Articles | Volume 9, issue 11
https://doi.org/10.5194/amt-9-5591-2016
https://doi.org/10.5194/amt-9-5591-2016
Research article
 | 
23 Nov 2016
Research article |  | 23 Nov 2016

Impact of biomass burning emission on total peroxy nitrates: fire plume identification during the BORTAS campaign

Eleonora Aruffo, Fabio Biancofiore, Piero Di Carlo, Marcella Busilacchio, Marco Verdecchia, Barbara Tomassetti, Cesare Dari-Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen J. Andrews, Alistair C. Lewis, Paul I. Palmer, Edward Hyer, Michael Le Breton, and Carl Percival

Related authors

Automatic procedures for submitting essential climate variables (ECVs) recorded at Italian Atmospheric Observatories to WMO/GAW data centers
Luca Naitza, Davide Putero, Angela Marinoni, Francescopiero Calzolari, Fabrizio Roccato, Maurizio Busetto, Damiano Sferlazzo, Eleonora Aruffo, Piero Di Carlo, Mariantonia Bencardino, Francesco D'Amore, Francesca Sprovieri, Nicola Pirrone, Federico Dallo, Jacopo Gabrieli, Massimiliano Vardè, Carlo Barbante, Paolo Bonasoni, and Paolo Cristofanelli
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2018-245,https://doi.org/10.5194/amt-2018-245, 2018
Revised manuscript not accepted
Short summary
Production of peroxy nitrates in boreal biomass burning plumes over Canada during the BORTAS campaign
Marcella Busilacchio, Piero Di Carlo, Eleonora Aruffo, Fabio Biancofiore, Cesare Dari Salisburgo, Franco Giammaria, Stephane Bauguitte, James Lee, Sarah Moller, James Hopkins, Shalini Punjabi, Stephen Andrews, Alistair C. Lewis, Mark Parrington, Paul I. Palmer, Edward Hyer, and Glenn M. Wolfe
Atmos. Chem. Phys., 16, 3485–3497, https://doi.org/10.5194/acp-16-3485-2016,https://doi.org/10.5194/acp-16-3485-2016, 2016
Short summary
Properties and evolution of biomass burning organic aerosol from Canadian boreal forest fires
M. D. Jolleys, H. Coe, G. McFiggans, J. W. Taylor, S. J. O'Shea, M. Le Breton, S. J.-B. Bauguitte, S. Moller, P. Di Carlo, E. Aruffo, P. I. Palmer, J. D. Lee, C. J. Percival, and M. W. Gallagher
Atmos. Chem. Phys., 15, 3077–3095, https://doi.org/10.5194/acp-15-3077-2015,https://doi.org/10.5194/acp-15-3077-2015, 2015
Short summary
WRF-Chem model predictions of the regional impacts of N2O5 heterogeneous processes on night-time chemistry over north-western Europe
D. Lowe, S. Archer-Nicholls, W. Morgan, J. Allan, S. Utembe, B. Ouyang, E. Aruffo, M. Le Breton, R. A. Zaveri, P. Di Carlo, C. Percival, H. Coe, R. Jones, and G. McFiggans
Atmos. Chem. Phys., 15, 1385–1409, https://doi.org/10.5194/acp-15-1385-2015,https://doi.org/10.5194/acp-15-1385-2015, 2015
Influence of aerosol chemical composition on N2O5 uptake: airborne regional measurements in northwestern Europe
W. T. Morgan, B. Ouyang, J. D. Allan, E. Aruffo, P. Di Carlo, O. J. Kennedy, D. Lowe, M. J. Flynn, P. D. Rosenberg, P. I. Williams, R. Jones, G. B. McFiggans, and H. Coe
Atmos. Chem. Phys., 15, 973–990, https://doi.org/10.5194/acp-15-973-2015,https://doi.org/10.5194/acp-15-973-2015, 2015
Short summary

Related subject area

Subject: Gases | Technique: In Situ Measurement | Topic: Data Processing and Information Retrieval
Detecting plumes in mobile air quality monitoring time series with density-based spatial clustering of applications with noise
Blake Actkinson and Robert J. Griffin
Atmos. Meas. Tech., 16, 3547–3559, https://doi.org/10.5194/amt-16-3547-2023,https://doi.org/10.5194/amt-16-3547-2023, 2023
Short summary
Characterising the methane gas and environmental response of the Figaro Taguchi Gas Sensor (TGS) 2611-E00
Adil Shah, Olivier Laurent, Luc Lienhardt, Grégoire Broquet, Rodrigo Rivera Martinez, Elisa Allegrini, and Philippe Ciais
Atmos. Meas. Tech., 16, 3391–3419, https://doi.org/10.5194/amt-16-3391-2023,https://doi.org/10.5194/amt-16-3391-2023, 2023
Short summary
Reducing errors on estimates of the carbon uptake period based on time series of atmospheric CO2
Theertha Kariyathan, Ana Bastos, Julia Marshall, Wouter Peters, Pieter Tans, and Markus Reichstein
Atmos. Meas. Tech., 16, 3299–3312, https://doi.org/10.5194/amt-16-3299-2023,https://doi.org/10.5194/amt-16-3299-2023, 2023
Short summary
Generalized Kendrick analysis for improved visualization of atmospheric mass spectral data
Mitchell W. Alton, Harald J. Stark, Manjula R. Canagaratna, and Eleanor C. Browne
Atmos. Meas. Tech., 16, 3273–3282, https://doi.org/10.5194/amt-16-3273-2023,https://doi.org/10.5194/amt-16-3273-2023, 2023
Short summary
Measurements of VOCs in ambient air by Vocus PTR-TOF-MS: calibrations, instrument background corrections, and introducing a PTR Data Toolkit
Andrew R. Jensen, Abigail R. Koss, Ryder B. Hales, and Joost A. de Gouw
EGUsphere, https://doi.org/10.5194/egusphere-2023-842,https://doi.org/10.5194/egusphere-2023-842, 2023
Short summary

Cited articles

Andreae, M. O. and Merlet, P.: Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cy., 15, 955–966, 2001.
Biancofiore, F., Verdecchia, M., Di Carlo, P., Tomassetti, B., Aruffo, E., Busilacchio, M., Bianco, S., Di Tommaso, S., and Colangeli, C.: Analysis of surface ozone using a recurrent neural network, Sci. Total. Environ., 514, 379–387, 2015.
Bertschi, I. T., Jaffe, D. A., Jaeglé, L., Price, H. U., and Dennison, J. B.: PHOBEA/ITCT 2002 airborne observations of trans-Pacific transport of ozone, CO, VOCs, and aerosols to the northeast Pacific: Impacts of Asian anthropogenic emissions and Siberian boreal fire emissions, J. Geophys. Res., 109, D23S12, https://doi.org/10.1029/2003JD004328, 2004.
Braspenning, P. J. , Thuijsman, F., and Weijters, A. J. M. M.: Artificial Neural Net-works, an Introduction to ANN Theory and Practice. Lecture Notes on Computer Science, 931, Springer, Berlin, ISBN-10: 3540594884, 1995.
Download
Short summary
During the BORTAS aircraft campaign, we measured NO2 and their oxidtation products (as peroxy nitrates) with a custom laser-induced fluorescence instrument. Because of the high correlation between known pyrogenic tracers (i.e., carbon monoxide) and peroxy nitrates, we provide two methods to use these species for the identification of biomass burning (BB) plumes. Using an artifical neural network, we improved the BB identification taking into account of a meteorological parameter (pressure).