Articles | Volume 17, issue 13
https://doi.org/10.5194/amt-17-3917-2024
https://doi.org/10.5194/amt-17-3917-2024
Research article
 | 
03 Jul 2024
Research article |  | 03 Jul 2024

Transferability of machine-learning-based global calibration models for NO2 and NO low-cost sensors

Ayah Abu-Hani, Jia Chen, Vigneshkumar Balamurugan, Adrian Wenzel, and Alessandro Bigi

Related authors

Intercomparison of biogenic CO2 flux models in four urban parks in the city of Zurich
Stavros Stagakis, Dominik Brunner, Junwei Li, Leif Backman, Anni Karvonen, Lionel Constantin, Leena Järvi, Minttu Havu, Jia Chen, Sophie Emberger, and Liisa Kulmala
Biogeosciences, 22, 2133–2161, https://doi.org/10.5194/bg-22-2133-2025,https://doi.org/10.5194/bg-22-2133-2025, 2025
Short summary
DRIVE v1.0: A data-driven framework to estimate road transport emissions and temporal profiles
Daniel Kühbacher, Jia Chen, Patrick Aigner, Mario Ilic, Ingrid Super, and Hugo Denier van der Gon
EGUsphere, https://doi.org/10.5194/egusphere-2025-753,https://doi.org/10.5194/egusphere-2025-753, 2025
This preprint is open for discussion and under review for Geoscientific Model Development (GMD).
Short summary
Building-resolving simulations of anthropogenic and biospheric CO2 in the city of Zurich with GRAMM/GRAL
Dominik Brunner, Ivo Suter, Leonie Bernet, Lionel Constantin, Stuart K. Grange, Pascal Rubli, Junwei Li, Jia Chen, Alessandro Bigi, and Lukas Emmenegger
EGUsphere, https://doi.org/10.5194/egusphere-2025-640,https://doi.org/10.5194/egusphere-2025-640, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Greenhouse gas column observations from a portable spectrometer in Uganda
Neil Humpage, Hartmut Boesch, William Okello, Jia Chen, Florian Dietrich, Mark F. Lunt, Liang Feng, Paul I. Palmer, and Frank Hase
Atmos. Meas. Tech., 17, 5679–5707, https://doi.org/10.5194/amt-17-5679-2024,https://doi.org/10.5194/amt-17-5679-2024, 2024
Short summary
Measurement report: Source attribution and estimation of black carbon levels in an urban hotspot of the central Po Valley – an integrated approach combining high-resolution dispersion modelling and micro-aethalometers
Giorgio Veratti, Alessandro Bigi, Michele Stortini, Sergio Teggi, and Grazia Ghermandi
Atmos. Chem. Phys., 24, 10475–10512, https://doi.org/10.5194/acp-24-10475-2024,https://doi.org/10.5194/acp-24-10475-2024, 2024
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Gridded surface O3, NOx, and CO abundances for model metrics from the South Korean ground station network
Calum P. Wilson and Michael J. Prather
Atmos. Meas. Tech., 18, 1757–1769, https://doi.org/10.5194/amt-18-1757-2025,https://doi.org/10.5194/amt-18-1757-2025, 2025
Short summary
Revised methodology for CO2 and CH4 measurements at remote sites using a working standard-gas-saving system
Motoki Sasakawa, Noritsugu Tsuda, Toshinobu Machida, Mikhail Arshinov, Denis Davydov, Aleksandr Fofonov, and Boris Belan
Atmos. Meas. Tech., 18, 1717–1730, https://doi.org/10.5194/amt-18-1717-2025,https://doi.org/10.5194/amt-18-1717-2025, 2025
Short summary
Digitization and calibration of historical solar absorption infrared spectra from the Jungfraujoch site
Jamal Makkor, Mathias Palm, Matthias Buschmann, Emmanuel Mahieu, Martyn P. Chipperfield, and Justus Notholt
Atmos. Meas. Tech., 18, 1105–1114, https://doi.org/10.5194/amt-18-1105-2025,https://doi.org/10.5194/amt-18-1105-2025, 2025
Short summary
Direct high-precision radon quantification for interpreting high-frequency greenhouse gas measurements
Dafina Kikaj, Edward Chung, Alan D. Griffiths, Scott D. Chambers, Grant Forster, Angelina Wenger, Penelope Pickers, Chris Rennick, Simon O'Doherty, Joseph Pitt, Kieran Stanley, Dickon Young, Leigh S. Fleming, Karina Adcock, Emmal Safi, and Tim Arnold
Atmos. Meas. Tech., 18, 151–175, https://doi.org/10.5194/amt-18-151-2025,https://doi.org/10.5194/amt-18-151-2025, 2025
Short summary
Resolving the contributions of local emissions to measured concentrations: a method comparison
Taylor D. Edwards, Yee Ka Wong, Cheol-Jeon Heong, Jonathan M. Wang, Yushan Su, and Greg J. Evans
EGUsphere, https://doi.org/10.5194/egusphere-2024-2488,https://doi.org/10.5194/egusphere-2024-2488, 2024
Short summary

Cited articles

Alphasense Ltd: Alphsense Ltd: Technical specifications Version 1.0 for NO2-B43F, September 2022, https://www.alphasense.com/products/view-by-target-gas/nitrogen-dioxide-sensors-no2 (last access: 1 September 2022), 2022. a, b
Baruah, A., Zivan, O., Bigi, A., and Ghermandi, G.: Evaluation of low-cost gas sensors to quantify intra-urban variability of atmospheric pollutants, Environmental Science: Atmospheres, 3, 830–841, https://doi.org/10.1039/D2EA00165A, 2023. a, b
Beckwith, M., Bates, E., Gillah, A., and Carslaw, N.: NO2 hotspots: are we measuring in the right places?, Atmospheric Environment: X, 2, 100025, https://doi.org/10.1016/j.aeaoa.2019.100025, 2019. a
Bigi, A., Mueller, M., Grange, S. K., Ghermandi, G., and Hueglin, C.: Performance of NO, NO2 low cost sensors and three calibration approaches within a real world application, Atmos. Meas. Tech., 11, 3717–3735, https://doi.org/10.5194/amt-11-3717-2018, 2018. a, b, c, d, e, f, g, h, i, j, k, l
Borrego, C., Costa, A., Ginja, J., Amorim, M., Coutinho, M., Karatzas, K., Sioumis, T., Katsifarakis, N., Konstantinidis, K., De Vito, S., Esposito, E., Smith, P., André, N., Gérard, P., Francis, L. A., Castell, N., Schneider, P., Viana, M., Minguillón, M. C., Reimringer, W., Otjes, R. P., von Sicard, O., Pohle, R., Elen, B., Suriano, D., Pfister, V., Prato, M., Dipinto, S., and Penza, M.: Assessment of air quality microsensors versus reference methods: The EuNetAir joint exercise, Atmos. Environ., 147, 246–263, https://doi.org/10.1016/j.atmosenv.2016.09.050, 2016. a
Download
Short summary
This study examined the transferability of machine learning calibration models among low-cost sensor units targeting NO2 and NO. The global models were evaluated under similar and different emission conditions. To counter cross-sensitivity, the study proposed integrating O3 measurements from nearby reference stations, in Switzerland. The models show substantial improvement when O3 measurements are incorporated, which is more pronounced when in regions with elevated O3 concentrations.
Share