerrit Kuhlmann, Julia Marshall, Valentin Clément, Oliver Fuhrer, Grégoire Broquet, Armin Löscher, and Yasjka Meijer
Atmos. Chem. Phys., 19, 4541–4559, https://doi.org/10.5194/acp-19-4541-2019, https://doi.org/10.5194/acp-19-4541-2019, 2019
Short summary
Short summary
Atmospheric transport models are increasingly being used to estimate CO2 emissions from atmospheric CO2 measurements. This study demonstrates the importance of distributing CO2 emissions vertically in the model according to realistic profiles, since a major proportion of CO2 is emitted through tall stacks from power plants and industrial sources. With the traditional approach of emitting all CO2 at the surface, models may significantly overestimate the atmospheric CO2 levels.
Karl Espen Yttri, David Simpson, Robert Bergström, Gyula Kiss, Sönke Szidat, Darius Ceburnis, Sabine Eckhardt, Christoph Hueglin, Jacob Klenø Nøjgaard, Cinzia Perrino, Ignazio Pisso, Andre Stephan Henry Prevot, Jean-Philippe Putaud, Gerald Spindler, Milan Vana, Yan-Lin Zhang, and Wenche Aas
Atmos. Chem. Phys., 19, 4211–4233, https://doi.org/10.5194/acp-19-4211-2019, https://doi.org/10.5194/acp-19-4211-2019, 2019
Short summary
Short summary
Carbonaceous aerosols from natural sources were abundant regardless of season. Residential wood burning (RWB) emissions were occasionally equally as large as or larger than of fossil-fuel sources, depending on season and region. RWB emissions are poorly constrained; thus emissions inventories need improvement. Harmonizing emission factors between countries is likely the most important step to improve model calculations for biomass burning emissions and European PM2.5 concentrations in general.
Rocío Baró, Pedro Jiménez-Guerrero, Martin Stengel, Dominik Brunner, Gabriele Curci, Renate Forkel, Lucy Neal, Laura Palacios-Peña, Nicholas Savage, Martijn Schaap, Paolo Tuccella, Hugo Denier van der Gon, and Stefano Galmarini
Atmos. Chem. Phys., 18, 15183–15199, https://doi.org/10.5194/acp-18-15183-2018, https://doi.org/10.5194/acp-18-15183-2018, 2018
Short summary
Short summary
Particles in the atmosphere, such as pollution, desert dust, and volcanic ash, have an impact on meteorology. They interact with incoming radiation resulting in a cooling effect of the atmosphere. Today, the use of meteorology and chemistry models help us to understand these processes, but there are a lot of uncertainties. The goal of this work is to evaluate how these interactions are represented in the models by comparing them to satellite data to see how close they are to reality.
Alessandro Bigi, Michael Mueller, Stuart K. Grange, Grazia Ghermandi, and Christoph Hueglin
Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, https://doi.org/10.5194/amt-11-3717-2018, 2018
Short summary
Short summary
Low cost sensors for monitoring atmospheric pollution are growing in popularity worldwide. Nonetheless, the expectations from these devices were seldom met, thus urging for more research. This study focuses on sensor performance within the realistic framework of an initial calibration next to a reference instrument and the subsequent distant deployment. Within this framework, we assessed the uncertainty of these sensors and their suitability to map intra-urban gradients of NO/NO2.
P. Morten Hundt, Michael Müller, Markus Mangold, Béla Tuzson, Philipp Scheidegger, Herbert Looser, Christoph Hüglin, and Lukas Emmenegger
Atmos. Meas. Tech., 11, 2669–2681, https://doi.org/10.5194/amt-11-2669-2018, https://doi.org/10.5194/amt-11-2669-2018, 2018
Short summary
Short summary
NO2 is a pollutant that regularly exceeds its limit values in European cities. We developed a compact, mobile laser spectrometer that measures NO2 concentrations and installed it on a tram in Zurich. Mobile operation resulted in NO2 concentration data with high spatio-temporal resolution. The data were validated against fixed air-quality monitoring sites and provided detailed insights into the spatio-temporal concentration distribution of NO2 in an urban environment.
Athanasia Vlachou, Kaspar R. Daellenbach, Carlo Bozzetti, Benjamin Chazeau, Gary A. Salazar, Soenke Szidat, Jean-Luc Jaffrezo, Christoph Hueglin, Urs Baltensperger, Imad El Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 18, 6187–6206, https://doi.org/10.5194/acp-18-6187-2018, https://doi.org/10.5194/acp-18-6187-2018, 2018
Short summary
Short summary
Carbonaceous aerosols are related to adverse human health effects, which depend on the aerosol chemical composition and size. Here, we combine aerosol mass spectrometry and radiocarbon measurements of size-resolved samples collected over a long term to identify the origins of primary and secondary carbonaceous aerosols in the fine and coarse modes.
Stuart K. Grange, David C. Carslaw, Alastair C. Lewis, Eirini Boleti, and Christoph Hueglin
Atmos. Chem. Phys., 18, 6223–6239, https://doi.org/10.5194/acp-18-6223-2018, https://doi.org/10.5194/acp-18-6223-2018, 2018
Short summary
Short summary
Weather (meteorology) has a strong effect on air quality; if not accounted for, there is uncertainty surrounding what drives features in air quality time series. We present a machine learning approach to account for meteorology using PM10 data in Switzerland. With the exception of one site, all Swiss normalised PM10 trends were found to significantly decrease, which validates air quality management efforts. The machine learning models were interpreted to investigate interesting processes.
Laura Palacios-Peña, Rocío Baró, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, José María López-Romero, Juan Pedro Montávez, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 18, 5021–5043, https://doi.org/10.5194/acp-18-5021-2018, https://doi.org/10.5194/acp-18-5021-2018, 2018
Short summary
Short summary
Atmospheric aerosols modify the radiative budget of the Earth, and it is therefore mandatory to have an accurate representation of their optical properties for understanding their climatic role. This work therefore evaluates the skill in the representation of optical properties by different remote-sensing sensors and regional online coupled chemistry–climate models over Europe.
Fabian Schoenenberger, Stephan Henne, Matthias Hill, Martin K. Vollmer, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Simon O'Doherty, Michela Maione, Lukas Emmenegger, Thomas Peter, and Stefan Reimann
Atmos. Chem. Phys., 18, 4069–4092, https://doi.org/10.5194/acp-18-4069-2018, https://doi.org/10.5194/acp-18-4069-2018, 2018
Short summary
Short summary
Anthropogenic halocarbon emissions contribute to stratospheric ozone depletion and global warming. We measured atmospheric halocarbons for 6 months on Crete to extend the coverage of the existing observation network to the Eastern Mediterranean. The derived emission estimates showed a contribution of 16.8 % (13.6–23.3 %) and 53.2 % (38.1–84.2 %) of this region to the total HFC and HCFC emissions of the analyzed European domain and a reduction of the underlying uncertainties by 40–80 %.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Yu Liu, Nicolas Gruber, and Dominik Brunner
Atmos. Chem. Phys., 17, 14145–14169, https://doi.org/10.5194/acp-17-14145-2017, https://doi.org/10.5194/acp-17-14145-2017, 2017
Short summary
Short summary
We analyze fossil fuel signals in atmospheric CO2 over Europe using a high-resolution atmospheric transport model and diurnal emission data. We find that fossil fuel CO2 accounts for more than half of the atmospheric CO2 variations, mainly at diurnal timescales. The covariance of diurnal emission and transport also leads to a substantial rectification effect. Thus, the consideration of diurnal emissions and high-resolution transport is paramount for accurately modeling the fossil fuel signal.
Kaspar R. Daellenbach, Giulia Stefenelli, Carlo Bozzetti, Athanasia Vlachou, Paola Fermo, Raquel Gonzalez, Andrea Piazzalunga, Cristina Colombi, Francesco Canonaco, Christoph Hueglin, Anne Kasper-Giebl, Jean-Luc Jaffrezo, Federico Bianchi, Jay G. Slowik, Urs Baltensperger, Imad El-Haddad, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 13265–13282, https://doi.org/10.5194/acp-17-13265-2017, https://doi.org/10.5194/acp-17-13265-2017, 2017
Short summary
Short summary
We present offline AMS analyses for the organic aerosol (OA) in PM10 at nine sites in central Europe for 2013. Primary OA is separated into traffic, cooking, and wood-burning components. A factor explaining sulfur-containing ions, with an event-driven time series, is also separated. We observe enhanced production of secondary OA (SOA) in summer, following biogenic emissions with temperature. In winter a SOA component is dominant, which correlates with anthropogenic inorganic species.
Michael Mueller, Jonas Meyer, and Christoph Hueglin
Atmos. Meas. Tech., 10, 3783–3799, https://doi.org/10.5194/amt-10-3783-2017, https://doi.org/10.5194/amt-10-3783-2017, 2017
Short summary
Short summary
This study describes the design of a sensor unit featuring NO2 and O3 sensors for applications such as ambient air quality monitoring. The paper presents the sensor calibration, the testing procedure and the long-term deployment of the sensor units in the city of Zurich.
Main conclusions are the necessity of a proper mathematical description of the sensors as well as a concept to monitor sensor performance during operation, e.g. by linking low-cost sensors to traditional infrastructure.
Antoine Berchet, Katrin Zink, Dietmar Oettl, Jürg Brunner, Lukas Emmenegger, and Dominik Brunner
Geosci. Model Dev., 10, 3441–3459, https://doi.org/10.5194/gmd-10-3441-2017, https://doi.org/10.5194/gmd-10-3441-2017, 2017
Short summary
Short summary
We evaluate a new cost-effective method to simulate pollutant dispersion at high resolution on a city-wide domain. The method is based on a catalogue of reference simulations matched to weather observations to produce a sequence of hourly pollution maps. A total of 2 years of simulations are compared with continuous measurements and passive NO2 samplers in the city of Zurich. Spatial and temporal variability proved to be very well reproduced by the method.
Tesfaye A. Berhanu, Sönke Szidat, Dominik Brunner, Ece Satar, Rüdiger Schanda, Peter Nyfeler, Michael Battaglia, Martin Steinbacher, Samuel Hammer, and Markus Leuenberger
Atmos. Chem. Phys., 17, 10753–10766, https://doi.org/10.5194/acp-17-10753-2017, https://doi.org/10.5194/acp-17-10753-2017, 2017
Short summary
Short summary
Fossil fuel CO2 is the major contributor of anthropogenic CO2 in the atmosphere, and accurate quantification is essential to better understand the carbon cycle. Such accurate quantification can be conducted based on radiocarbon measurements. In this study, we present radiocarbon measurements from a tall tower site in Switzerland. From these measurements, we have observed seasonally varying fossil fuel CO2 contributions and a biospheric CO2 component that varies diurnally and seasonally.
Dominik Brunner, Tim Arnold, Stephan Henne, Alistair Manning, Rona L. Thompson, Michela Maione, Simon O'Doherty, and Stefan Reimann
Atmos. Chem. Phys., 17, 10651–10674, https://doi.org/10.5194/acp-17-10651-2017, https://doi.org/10.5194/acp-17-10651-2017, 2017
Short summary
Short summary
Hydrofluorocarbons (HFCs) and SF6 are industrially produced gases with a large greenhouse-gas warming potential. In this study, we estimated the emissions of HFCs and SF6 over Europe by combining measurements at three background stations with four different model systems. We identified significant differences between our estimates and nationally reported numbers, but also found that the network of only three sites in Europe is insufficient to reliably attribute emissions to individual countries.
Eleni Athanasopoulou, Orestis Speyer, Dominik Brunner, Heike Vogel, Bernhard Vogel, Nikolaos Mihalopoulos, and Evangelos Gerasopoulos
Atmos. Chem. Phys., 17, 10597–10618, https://doi.org/10.5194/acp-17-10597-2017, https://doi.org/10.5194/acp-17-10597-2017, 2017
Short summary
Short summary
This work focuses on the impact of residential wood burning on aerosol levels, composition and radiation under the ongoing economic crisis in Greece. The atmospheric model COSMO-ART performed a series of runs during the winter of 2013–2014. Emission inputs were revised according to the detailed aerosol characterization by local measurements. Aerosol levels were found to be elevated and mostly composed of organics, yet the timing of the plume justifies the minor radiative cooling and feedbacks.
Yann Poltera, Giovanni Martucci, Martine Collaud Coen, Maxime Hervo, Lukas Emmenegger, Stephan Henne, Dominik Brunner, and Alexander Haefele
Atmos. Chem. Phys., 17, 10051–10070, https://doi.org/10.5194/acp-17-10051-2017, https://doi.org/10.5194/acp-17-10051-2017, 2017
Short summary
Short summary
We present the PathfinderTURB algorithm for the analysis of ceilometer backscatter data and the real-time detection of the vertical structure of the planetary boundary layer. PathfinderTURB has been applied to 1 year of data measured by two ceilometers operated at two Swiss stations: the Aerological Observatory of Payerne on the Swiss plateau, and the Alpine Jungfraujoch observatory. The study shows that aerosols from the boundary layer significantly influence the air measured at Jungfraujoch.
Rocío Baró, Laura Palacios-Peña, Alexander Baklanov, Alessandra Balzarini, Dominik Brunner, Renate Forkel, Marcus Hirtl, Luka Honzak, Juan Luis Pérez, Guido Pirovano, Roberto San José, Wolfram Schröder, Johannes Werhahn, Ralf Wolke, Rahela Žabkar, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 9677–9696, https://doi.org/10.5194/acp-17-9677-2017, https://doi.org/10.5194/acp-17-9677-2017, 2017
Short summary
Short summary
The influence on modeled max., mean and min. temperature over Europe of including aerosol–radiation–cloud interactions has been assessed for two case studies in 2010. Data were taken from an ensemble of online regional chemistry–climate models from EuMetChem COST Action. The results indicate that including these interactions clearly improves the spatiotemporal variability in the temperature signal simulated by the models, with implications for reducing the uncertainty in climate projections.
Markus Furger, María Cruz Minguillón, Varun Yadav, Jay G. Slowik, Christoph Hüglin, Roman Fröhlich, Krag Petterson, Urs Baltensperger, and André S. H. Prévôt
Atmos. Meas. Tech., 10, 2061–2076, https://doi.org/10.5194/amt-10-2061-2017, https://doi.org/10.5194/amt-10-2061-2017, 2017
Short summary
Short summary
An Xact 625 Ambient Metals Monitor was tested during a 3-week summer field campaign at a rural, traffic-influenced site in Switzerland. The objective was to characterize the operation of the instrument, evaluate the data quality by intercomparison with other independent measurements, and test its applicability for aerosol source quantification. The results demonstrate significant advantages compared to traditional elemental analysis methods, with some desirable improvements.
Julien G. Anet, Martin Steinbacher, Laura Gallardo, Patricio A. Velásquez Álvarez, Lukas Emmenegger, and Brigitte Buchmann
Atmos. Chem. Phys., 17, 6477–6492, https://doi.org/10.5194/acp-17-6477-2017, https://doi.org/10.5194/acp-17-6477-2017, 2017
Short summary
Short summary
There are less long-term surface ozone measurements on the Southern than on the Northern Hemisphere, which makes it difficult to thoroughly understand global ozone chemistry. We have analyzed a new, 20-year-long ozone dataset measured at 2200 m asl at El Tololo, Chile, and show that the annual cycle of ozone is mainly driven by ozone transport from the stratosphere to the troposphere. As well, we illustrate that the timing of the annual maximum is regressing to earlier in the year.
Peter Zotter, Hanna Herich, Martin Gysel, Imad El-Haddad, Yanlin Zhang, Griša Močnik, Christoph Hüglin, Urs Baltensperger, Sönke Szidat, and André S. H. Prévôt
Atmos. Chem. Phys., 17, 4229–4249, https://doi.org/10.5194/acp-17-4229-2017, https://doi.org/10.5194/acp-17-4229-2017, 2017
Short summary
Short summary
Most studies use a single Ångström exponent for wood burning (αWB) and traffic (αTR) emissions in the Aethalometer model, used for source apportionment of black carbon, derived from previous work. However, accurate determination of the α values is currently lacking. Comparing radiocarbon measurements (14C) with the Aehtalometer model, good agreement was found, indicating that the Aethalometer model reproduces reasonably well the 14C results using our best estimate of a single αWB and αTR.
Laura Palacios-Peña, Rocío Baró, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Dominik Brunner, and Pedro Jiménez-Guerrero
Atmos. Chem. Phys., 17, 277–296, https://doi.org/10.5194/acp-17-277-2017, https://doi.org/10.5194/acp-17-277-2017, 2017
Short summary
Short summary
The effects of atmospheric aerosols over the Earth’s climate mainly depend on their optical, microphysical and chemical properties, which modify the Earth's radiative budget, the main source of uncertainty in climate change. In this work we have studied the representation of aerosol optical properties using an online coupled model (WRF-Chem) when aerosol–radiation interactions (ARIs) and aerosol–clouds interactions (ACIs) are taken into account over the Iberian Peninsula.
Ioannis Kioutsioukis, Ulas Im, Efisio Solazzo, Roberto Bianconi, Alba Badia, Alessandra Balzarini, Rocío Baró, Roberto Bellasio, Dominik Brunner, Charles Chemel, Gabriele Curci, Hugo Denier van der Gon, Johannes Flemming, Renate Forkel, Lea Giordano, Pedro Jiménez-Guerrero, Marcus Hirtl, Oriol Jorba, Astrid Manders-Groot, Lucy Neal, Juan L. Pérez, Guidio Pirovano, Roberto San Jose, Nicholas Savage, Wolfram Schroder, Ranjeet S. Sokhi, Dimiter Syrakov, Paolo Tuccella, Johannes Werhahn, Ralf Wolke, Christian Hogrefe, and Stefano Galmarini
Atmos. Chem. Phys., 16, 15629–15652, https://doi.org/10.5194/acp-16-15629-2016, https://doi.org/10.5194/acp-16-15629-2016, 2016
Short summary
Short summary
Four ensemble methods are applied to two annual AQMEII datasets and their performance is compared for O3, NO2 and PM10. The goal of the study is to quantify to what extent we can extract predictable signals from an ensemble with superior skill at each station over the single models and the ensemble mean. The promotion of the right amount of accuracy and diversity within the ensemble results in an average additional skill of up to 31 % compared to using the full ensemble in an unconditional way.
Christoph Zellweger, Lukas Emmenegger, Mohd Firdaus, Juha Hatakka, Martin Heimann, Elena Kozlova, T. Gerard Spain, Martin Steinbacher, Marcel V. van der Schoot, and Brigitte Buchmann
Atmos. Meas. Tech., 9, 4737–4757, https://doi.org/10.5194/amt-9-4737-2016, https://doi.org/10.5194/amt-9-4737-2016, 2016
Short summary
Short summary
We compared instruments using more traditional techniques for measuring CO2 and CH4 at different stations of the Global Atmosphere Watch (GAW) programme with a travelling instrument using a spectroscopic technique. Our results show that the newer analytical techniques have clear advantages over the traditional methods which will lead to the improved accuracy of atmospheric CO2 and CH4 measurement. The work was carried out in the framework of the GAW quality assurance/quality control system.
Thomas Röckmann, Simon Eyer, Carina van der Veen, Maria E. Popa, Béla Tuzson, Guillaume Monteil, Sander Houweling, Eliza Harris, Dominik Brunner, Hubertus Fischer, Giulia Zazzeri, David Lowry, Euan G. Nisbet, Willi A. Brand, Jaroslav M. Necki, Lukas Emmenegger, and Joachim Mohn
Atmos. Chem. Phys., 16, 10469–10487, https://doi.org/10.5194/acp-16-10469-2016, https://doi.org/10.5194/acp-16-10469-2016, 2016
Short summary
Short summary
A dual isotope ratio mass spectrometric system (IRMS) and a quantum cascade laser absorption spectroscopy (QCLAS)-based technique were deployed at the Cabauw experimental site for atmospheric research (CESAR) in the Netherlands and performed in situ, high-frequency (approx. hourly) measurements for a period of more than 5 months, yielding a combined dataset with more than 2500 measurements of both δ13C and δD.
Tesfaye Ayalneh Berhanu, Ece Satar, Rudiger Schanda, Peter Nyfeler, Hanspeter Moret, Dominik Brunner, Brian Oney, and Markus Leuenberger
Atmos. Meas. Tech., 9, 2603–2614, https://doi.org/10.5194/amt-9-2603-2016, https://doi.org/10.5194/amt-9-2603-2016, 2016
Short summary
Short summary
In this manuscript, we have presented Co, CO2 and CH4 measurement data from an old radio tower tower (217.5 m) at Beromunster, Switzerland. From about 2 years of continuous CO, CO2 and CH4 measurement at five different heights, we have determined a long-term reproducibility of 2.79 ppb, 0.05 ppm and 0.29 ppb for CO, CO2 and CH4, respectively, compliant with the GAW requirements. We have also observed seasonal and diurnal variation of these species.
Andrés Alastuey, Xavier Querol, Wenche Aas, Franco Lucarelli, Noemí Pérez, Teresa Moreno, Fabrizia Cavalli, Hans Areskoug, Violeta Balan, Maria Catrambone, Darius Ceburnis, José C. Cerro, Sébastien Conil, Lusine Gevorgyan, Christoph Hueglin, Kornelia Imre, Jean-Luc Jaffrezo, Sarah R. Leeson, Nikolaos Mihalopoulos, Marta Mitosinkova, Colin D. O'Dowd, Jorge Pey, Jean-Philippe Putaud, Véronique Riffault, Anna Ripoll, Jean Sciare, Karine Sellegri, Gerald Spindler, and Karl Espen Yttri
Atmos. Chem. Phys., 16, 6107–6129, https://doi.org/10.5194/acp-16-6107-2016, https://doi.org/10.5194/acp-16-6107-2016, 2016
Short summary
Short summary
Mineral dust content in PM10 was analysed at 20 regional background sites across Europe. Higher dust loadings were observed at most sites in summer, with the most elevated concentrations in the southern- and easternmost countries, due to external and regional sources. Saharan dust outbreaks impacted western and central European in summer and eastern Mediterranean sites in winter. The spatial distribution of some metals reveals the influence of specific anthropogenic sources on a regional scale.
Ece Satar, Tesfaye A. Berhanu, Dominik Brunner, Stephan Henne, and Markus Leuenberger
Biogeosciences, 13, 2623–2635, https://doi.org/10.5194/bg-13-2623-2016, https://doi.org/10.5194/bg-13-2623-2016, 2016
Short summary
Short summary
Beromünster tall tower is the flagship of the densely placed Swiss greenhouse gas observation network (CarboCount CH). In this research article we report the first 2 years of the continuous greenhouse gas measurements using cavity ring down spectroscopy analyzer from this tall tower. We have adopted a purely observation based, multi-species and multi-level approach to characterize the site with respect to sources and sinks of natural and anthropogenic origin at diurnal to annual timescales.
Stephan Henne, Dominik Brunner, Brian Oney, Markus Leuenberger, Werner Eugster, Ines Bamberger, Frank Meinhardt, Martin Steinbacher, and Lukas Emmenegger
Atmos. Chem. Phys., 16, 3683–3710, https://doi.org/10.5194/acp-16-3683-2016, https://doi.org/10.5194/acp-16-3683-2016, 2016
Short summary
Short summary
Greenhouse gas emissions can be assessed by "top-down" methods that combine atmospheric observations, a transport model and a mathematical optimisation framework. Here, we apply such a top-down method to the methane emissions of Switzerland, utilising observations from the recently installed CarboCount-CH network. Our Swiss total emissions largely agree with those of the national "bottom-up" inventory, whereas regional differences suggest lower than reported emissions from manure handling.
S. Eyer, B. Tuzson, M. E. Popa, C. van der Veen, T. Röckmann, M. Rothe, W. A. Brand, R. Fisher, D. Lowry, E. G. Nisbet, M. S. Brennwald, E. Harris, C. Zellweger, L. Emmenegger, H. Fischer, and J. Mohn
Atmos. Meas. Tech., 9, 263–280, https://doi.org/10.5194/amt-9-263-2016, https://doi.org/10.5194/amt-9-263-2016, 2016
Short summary
Short summary
We present a newly developed field-deployable, autonomous platform simultaneously measuring the three most abundant isotopologues of methane using mid-infrared laser absorption spectroscopy.
The instrument consists of a compact quantum cascade laser absorption spectrometer (QCLAS) coupled to a preconcentration unit, called TRace gas EXtractor (TREX).
The performance of this new in situ technique was investigated during a 2-week measurement campaign and compared to other techniques.
B. Oney, S. Henne, N. Gruber, M. Leuenberger, I. Bamberger, W. Eugster, and D. Brunner
Atmos. Chem. Phys., 15, 11147–11164, https://doi.org/10.5194/acp-15-11147-2015, https://doi.org/10.5194/acp-15-11147-2015, 2015
Short summary
Short summary
We present a detailed analysis of a new greenhouse gas measurement network
in the Swiss Plateau, situated between the Jura mountains and the Alps. We
find the network's measurements to be information rich and suitable
for studying surface carbon fluxes of the study region. However, we are
limited by the high-resolution (2km) atmospheric transport model's ability
to simulate meteorology at the individual measurement stations, especially
at those situated in rough terrain.
B. Wolf, L. Merbold, C. Decock, B. Tuzson, E. Harris, J. Six, L. Emmenegger, and J. Mohn
Biogeosciences, 12, 2517–2531, https://doi.org/10.5194/bg-12-2517-2015, https://doi.org/10.5194/bg-12-2517-2015, 2015
P. Zotter, V. G. Ciobanu, Y. L. Zhang, I. El-Haddad, M. Macchia, K. R. Daellenbach, G. A. Salazar, R.-J. Huang, L. Wacker, C. Hueglin, A. Piazzalunga, P. Fermo, M. Schwikowski, U. Baltensperger, S. Szidat, and A. S. H. Prévôt
Atmos. Chem. Phys., 14, 13551–13570, https://doi.org/10.5194/acp-14-13551-2014, https://doi.org/10.5194/acp-14-13551-2014, 2014
R. V. Hiller, D. Bretscher, T. DelSontro, T. Diem, W. Eugster, R. Henneberger, S. Hobi, E. Hodson, D. Imer, M. Kreuzer, T. Künzle, L. Merbold, P. A. Niklaus, B. Rihm, A. Schellenberger, M. H. Schroth, C. J. Schubert, H. Siegrist, J. Stieger, N. Buchmann, and D. Brunner
Biogeosciences, 11, 1941–1959, https://doi.org/10.5194/bg-11-1941-2014, https://doi.org/10.5194/bg-11-1941-2014, 2014
A. Mues, J. Kuenen, C. Hendriks, A. Manders, A. Segers, Y. Scholz, C. Hueglin, P. Builtjes, and M. Schaap
Atmos. Chem. Phys., 14, 939–955, https://doi.org/10.5194/acp-14-939-2014, https://doi.org/10.5194/acp-14-939-2014, 2014
A. Baklanov, K. Schlünzen, P. Suppan, J. Baldasano, D. Brunner, S. Aksoyoglu, G. Carmichael, J. Douros, J. Flemming, R. Forkel, S. Galmarini, M. Gauss, G. Grell, M. Hirtl, S. Joffre, O. Jorba, E. Kaas, M. Kaasik, G. Kallos, X. Kong, U. Korsholm, A. Kurganskiy, J. Kushta, U. Lohmann, A. Mahura, A. Manders-Groot, A. Maurizi, N. Moussiopoulos, S. T. Rao, N. Savage, C. Seigneur, R. S. Sokhi, E. Solazzo, S. Solomos, B. Sørensen, G. Tsegas, E. Vignati, B. Vogel, and Y. Zhang
Atmos. Chem. Phys., 14, 317–398, https://doi.org/10.5194/acp-14-317-2014, https://doi.org/10.5194/acp-14-317-2014, 2014
P. Sturm, B. Tuzson, S. Henne, and L. Emmenegger
Atmos. Meas. Tech., 6, 1659–1671, https://doi.org/10.5194/amt-6-1659-2013, https://doi.org/10.5194/amt-6-1659-2013, 2013
B. Tuzson, K. Zeyer, M. Steinbacher, J. B. McManus, D. D. Nelson, M. S. Zahniser, and L. Emmenegger
Atmos. Meas. Tech., 6, 927–936, https://doi.org/10.5194/amt-6-927-2013, https://doi.org/10.5194/amt-6-927-2013, 2013
C. Knote and D. Brunner
Atmos. Chem. Phys., 13, 1177–1192, https://doi.org/10.5194/acp-13-1177-2013, https://doi.org/10.5194/acp-13-1177-2013, 2013
Related subject area
Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Emissions relationships in western forest fire plumes – Part 1: Reducing the effect of mixing errors on emission factors
A new method to correct the electrochemical concentration cell (ECC) ozonesonde time response and its implications for “background current” and pump efficiency
Monitoring the compliance of sailing ships with fuel sulfur content regulations using unmanned aerial vehicle (UAV) measurements of ship emissions in open water
High-resolution mapping of urban air quality with heterogeneous observations: a new methodology and its application to Amsterdam
Towards standardized processing of eddy covariance flux measurements of carbonyl sulfide
Correcting the impact of the isotope composition on the mixing ratio dependency of water vapour isotope measurements with cavity ring-down spectrometers
Correcting high-frequency losses of reactive nitrogen flux measurements
Surface flux estimates derived from UAS-based mole fraction measurements by means of a nocturnal boundary layer budget approach
InnFLUX – an open-source code for conventional and disjunct eddy covariance analysis of trace gas measurements: an urban test case
Accurate measurements of atmospheric carbon dioxide and methane mole fractions at the Siberian coastal site Ambarchik
Traffic-related air pollution near roadways: discerning local impacts from background
Bayesian atmospheric tomography for detection and quantification of methane emissions: application to data from the 2015 Ginninderra release experiment
Evaluating and improving the reliability of gas-phase sensor system calibrations across new locations for ambient measurements and personal exposure monitoring
A novel approach for simple statistical analysis of high-resolution mass spectra
Application of open-path Fourier transform infrared spectroscopy (OP-FTIR) to measure greenhouse gas concentrations from agricultural fields
Flexible approach for quantifying average long-term changes and seasonal cycles of tropospheric trace species
The ICAD (iterative cavity-enhanced DOAS) method
Development of an incoherent broadband cavity-enhanced absorption spectrometer for measurements of ambient glyoxal and NO2 in a polluted urban environment
Atmospheric CO2, CH4, and CO with the CRDS technique at the Izaña Global GAW station: instrumental tests, developments, and first measurement results
Possible errors in flux measurements due to limited digitalization
Development of a general calibration model and long-term performance evaluation of low-cost sensors for air pollutant gas monitoring
Analysis of spatial and temporal patterns of on-road NO2 concentrations in Hong Kong
Testing the performance of field calibration techniques for low-cost gas sensors in new deployment locations: across a county line and across Colorado
Calibration of isotopologue-specific optical trace gas analysers: a practical guide
Uncertainty of eddy covariance flux measurements over an urban area based on two towers
Examination on total ozone column retrievals by Brewer spectrophotometry using different processing software
Uncertainty analysis of total ozone derived from direct solar irradiance spectra in the presence of unknown spectral deviations
Identification of spikes associated with local sources in continuous time series of atmospheric CO, CO2 and CH4
Bootstrap inversion technique for atmospheric trace gas source detection and quantification using long open-path laser measurements
Adaptive selection of diurnal minimum variation: a statistical strategy to obtain representative atmospheric CO2 data and its application to European elevated mountain stations
A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring
Improved methods for signal processing in measurements of mercury by Tekran® 2537A and 2537B instruments
CH4 emission estimates from an active landfill site inferred from a combined approach of CFD modelling and in situ FTIR measurements
Eddy covariance carbonyl sulfide flux measurements with a quantum cascade laser absorption spectrometer
Application of Gauss's theorem to quantify localized surface emissions from airborne measurements of wind and trace gases
A simple calculation algorithm to separate high-resolution CH4 flux measurements into ebullition- and diffusion-derived components
Impact of biomass burning emission on total peroxy nitrates: fire plume identification during the BORTAS campaign
Continuous and high-precision atmospheric concentration measurements of COS, CO2, CO and H2O using a quantum cascade laser spectrometer (QCLS)
Random uncertainties of flux measurements by the eddy covariance technique
Quantifying the uncertainty of eddy covariance fluxes due to the use of different software packages and combinations of processing steps in two contrasting ecosystems
A semiempirical error estimation technique for PWV derived from atmospheric radiosonde data
Automatic processing of atmospheric CO2 and CH4 mole fractions at the ICOS Atmosphere Thematic Centre
Optimal use of buffer volumes for the measurement of atmospheric gas concentration in multi-point systems
Increasing the accuracy and temporal resolution of two-filter radon–222 measurements by correcting for the instrument response
Industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm
Mobile sensor network noise reduction and recalibration using a Bayesian network
Comparison of the regional CO2 mole fraction filtering approaches at a WMO/GAW regional station in China
The stability and calibration of water vapor isotope ratio measurements during long-term deployments
Eddy-covariance data with low signal-to-noise ratio: time-lag determination, uncertainties and limit of detection
PTRwid: A new widget tool for processing PTR-TOF-MS data
Robert B. Chatfield, Meinrat O. Andreae, ARCTAS Science Team, and SEAC4RS Science Team
Atmos. Meas. Tech., 13, 7069–7096, https://doi.org/10.5194/amt-13-7069-2020, https://doi.org/10.5194/amt-13-7069-2020, 2020
Short summary
Short summary
Forest burning affects air pollution and global climate. A NASA aircraft studied fire emissions including the Rim Fire near Yosemite. We found frequent confusions between the actual fire emission factors and other effects on the air samples. Effects on CO2 and CO can originate far upwind; the gases can mix variably into a smoke plume. We devised a theory of constant features in plumes. A statistical mixed-effects analysis of a co-emitted tracers model disentangles such mixing from fire effects.
Holger Vömel, Herman G. J. Smit, David Tarasick, Bryan Johnson, Samuel J. Oltmans, Henry Selkirk, Anne M. Thompson, Ryan M. Stauffer, Jacquelyn C. Witte, Jonathan Davies, Roeland van Malderen, Gary A. Morris, Tatsumi Nakano, and Rene Stübi
Atmos. Meas. Tech., 13, 5667–5680, https://doi.org/10.5194/amt-13-5667-2020, https://doi.org/10.5194/amt-13-5667-2020, 2020
Short summary
Short summary
The time response of electrochemical concentration cell (ECC) ozonesondes points to at least two distinct reaction pathways with time constants of approximately 20 s and 25 min. Properly considering these time constants eliminates the need for a poorly defined "background" and allows reducing ad hoc corrections based on laboratory tests. This reduces the uncertainty of ECC ozonesonde measurements throughout the profile and especially in regions of low ozone and strong gradients of ozone.
Fan Zhou, Liwei Hou, Rui Zhong, Wei Chen, Xunpeng Ni, Shengda Pan, Ming Zhao, and Bowen An
Atmos. Meas. Tech., 13, 4899–4909, https://doi.org/10.5194/amt-13-4899-2020, https://doi.org/10.5194/amt-13-4899-2020, 2020
Short summary
Short summary
On 15 July 2019, using an unmanned aerial vehicle (UAV), maritime authorities ferreted out a sailing ship whose fuel sulfur content (FSC) failed to meet Chinese regulations. This was the first time that a sailing ship had been caught for having failed the FSC regulations in China. The UAV system, method, and monitoring result utilized are discussed in this paper. We recommend that emissions from sailing ships be monitored more often in the open water in the future.
Bas Mijling
Atmos. Meas. Tech., 13, 4601–4617, https://doi.org/10.5194/amt-13-4601-2020, https://doi.org/10.5194/amt-13-4601-2020, 2020
Short summary
Short summary
Many cities are experimenting with networks of low-cost sensors, complementary to their reference stations. Often the observations are published as dots on a map, as spatial interpolation is far from trivial. A new methodology to assimilate observations of different accuracy in a generic urban-air-quality model is introduced. It can be used for mapping local air quality based on reference measurements only or as a framework to integrate low-cost measurements next to official measurements.
Kukka-Maaria Kohonen, Pasi Kolari, Linda M. J. Kooijmans, Huilin Chen, Ulli Seibt, Wu Sun, and Ivan Mammarella
Atmos. Meas. Tech., 13, 3957–3975, https://doi.org/10.5194/amt-13-3957-2020, https://doi.org/10.5194/amt-13-3957-2020, 2020
Short summary
Short summary
Biosphere–atmosphere gas exchange (flux) measurements of carbonyl sulfide (COS) are becoming popular for estimating biospheric photosynthesis. To compare COS flux measurements across different measurement sites, we need standardized protocols for data processing. We analyze how various data processing steps affect the calculated COS flux and how they differ from carbon dioxide (CO2) flux processing steps, and we aim to settle on a set of recommended protocols for COS flux calculation.
Yongbiao Weng, Alexandra Touzeau, and Harald Sodemann
Atmos. Meas. Tech., 13, 3167–3190, https://doi.org/10.5194/amt-13-3167-2020, https://doi.org/10.5194/amt-13-3167-2020, 2020
Short summary
Short summary
We find that the known mixing ratio dependence of laser spectrometers for water vapour isotope measurements varies with isotope composition. We have developed a scheme to correct for this isotope-composition-dependent bias. The correction is most substantial at low mixing ratios. Stability tests indicate that the first-order dependency is a constant instrument characteristic. Water vapour isotope measurements at low mixing ratios can now be corrected by following our proposed procedure.
Pascal Wintjen, Christof Ammann, Frederik Schrader, and Christian Brümmer
Atmos. Meas. Tech., 13, 2923–2948, https://doi.org/10.5194/amt-13-2923-2020, https://doi.org/10.5194/amt-13-2923-2020, 2020
Short summary
Short summary
With recent technological advances it is now possible to measure the exchange of trace gases between the land surface and the atmosphere. When using the so-called eddy-covariance method, certain corrections need to be applied to account for attenuation in the flux signal. These losses were found to be setup- and site-specific and can be up to 38 % for reactive nitrogen fluxes. We evaluated five different methods and recommend using an empirical version with locally measured cospectra.
Martin Kunz, Jost V. Lavric, Rainer Gasche, Christoph Gerbig, Richard H. Grant, Frank-Thomas Koch, Marcus Schumacher, Benjamin Wolf, and Matthias Zeeman
Atmos. Meas. Tech., 13, 1671–1692, https://doi.org/10.5194/amt-13-1671-2020, https://doi.org/10.5194/amt-13-1671-2020, 2020
Short summary
Short summary
The nocturnal boundary layer (NBL) budget method enables the quantification of gas fluxes between ecosystems and the atmosphere under nocturnal stable stratification, a condition under which standard approaches struggle. However, up to now the application of the NBL method has been limited by difficulties in obtaining the required measurements. We show how an unmanned aircraft system (UAS) equipped with a carbon dioxide analyser can make this method more accessible.
Marcus Striednig, Martin Graus, Tilmann D. Märk, and Thomas G. Karl
Atmos. Meas. Tech., 13, 1447–1465, https://doi.org/10.5194/amt-13-1447-2020, https://doi.org/10.5194/amt-13-1447-2020, 2020
Short summary
Short summary
The current work summarizes a long-term effort to provide an open-source code for the analysis of turbulent fluctuations of trace gases in the atmosphere by eddy covariance and disjunct eddy covariance, with a special focus on reactive gases that participate in atmospheric chemistry. The performance of the code is successfully evaluated based on measurements of minute fluxes of non-methane volatile organic compounds into the urban atmosphere.
Friedemann Reum, Mathias Göckede, Jost V. Lavric, Olaf Kolle, Sergey Zimov, Nikita Zimov, Martijn Pallandt, and Martin Heimann
Atmos. Meas. Tech., 12, 5717–5740, https://doi.org/10.5194/amt-12-5717-2019, https://doi.org/10.5194/amt-12-5717-2019, 2019
Short summary
Short summary
We present continuous in situ measurements of atmospheric CO2 and CH4 mole fractions at the new station Ambarchik, located in northeastern Siberia. We describe the site, measurements and quality control, characterize the signals in comparison with data from Barrow, Alaska, and show which regions the measurements are sensitive to. Ambarchik data are available upon request.
Nathan Hilker, Jonathan M. Wang, Cheol-Heon Jeong, Robert M. Healy, Uwayemi Sofowote, Jerzy Debosz, Yushan Su, Michael Noble, Anthony Munoz, Geoff Doerksen, Luc White, Céline Audette, Dennis Herod, Jeffrey R. Brook, and Greg J. Evans
Atmos. Meas. Tech., 12, 5247–5261, https://doi.org/10.5194/amt-12-5247-2019, https://doi.org/10.5194/amt-12-5247-2019, 2019
Short summary
Short summary
Increased interest in monitoring air quality near roadways, combined with traffic's often unclear contribution to elevated concentrations, has created a need for better interpretation of these data. Using 2 years of measurements collected during a near-road monitoring project in Canada, this paper contrasts three methods for estimating the fraction of roadside pollution resulting from on-road traffic. Robustness of these methods was compared with tandem measurements at background locations.
Laura Cartwright, Andrew Zammit-Mangion, Sangeeta Bhatia, Ivan Schroder, Frances Phillips, Trevor Coates, Karita Negandhi, Travis Naylor, Martin Kennedy, Steve Zegelin, Nick Wokker, Nicholas M. Deutscher, and Andrew Feitz
Atmos. Meas. Tech., 12, 4659–4676, https://doi.org/10.5194/amt-12-4659-2019, https://doi.org/10.5194/amt-12-4659-2019, 2019
Short summary
Short summary
Despite extensive research, emission detection and quantification of greenhouse gases (GHGs) remain an open problem. This article presents a novel statistical framework for detecting and quantifying methane emissions and showcases its efficacy on data collected from different instruments in the 2015 Ginninderra controlled-release experiment. The developed techniques can be used to aid GHG emission reduction schemes by, for example, detecting and quantifying leaks from carbon storage facilities.
Sharad Vikram, Ashley Collier-Oxandale, Michael H. Ostertag, Massimiliano Menarini, Camron Chermak, Sanjoy Dasgupta, Tajana Rosing, Michael Hannigan, and William G. Griswold
Atmos. Meas. Tech., 12, 4211–4239, https://doi.org/10.5194/amt-12-4211-2019, https://doi.org/10.5194/amt-12-4211-2019, 2019
Short summary
Short summary
Low-cost air quality sensors are enabling people to collect data to better understand their local environment and potential exposures. However, there is some concern regarding how reliable the calibrations of these sensors are in new and different environments. To explore this issue, our team colocated sensors at three different sites with high-quality monitoring instruments to compare to. We explored the transferability of calibration models as well as approaches to improve reliability.
Yanjun Zhang, Otso Peräkylä, Chao Yan, Liine Heikkinen, Mikko Äijälä, Kaspar R. Daellenbach, Qiaozhi Zha, Matthieu Riva, Olga Garmash, Heikki Junninen, Pentti Paatero, Douglas Worsnop, and Mikael Ehn
Atmos. Meas. Tech., 12, 3761–3776, https://doi.org/10.5194/amt-12-3761-2019, https://doi.org/10.5194/amt-12-3761-2019, 2019
Short summary
Short summary
Recent advancements in atmospheric mass spectrometry provide large amounts of new information but at the same time present considerable challenges for the data analysis, for example, in high-resolution peak identification and separation. To address these problems, this study presents a simple and novel method, which succeeds in analyzing both synthetic and ambient datasets. We believe it will become a powerful approach in the data analysis of mass spectra.
Cheng-Hsien Lin, Richard H. Grant, Albert J. Heber, and Cliff T. Johnston
Atmos. Meas. Tech., 12, 3403–3415, https://doi.org/10.5194/amt-12-3403-2019, https://doi.org/10.5194/amt-12-3403-2019, 2019
Short summary
Short summary
The open-path FTIR (OP-FTIR) is often used to measure the atmospheric gas composition and concentrations. The OP-FTIR, however, is sensitive to the changed ambient factors, which likely led to quantitative biases. This study developed methods to minimize the effect of the ambient temperature and humidity on N2O/CO2 quantification. These methods can help the users who implement the OP-FTIR to estimate gas fluxes in the agroecosystem achieve more precise and accurate estimations.
David D. Parrish, Richard G. Derwent, Simon O'Doherty, and Peter G. Simmonds
Atmos. Meas. Tech., 12, 3383–3394, https://doi.org/10.5194/amt-12-3383-2019, https://doi.org/10.5194/amt-12-3383-2019, 2019
Short summary
Short summary
We present a flexible method that employs a power series expansion and Fourier series analysis to characterize the average long-term change and seasonal cycle, respectively, from a time series of observations of a trace atmospheric species. This approach maximizes the statistically significant information derived, including non-linear aspects of the long-term trends, without over fitting the data. Generally, a small set of parameter values (e.g., 7 or 8) provides this characterization.
Martin Horbanski, Denis Pöhler, Johannes Lampel, and Ulrich Platt
Atmos. Meas. Tech., 12, 3365–3381, https://doi.org/10.5194/amt-12-3365-2019, https://doi.org/10.5194/amt-12-3365-2019, 2019
Short summary
Short summary
ICAD allows a precise in situ measurement of gases like NO2 in a relatively simple and compact setup. The main advantage in comparison to most other optical methods is that it does not require a stable total light intensity. This allows a simpler and mobile instrument setup and additionally it features no observed cross-interferences. We validated the high quality for an ICAD NO2 instrument in different inter-comparisons with a detection limit of 0.02 ppbv.
Shuaixi Liang, Min Qin, Pinhua Xie, Jun Duan, Wu Fang, Yabai He, Jin Xu, Jingwei Liu, Xin Li, Ke Tang, Fanhao Meng, Kaidi Ye, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 12, 2499–2512, https://doi.org/10.5194/amt-12-2499-2019, https://doi.org/10.5194/amt-12-2499-2019, 2019
Short summary
Short summary
A home-built instrument of an incoherent broadband cavity-enhanced absorption spectrometer is reported for sensitive detection of CHOCHO and NO2 in China's highly polluted environment. An NO2 spectral profile measured using the same spectrometer is applied as a reference spectral profile in the subsequent atmospheric spectral analysis and retrieval of NO2 and CHOCHO. This will provide an idea for solving the problem of cross-interference of strongly absorbing gases in weakly absorbing gases.
Angel J. Gomez-Pelaez, Ramon Ramos, Emilio Cuevas, Vanessa Gomez-Trueba, and Enrique Reyes
Atmos. Meas. Tech., 12, 2043–2066, https://doi.org/10.5194/amt-12-2043-2019, https://doi.org/10.5194/amt-12-2043-2019, 2019
Short summary
Short summary
In 2015, a CO2/CH4/CO CRDS was installed at Izaña station (Tenerife). We present the acceptance tests, the processing of raw data applied, the ambient measurements performed, and their comparison with other continuous in situ measurements. We determine linear relationships between flow rate, CRDS inlet pressure, and CRDS outlet valve aperture; a slight CO2 correction that takes into account changes in the inlet pressure/flow rate and its origin; and the H2O correction for CO in a novel way.
Thomas Foken, Wolfgang Babel, and Christoph Thomas
Atmos. Meas. Tech., 12, 971–976, https://doi.org/10.5194/amt-12-971-2019, https://doi.org/10.5194/amt-12-971-2019, 2019
Short summary
Short summary
Recently reported trends of carbon dioxide uptake pose the question of whether trends may be the result of the limited digitalization of gas analysers and sonic anemometers used in the 1990s. Modifying a 12 bit digitalization and the instrument error reported for the R2 and R3 sonic anemometers found elsewhere, the influence of these deficits in comparison to the now commonly used 16 bit digitalization were quantified. Both issues have an effect only on trace gas fluxes of small magnitude.
Carl Malings, Rebecca Tanzer, Aliaksei Hauryliuk, Sriniwasa P. N. Kumar, Naomi Zimmerman, Levent B. Kara, Albert A. Presto, and R. Subramanian
Atmos. Meas. Tech., 12, 903–920, https://doi.org/10.5194/amt-12-903-2019, https://doi.org/10.5194/amt-12-903-2019, 2019
Short summary
Short summary
This paper compares several methods for calibrating data from low-cost air quality monitors to reflect the concentrations of various gaseous pollutants in the atmosphere, identifying the best-performing approaches. With these calibration methods, such monitors can be used to gather information on air quality at a higher spatial resolution than is possible using traditional technologies and can be deployed to areas (e.g. developing countries) where there are no existing monitor networks.
Ying Zhu, Ka Lok Chan, Yun Fat Lam, Martin Horbanski, Denis Pöhler, Johannes Boll, Ivo Lipkowitsch, Sheng Ye, and Mark Wenig
Atmos. Meas. Tech., 11, 6719–6734, https://doi.org/10.5194/amt-11-6719-2018, https://doi.org/10.5194/amt-11-6719-2018, 2018
Short summary
Short summary
The paper presents an investigation of spatio-temporal variability of street-level NO2 in Hong Kong using mobile cavity-enhanced differential optical absorption spectroscopy (DOAS) and long-path DOAS. Measurements were conducted in December 2010 and March 2017. A significant decreasing trend in on-road NO2 was found by comparing measurements taken in 2010 and 2017. Influences of changes in bus companies' operation strategies can also be observed from the measured NO2 concentration maps.
Joanna Gordon Casey and Michael P. Hannigan
Atmos. Meas. Tech., 11, 6351–6378, https://doi.org/10.5194/amt-11-6351-2018, https://doi.org/10.5194/amt-11-6351-2018, 2018
Short summary
Short summary
Low-cost sensors have the potential to improve understanding of air quality in complex regions like oil and gas production basins. Regression methods have been used to quantify pollutants from sensor signals, but these methods have not been tested when sensors are moved to new sampling locations, away from model training locations. We use sensor data collected at multiple sites to test how well these field calibration methods perform when they are extended to new locations and times.
David W. T. Griffith
Atmos. Meas. Tech., 11, 6189–6201, https://doi.org/10.5194/amt-11-6189-2018, https://doi.org/10.5194/amt-11-6189-2018, 2018
Short summary
Short summary
In recent years optical spectroscopic techniques have become commonly used in the determination of mole fractions of trace gases in air. These techniques in many cases determine the mole fractions of only individual isotopic variants (
isotopologues) of the trace gas, while for many applications the total mole fraction of all isotopologues is required. This paper sets out the measurements and calculations required to convert between individual isotopologue and total trace gas amounts.
Leena Järvi, Üllar Rannik, Tom V. Kokkonen, Mona Kurppa, Ari Karppinen, Rostislav D. Kouznetsov, Pekka Rantala, Timo Vesala, and Curtis R. Wood
Atmos. Meas. Tech., 11, 5421–5438, https://doi.org/10.5194/amt-11-5421-2018, https://doi.org/10.5194/amt-11-5421-2018, 2018
Short summary
Short summary
Identical EC systems on two sides of a building in central Helsinki were used to assess the uncertainty of the vertical fluxes on the single measurement point from July 2013 to September 2015. Sampling at only one point yielded up to 12% underestimation in the cumulative carbon fluxes; for sensible and latent heat the respective values were up to 5 and 8%. The commonly used statistics, kurtosis and skewness, are not necessarily suitable for filtering out data in a densely built urban area.
Anna Maria Siani, Francesca Frasca, Francesco Scarlatti, Arianna Religi, Henri Diémoz, Giuseppe R. Casale, Massimiliano Pedone, and Volodya Savastiouk
Atmos. Meas. Tech., 11, 5105–5123, https://doi.org/10.5194/amt-11-5105-2018, https://doi.org/10.5194/amt-11-5105-2018, 2018
Short summary
Short summary
Total ozone columns (TOCs) measured by Brewer spectrophotometers located at Rome and Aosta (Italy) were calculated using different processing software packages, and the differences in the TOC retrievals are investigated. Large differences in TOC retrievals can be experienced when the instrumental sensitivity exhibits a long-term drift. The variability in TOC retrievals depends on the algorithm for calculating the standard lamp correction.
Anna Vaskuri, Petri Kärhä, Luca Egli, Julian Gröbner, and Erkki Ikonen
Atmos. Meas. Tech., 11, 3595–3610, https://doi.org/10.5194/amt-11-3595-2018, https://doi.org/10.5194/amt-11-3595-2018, 2018
Short summary
Short summary
In this work, we introduce a Monte Carlo uncertainty analysis that takes into account possible systematic spectral deviations in the atmospheric full spectrum ozone retrieval method. Accounting for possible systematic spectral deviations in the spectral data is important since they produce larger total ozone column uncertainties than uncorrelated noise-like variations that traditional uncertainty estimations predict.
Abdelhadi El Yazidi, Michel Ramonet, Philippe Ciais, Gregoire Broquet, Isabelle Pison, Amara Abbaris, Dominik Brunner, Sebastien Conil, Marc Delmotte, Francois Gheusi, Frederic Guerin, Lynn Hazan, Nesrine Kachroudi, Giorgos Kouvarakis, Nikolaos Mihalopoulos, Leonard Rivier, and Dominique Serça
Atmos. Meas. Tech., 11, 1599–1614, https://doi.org/10.5194/amt-11-1599-2018, https://doi.org/10.5194/amt-11-1599-2018, 2018
Caroline B. Alden, Subhomoy Ghosh, Sean Coburn, Colm Sweeney, Anna Karion, Robert Wright, Ian Coddington, Gregory B. Rieker, and Kuldeep Prasad
Atmos. Meas. Tech., 11, 1565–1582, https://doi.org/10.5194/amt-11-1565-2018, https://doi.org/10.5194/amt-11-1565-2018, 2018
Short summary
Short summary
The location and sizing leaks of methane from natural gas operations poses a real challenge for greenhouse gas emission mitigation efforts and for accurate quantification of emissions inventories. We demonstrate, with synthetic and field tests, a new statistical method for the location and sizing of small trace gas point sources dispersed over large areas, based on measurements of ambient atmospheric conditions made with long-range, open-path laser-based atmospheric observations.
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018, https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
Short summary
This paper presents a novel statistical method, ADVS, for baseline selection of representative CO2 data at elevated mountain measurement stations. It provides insights on how data processing techniques are critical for measurements and data analyses. Compared with other statistical methods, our method appears to be a good option as a generalized approach with improved comparability, which is important for research on measurement site characteristics and comparisons between stations.
Naomi Zimmerman, Albert A. Presto, Sriniwasa P. N. Kumar, Jason Gu, Aliaksei Hauryliuk, Ellis S. Robinson, Allen L. Robinson, and R. Subramanian
Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, https://doi.org/10.5194/amt-11-291-2018, 2018
Short summary
Short summary
Low-cost sensors promise neighborhood-scale air quality monitoring but have been plagued by inconsistent performance for precision, accuracy, and drift. CMU and SenSevere collaborated to develop the RAMP, which uses electrochemical sensors. We present a machine learning algorithm that overcomes previous performance issues and meets US EPA's data quality recommendations for personal exposure for NO2 and tougher "supplemental monitoring" standards for CO & ozone across 19 RAMPs for several months.
Jesse L. Ambrose
Atmos. Meas. Tech., 10, 5063–5073, https://doi.org/10.5194/amt-10-5063-2017, https://doi.org/10.5194/amt-10-5063-2017, 2017
Short summary
Short summary
Scientific understanding of environmental Hg cycling is limited by analytical uncertainties. To better characterize analytical uncertainty associated with Hg measurements made with the Tekran® 2537 instrument, I developed new software-based methods for offline processing of the raw instrumental data. I demonstrate significant uncertainty associated with the Tekran® method. By comparison, my methods improve measurement accuracy and the Hg detection limit by as much as 95 % and 88 %, respectively.
Hannah Sonderfeld, Hartmut Bösch, Antoine P. R. Jeanjean, Stuart N. Riddick, Grant Allen, Sébastien Ars, Stewart Davies, Neil Harris, Neil Humpage, Roland Leigh, and Joseph Pitt
Atmos. Meas. Tech., 10, 3931–3946, https://doi.org/10.5194/amt-10-3931-2017, https://doi.org/10.5194/amt-10-3931-2017, 2017
Short summary
Short summary
The waste sector is the second largest source of methane in the UK. However, uncertainties of methane emissions from landfill sites still remain. In this study we present a new approach for the estimation of methane emissions from a landfill site by applying a computational fluid dynamics (CFD) model for precise measurements of methane with in situ Fourier-transform infrared (FTIR) spectroscopy. Different source areas could be distinguished with this method and their emissions were assessed.
Katharina Gerdel, Felix Maximilian Spielmann, Albin Hammerle, and Georg Wohlfahrt
Atmos. Meas. Tech., 10, 3525–3537, https://doi.org/10.5194/amt-10-3525-2017, https://doi.org/10.5194/amt-10-3525-2017, 2017
Stephen Conley, Ian Faloona, Shobhit Mehrotra, Maxime Suard, Donald H. Lenschow, Colm Sweeney, Scott Herndon, Stefan Schwietzke, Gabrielle Pétron, Justin Pifer, Eric A. Kort, and Russell Schnell
Atmos. Meas. Tech., 10, 3345–3358, https://doi.org/10.5194/amt-10-3345-2017, https://doi.org/10.5194/amt-10-3345-2017, 2017
Short summary
Short summary
This paper describes a new method of quantifying surface trace gas emissions (e.g. methane) from small aircraft (e.g. Mooney, Cessna) in about 30 min. This technique greatly enhances our ability to rapidly respond in the event of catastrophic failures such as Aliso Canyon and Deep Water Horizon.
Mathias Hoffmann, Maximilian Schulz-Hanke, Juana Garcia Alba, Nicole Jurisch, Ulrike Hagemann, Torsten Sachs, Michael Sommer, and Jürgen Augustin
Atmos. Meas. Tech., 10, 109–118, https://doi.org/10.5194/amt-10-109-2017, https://doi.org/10.5194/amt-10-109-2017, 2017
Short summary
Short summary
Processes driving production and transport of CH4 in wetlands are complex. We present an algorithm to separate open-water automatic chamber CH4 fluxes into diffusion and ebullition. This helps to reveal dynamics, identify drivers and obtain reliable CH4 emissions. The algorithm is based on sudden concentration changes during single measurements. A variable filter is applied using a multiple of the interquartile range. The algorithm was verified for data of a rewetted former fen grassland site.
Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival
Atmos. Meas. Tech., 9, 5591–5606, https://doi.org/10.5194/amt-9-5591-2016, https://doi.org/10.5194/amt-9-5591-2016, 2016
Short summary
Short summary
During the BORTAS aircraft campaign, we measured NO2 and their oxidtation products (as peroxy nitrates) with a custom laser-induced fluorescence instrument. Because of the high correlation between known pyrogenic tracers (i.e., carbon monoxide) and peroxy nitrates, we provide two methods to use these species for the identification of biomass burning (BB) plumes. Using an artifical neural network, we improved the BB identification taking into account of a meteorological parameter (pressure).
Linda M. J. Kooijmans, Nelly A. M. Uitslag, Mark S. Zahniser, David D. Nelson, Stephen A. Montzka, and Huilin Chen
Atmos. Meas. Tech., 9, 5293–5314, https://doi.org/10.5194/amt-9-5293-2016, https://doi.org/10.5194/amt-9-5293-2016, 2016
Short summary
Short summary
The accuracy of carbon models, used for the prediction of global climate change, is limited by the knowledge of the uptake of carbon by plants through photosynthesis. Carbonyl sulfide (COS) has been suggested as a tracer for this process. To be able to further explore and verify the application of this novel tracer we have tested a laser spectrometer for its suitability to obtain accurate and high precision measurements of COS and CO2 with both laboratory experiments and field measurements.
Üllar Rannik, Olli Peltola, and Ivan Mammarella
Atmos. Meas. Tech., 9, 5163–5181, https://doi.org/10.5194/amt-9-5163-2016, https://doi.org/10.5194/amt-9-5163-2016, 2016
Short summary
Short summary
We review available methods for the random error estimation of turbulent fluxes that are widely used by the flux community. Flux errors are evaluated theoretically as well as via numerical calculations by using measured and simulated records. We recommend two flux random errors with clear physical meaning: the total error resulting from stochastic nature of turbulence, well approximated by the method of Finkelstein and Sims (2001), and the error of the flux due to the instrumental noise.
Ivan Mammarella, Olli Peltola, Annika Nordbo, Leena Järvi, and Üllar Rannik
Atmos. Meas. Tech., 9, 4915–4933, https://doi.org/10.5194/amt-9-4915-2016, https://doi.org/10.5194/amt-9-4915-2016, 2016
Short summary
Short summary
In this study we have performed an inter-comparison between EddyUH and EddyPro, two public and commonly used software packages for eddy covariance data processing and calculation. The aims are to estimate the flux uncertainty due to the use of different software packages, and to assess the most critical processing steps, determining the largest deviations in the calculated fluxes. We focus not only on water vapour and carbon dioxide fluxes, but also on the methane flux.
Julio A. Castro-Almazán, Gabriel Pérez-Jordán, and Casiana Muñoz-Tuñón
Atmos. Meas. Tech., 9, 4759–4781, https://doi.org/10.5194/amt-9-4759-2016, https://doi.org/10.5194/amt-9-4759-2016, 2016
Short summary
Short summary
Water vapour is the main responsible for the atmospheric extinction in astronomical observations in different bands. One of the most common and accurate techniques to measure it are the radiosoundings. A method to estimate the error and the optimum number of sampled levels is proposed, considering the uncertainties and the leakage in sampling, based on data from Roque de los Muchachos Observ. and Guimar (Canary Is., Spain), Lindenberg (Germany) and Ny-Ålesund (Norway). The median error is 2.0 %.
Lynn Hazan, Jérôme Tarniewicz, Michel Ramonet, Olivier Laurent, and Amara Abbaris
Atmos. Meas. Tech., 9, 4719–4736, https://doi.org/10.5194/amt-9-4719-2016, https://doi.org/10.5194/amt-9-4719-2016, 2016
Short summary
Short summary
The ATC automatically processes atmospheric greenhouse gases mole fractions of data sent daily by the ICOS network, this includes calibration and water vapor corrections. Data are stored in a database which has been developed with an emphasis on traceability. Instrument calibration and manual quality control lead to automatic revaluation of the mole fractions calculated in near-real time. Calibration corrections avoid artificial gradients between sites that could lead to error in flux estimates.
Alessandro Cescatti, Barbara Marcolla, Ignacio Goded, and Carsten Gruening
Atmos. Meas. Tech., 9, 4665–4672, https://doi.org/10.5194/amt-9-4665-2016, https://doi.org/10.5194/amt-9-4665-2016, 2016
Short summary
Short summary
Multi-point monitoring systems are required to measure atmospheric gas concentrations at tall towers and eddy covariance sites. The use of buffer volumes can reduce the uncertainty due to the discrete temporal sampling. We propose a processing scheme that accounts for the fraction of signal built up in the averaging period and reduces the error up to 80 % compared to the standard setup. A relationship is derived to estimate the optimal volume size given the specifications of the sampling system.
Alan D. Griffiths, Scott D. Chambers, Alastair G. Williams, and Sylvester Werczynski
Atmos. Meas. Tech., 9, 2689–2707, https://doi.org/10.5194/amt-9-2689-2016, https://doi.org/10.5194/amt-9-2689-2016, 2016
Short summary
Short summary
Surface-based two-filter radon detectors monitor the ambient concentration of atmospheric radon-222, a natural tracer of mixing and transport. They are sensitive, but respond slowly to ambient changes in radon concentration. In this paper, a deconvolution method is used to successfully correct observations for the instrument response. Case studies demonstrate that it is beneficial, sometimes necessary, to account for the detector response, especially when studying near-surface mixing.
Youwen Sun, Cheng Liu, Pinhua Xie, Andreas Hartl, Kalok Chan, Yuan Tian, Wei Wang, Min Qin, Jianguo Liu, and Wenqing Liu
Atmos. Meas. Tech., 9, 1167–1180, https://doi.org/10.5194/amt-9-1167-2016, https://doi.org/10.5194/amt-9-1167-2016, 2016
Short summary
Short summary
SO2 variability over a large concentration range and interferences from other gases have been major limitations in industrial SO2 emission monitoring. This study demonstrates accurate industrial SO2 emission monitoring through a portable multichannel gas analyzer with an optimized retrieval algorithm. The developed instrument shows good performance in both the linear and nonlinear ranges.
Y. Xiang, Y. Tang, and W. Zhu
Atmos. Meas. Tech., 9, 347–357, https://doi.org/10.5194/amt-9-347-2016, https://doi.org/10.5194/amt-9-347-2016, 2016
Short summary
Short summary
Motivated by unreliable sensor readings and the difficulties in calibrating sensors, we developed a Bayesian-network-based method to remove the abnormal readings and re-calibrate the sensors.
S. X. Fang, P. P. Tans, M. Steinbacher, L. X. Zhou, and T. Luan
Atmos. Meas. Tech., 8, 5301–5313, https://doi.org/10.5194/amt-8-5301-2015, https://doi.org/10.5194/amt-8-5301-2015, 2015
Short summary
Short summary
The identification of atmospheric CO2 observation data which are minimally influenced by very local emissions/removals is essential for trend analysis and for the estimation of regional sources and sinks. We compared four data filtering regimes based on the observation records at Lin'an station in China, and found that the use of meteorological parameters was the most favorable. This conclusion will aid regional data selection at the Lin'an station.
A. Bailey, D. Noone, M. Berkelhammer, H. C. Steen-Larsen, and P. Sato
Atmos. Meas. Tech., 8, 4521–4538, https://doi.org/10.5194/amt-8-4521-2015, https://doi.org/10.5194/amt-8-4521-2015, 2015
Short summary
Short summary
This study evaluates the long-term stability of concentration-dependent and drift-induced biases in three water vapor isotopic analyzers deployed at two remote field sites. Despite limited data at low humidity and measurement hysteresis, inaccuracies in the concentration-dependence characterization are small, and the bias shows no change with isotope ratio or directional drift. Changes in measurement repeatability that are not characterized by linear drift estimates are a larger source of error.
B. Langford, W. Acton, C. Ammann, A. Valach, and E. Nemitz
Atmos. Meas. Tech., 8, 4197–4213, https://doi.org/10.5194/amt-8-4197-2015, https://doi.org/10.5194/amt-8-4197-2015, 2015
R. Holzinger
Atmos. Meas. Tech., 8, 3903–3922, https://doi.org/10.5194/amt-8-3903-2015, https://doi.org/10.5194/amt-8-3903-2015, 2015
Cited articles
Arzoumanian, E., Vogel, F. R., Bastos, A., Gaynullin, B., Laurent, O., Ramonet, M., and Ciais, P.: Characterization of a commercial lower-cost medium-precision non-dispersive infrared sensor for atmospheric CO2 monitoring in urban areas, Atmos. Meas. Tech., 12, 2665–2677, https://doi.org/10.5194/amt-12-2665-2019, 2019.
Berhanu, T. A., Satar, E., Schanda, R., Nyfeler, P., Moret, H., Brunner, D., Oney, B., and Leuenberger, M.: Measurements of greenhouse gases at Beromünster tall-tower station in Switzerland, Atmos. Meas. Tech., 9, 2603–2614, https://doi.org/10.5194/amt-9-2603-2016, 2016.
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018.
Castell, N., Dauge, F., Schneider, P., Vogt, M., Lerner, U., Fishbain, B.,
Broday, D., and Bartonova, A.: Can commercial low-cost sensor platforms
contribute to air quality monitoring and exposure estimates?, Environ.
Int., 99, 293–302,
https://doi.org/10.1016/j.envint.2016.12.007, 2017.
Empa: Technischer Bericht zum Nationalen Beobachtungsnetz für
Luftfremdstoffe (NABEL), Federal Office for the Environment, 2018.
EMPA, Swisscom AG, Decentlab GmbH and Swiss Data Science Center: Carbosense T and RH Data – Release October 2019, ICOS Carbon Portal, https://doi.org/10.18160/RW69-MP2Y, 2019.
Hummelgard, C., Bryntse, I., Bryzgalov, M., Henning, J., Martin, H.,
Norén, M., and Rödjegard, H.: Low-cost NDIR based sensor platform
for sub-ppm gas detection, Urban Climate, 14, 342–350,
https://doi.org/10.1016/j.uclim.2014.09.001, 2015.
InfluxDB: available at: https://www.influxdata.com/products/influxdb-overview/, last
access: 5 July 2019.
Kim, J., Shusterman, A. A., Lieschke, K. J., Newman, C., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: field calibration and evaluation of low-cost air quality sensors, Atmos. Meas. Tech., 11, 1937–1946, https://doi.org/10.5194/amt-11-1937-2018, 2018.
Lewis, A., Peltier, W. R., and Schneidemesser, E.: Low-cost sensors for the
measurement of atmospheric composition: overview of topic and future
applications, World Meteorological Organization (WMO), 2018.
LoRa-Alliance: available at: https://lora-alliance.org/, last access: 5 July 2019.
Martin, C. R., Zeng, N., Karion, A., Dickerson, R. R., Ren, X., Turpie, B. N., and Weber, K. J.: Evaluation and environmental correction of ambient CO2 measurements from a low-cost NDIR sensor, Atmos. Meas. Tech., 10, 2383–2395, https://doi.org/10.5194/amt-10-2383-2017, 2017.
Mueller, M., Meyer, J., and Hueglin, C.: Design of an ozone and nitrogen dioxide sensor unit and its long-term operation within a sensor network in the city of Zurich, Atmos. Meas. Tech., 10, 3783–3799, https://doi.org/10.5194/amt-10-3783-2017, 2017.
Oney, B., Henne, S., Gruber, N., Leuenberger, M., Bamberger, I., Eugster, W., and Brunner, D.: The CarboCount CH sites: characterization of a dense greenhouse gas observation network, Atmos. Chem. Phys., 15, 11147–11164, https://doi.org/10.5194/acp-15-11147-2015, 2015.
Popoola, O. A. M., Carruthers, D., Lad, C., Bright, V. B., Mead, M. I.,
Stettler, M. E. J., Saffell, J. R., and Jones, R. L.: Use of networks of low
cost air quality sensors to quantify air quality in urban settings,
Atmos. Environ., 194, 58–70,
https://doi.org/10.1016/j.atmosenv.2018.09.030, 2018.
Schneider, P., Bartonova, A., Castell, N., Dauge, F. R., Gerboles, M.,
Hagler, G. S., Hueglin, C., Jones, R. L., Khan, S., Lewis, A. C., Mijling,
B., Mueller, M., Penza, M., Spinelle, L., Stacey, B., Vogt, M., Wesseling,
J., and Williams, R. W.: Toward a Unified Terminology of Processing Levels
for Low-Cost Air-Quality Sensors, Environ. Sci. Technol., 53, 15, 8485–8487,
https://doi.org/10.1021/acs.est.9b03950, 2019.
Senseair: Senseair LP8, available at: https://senseair.com/products/power-counts/lp8/, last access: 5 July 2019.
Sensirion: Digital Humidity Sensor SHT2x (RH/T),
available at: https://www.sensirion.com/en/environmental-sensors/humidity-sensors/humidity-temperature-sensor-sht2x-digital-i2c-accurate/,
last access: 5 July 2019.
Shusterman, A. A., Teige, V. E., Turner, A. J., Newman, C., Kim, J., and Cohen, R. C.: The BErkeley Atmospheric CO2 Observation Network: initial evaluation, Atmos. Chem. Phys., 16, 13449–13463, https://doi.org/10.5194/acp-16-13449-2016, 2016.
Spinelle, L., Gerboles, M., Villani, M. G., Aleixandre, M., and
Bonavitacola, F.: Field calibration of a cluster of low-cost commercially
available sensors for air quality monitoring. Part B: NO, CO and CO2,
Sensor. Actuat. B-Chem., 238, 706–715,
https://doi.org/10.1016/j.snb.2016.07.036, 2017.
Sturm, P., Tuzson, B., Henne, S., and Emmenegger, L.: Tracking isotopic signatures of CO2 at the high altitude site Jungfraujoch with laser spectroscopy: analytical improvements and representative results, Atmos. Meas. Tech., 6, 1659–1671, https://doi.org/10.5194/amt-6-1659-2013, 2013.
Tans, P. and Zellweger, C.: GAW Report No. 213, World Meteorological
Organization Global Atmospheric Watch, 2014.
Tans, P. P., Crotwell, A. M., and Thoning, K. W.: Abundances of isotopologues and calibration of CO2 greenhouse gas measurements, Atmos. Meas. Tech., 10, 2669–2685, https://doi.org/10.5194/amt-10-2669-2017, 2017.
Zhao, C. L. and Tans, P. P.: Estimating uncertainty of the WMO mole fraction
scale for carbon dioxide in air, J. Geophys. Res.,
111, D08S09, https://doi.org/10.1029/2005JD006003, 2006.
Zimmerman, N., Presto, A. A., Kumar, S. P. N., Gu, J., Hauryliuk, A., Robinson, E. S., Robinson, A. L., and R. Subramanian: A machine learning calibration model using random forests to improve sensor performance for lower-cost air quality monitoring, Atmos. Meas. Tech., 11, 291–313, https://doi.org/10.5194/amt-11-291-2018, 2018.