Articles | Volume 17, issue 13
https://doi.org/10.5194/amt-17-3917-2024
https://doi.org/10.5194/amt-17-3917-2024
Research article
 | 
03 Jul 2024
Research article |  | 03 Jul 2024

Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors

Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi

Related authors

Ventilation and low pollution enhancing new particle formation in Milan, Italy
Myriam Agrò, Manuel Bettineschi, Silvia Melina, Diego Aliaga, Andrea Bergomi, Beatrice Biffi, Alessandro Bigi, Giancarlo Ciarelli, Cristina Colombi, Paola Fermo, Ivan Grigioni, Veli-Matti Kerminen, Markku Kulmala, Janne Lampilahti, Angela Marinoni, Celestine Oliewo, Juha Sulo, Gianluigi Valli, Roberta Vecchi, Tuukka Petäjä, Katrianne Lehtipalo, and Federico Bianchi
EGUsphere, https://doi.org/10.5194/egusphere-2025-2387,https://doi.org/10.5194/egusphere-2025-2387, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Intercomparison of biogenic CO2 flux models in four urban parks in the city of Zurich
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025,https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
DRIVE v1.0: A data-driven framework to estimate road transport emissions and temporal profiles
Daniel Kühbacher, Jia Chen, Patrick Aigner, Mario Ilic, Ingrid Super, and Hugo Denier van der Gon
EGUsphere, https://doi.org/10.5194/egusphere-2025-753,https://doi.org/10.5194/egusphere-2025-753, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Building-resolving simulations of anthropogenic and biospheric CO2 in the city of Zurich with GRAMM/GRAL
Dominik Brunner, Ivo Suter, Leonie Bernet, Lionel Constantin, Stuart K. Grange, Pascal Rubli, Junwei Li, Jia Chen, Alessandro Bigi, and Lukas Emmenegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-640,https://doi.org/10.5194/egusphere-2025-640, 2025
Short summary
Greenhouse gas column observations from a portable spectrometer in Uganda
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024,https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary

Cited articles

Alphasense Ltd: Alphsense Ltd: Technical specifications Version 1.0 for NO2-B43F, September 2022, https://www.alphasense.com/products/view-by-target-gas/nitrogen-dioxide-sensors-no2 (last access: 1 September 2022), 2022. a, b
Baruah, A., Zivan, O., Bigi, A., and Ghermandi, G.: Evaluation of low-cost gas sensors to quantify intra-urban variability of atmospheric pollutants, Environmental Science: Atmospheres, 3, 830–841, https://doi.org/10.1039/D2EA00165A, 2023. a, b
Beckwith, M., Bates, E., Gillah, A., and Carslaw, N.: NO2 hotspots: are we measuring in the right places?, Atmospheric Environment: X, 2, 100025, https://doi.org/10.1016/j.aeaoa.2019.100025, 2019. a
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l
Borrego, C., Costa, A., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, N., Konstantinidis, K., De Vito, S., Esposito, E., Smith, P., André, N., Gérard, P., Francis, L. A., Castell, N., Schneider, P., Viana, M., Minguillón, M. C., Reimringer, W., Otjes, R. P., von Sicard, O., Pohle, R., Elen, B., Suriano, D., Pfister, V., Prato, M., Dipinto, S., and Penza, M.: Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise, Atmos. Environ., 147, 246–263, https://doi.org/10.1016/j.atmosenv.2016.09.050, 2016. a
Download
Short summary
This study examined the transferability of machine learning calibration models among low-cost sensor units targeting NO2 and NO. The global models were evaluated under similar and different emission conditions. To counter cross-sensitivity, the study proposed integrating O3 measurements from nearby reference stations, in Switzerland. The models show substantial improvement when O3 measurements are incorporated, which is more pronounced when in regions with elevated O3 concentrations.
Share