Articles | Volume 13, issue 2
https://doi.org/10.5194/amt-13-553-2020
https://doi.org/10.5194/amt-13-553-2020
Research article
 | 
07 Feb 2020
Research article |  | 07 Feb 2020

Aerosol retrievals from different polarimeters during the ACEPOL campaign using a common retrieval algorithm

Guangliang Fu, Otto Hasekamp, Jeroen Rietjens, Martijn Smit, Antonio Di Noia, Brian Cairns, Andrzej Wasilewski, David Diner, Felix Seidel, Feng Xu, Kirk Knobelspiesse, Meng Gao, Arlindo da Silva, Sharon Burton, Chris Hostetler, John Hair, and Richard Ferrare

Related authors

Uncertainty in aerosol effective radiative forcing from anthropogenic and natural aerosol parameters in ECHAM6.3-HAM2.3
Yusuf Bhatti, Duncan Watson-Parris, Leighton Regayre, Hailing Jia, David Neubauer, Ulas Im, Carl Svenhag, Nick Schutgens, Athanasios Tsikerdekis, Athanasios Nenes, Irfan Muhammed, Bastiaan van Diedenhoven, Ardit Arifi, Guangliang Fu, and Otto Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-2848,https://doi.org/10.5194/egusphere-2025-2848, 2025
This preprint is open for discussion and under review for Atmospheric Chemistry and Physics (ACP).
Short summary
Above Cloud Aerosol Detection and Retrieval from Multi-Angular Polarimetric Satellite Measurements in a Neural Network Ensemble Approach
Zihao Yuan, Guangliang Fu, Hai Xiang Lin, Jan Willem Erisman, and Otto P. Hasekamp
EGUsphere, https://doi.org/10.5194/egusphere-2025-1488,https://doi.org/10.5194/egusphere-2025-1488, 2025
Short summary
Cloud detection from multi-angular polarimetric satellite measurements using a neural network ensemble approach
Zihao Yuan, Guangliang Fu, Bastiaan van Diedenhoven, Hai Xiang Lin, Jan Willem Erisman, and Otto P. Hasekamp
Atmos. Meas. Tech., 17, 2595–2610, https://doi.org/10.5194/amt-17-2595-2024,https://doi.org/10.5194/amt-17-2595-2024, 2024
Short summary
Algorithm evaluation for polarimetric remote sensing of atmospheric aerosols
Otto Hasekamp, Pavel Litvinov, Guangliang Fu, Cheng Chen, and Oleg Dubovik
Atmos. Meas. Tech., 17, 1497–1525, https://doi.org/10.5194/amt-17-1497-2024,https://doi.org/10.5194/amt-17-1497-2024, 2024
Short summary
Aerosol retrieval over snow using the RemoTAP algorithm
Zihan Zhang, Guangliang Fu, and Otto Hasekamp
Atmos. Meas. Tech., 16, 6051–6063, https://doi.org/10.5194/amt-16-6051-2023,https://doi.org/10.5194/amt-16-6051-2023, 2023
Short summary

Related subject area

Subject: Aerosols | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Cross-validations of the Aeolus aerosol products and new developments with airborne high-spectral-resolution lidar measurements above the tropical Atlantic during JATAC
Dimitri Trapon, Holger Baars, Athena Augusta Floutsi, Sebastian Bley, Moritz Haarig, Adrien Lacour, Thomas Flament, Alain Dabas, Amin R. Nehrir, Frithjof Ehlers, and Dorit Huber
Atmos. Meas. Tech., 18, 3873–3896, https://doi.org/10.5194/amt-18-3873-2025,https://doi.org/10.5194/amt-18-3873-2025, 2025
Short summary
Validation of the Aeolus L2A products with the eVe reference lidar measurements from the ASKOS/JATAC campaign
Peristera Paschou, Nikolaos Siomos, Eleni Marinou, Antonis Gkikas, Samira Moussa Idrissa, Daniel Tetteh Quaye, Désire Degbe Fiogbe Attannon, Kalliopi Artemis Voudouri, Charikleia Meleti, David Patric Donovan, George Georgoussis, Tommaso Parrinello, Thorsten Fehr, Jonas von Bismarck, and Vassilis Amiridis
EGUsphere, https://doi.org/10.5194/egusphere-2025-1152,https://doi.org/10.5194/egusphere-2025-1152, 2025
Short summary
Estimating hourly ground-level aerosols using Geostationary Environment Monitoring Spectrometer aerosol optical depth: a machine learning approach
Sungmin O, Ji Won Yoon, and Seon Ki Park
Atmos. Meas. Tech., 18, 1471–1484, https://doi.org/10.5194/amt-18-1471-2025,https://doi.org/10.5194/amt-18-1471-2025, 2025
Short summary
Performance and evaluation of remote sensing satellites for monitoring dust weather in East Asia
Yuanyuan Zhang, Ning Wang, and Shuanggen Jin
EGUsphere, https://doi.org/10.5194/egusphere-2025-992,https://doi.org/10.5194/egusphere-2025-992, 2025
Short summary
Aerosol effects on day-ahead solar radiation forecasting
Xinyuan Hou, Kyriakoula Papachristopoulou, and Stelios Kazadzis
EGUsphere, https://doi.org/10.5194/egusphere-2025-891,https://doi.org/10.5194/egusphere-2025-891, 2025
Short summary

Cited articles

Bland, J. M. and Altman, D.: STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT, The Lancet, 327, 307–310, https://doi.org/10.1016/S0140-6736(86)90837-8, 1986. a
Bottiger, J. R., Fry, E. S., and Thompson, R. C.: Phase Matrix Measurements for Electromagnetic Scattering by Sphere Aggregates, in: Light Scattering by Irregularly Shaped Particles, edited by: Schuerman, D. W., Springer US, Boston, MA, 283–290, https://doi.org/10.1007/978-1-4684-3704-1_33, 1980. a
Bucholtz, A.: Rayleigh-scattering calculations for the terrestrial atmosphere, Appl. Optics, 34, 2765–2773, https://doi.org/10.1364/AO.34.002765, 1995. a
Burton, S. P., Ferrare, R. A., Hostetler, C. A., Hair, J. W., Rogers, R. R., Obland, M. D., Butler, C. F., Cook, A. L., Harper, D. B., and Froyd, K. D.: Aerosol classification using airborne High Spectral Resolution Lidar measurements – methodology and examples, Atmos. Meas. Tech., 5, 73–98, https://doi.org/10.5194/amt-5-73-2012, 2012. a, b
Burton, S. P., Vaughan, M. A., Ferrare, R. A., and Hostetler, C. A.: Separating mixtures of aerosol types in airborne High Spectral Resolution Lidar data, Atmos. Meas. Tech., 7, 419–436, https://doi.org/10.5194/amt-7-419-2014, 2014. a
Download
Short summary
In this paper, we present aerosol retrieval results from the ACEPOL (Aerosol Characterization from Polarimeter and Lidar) campaign, which was a joint initiative between NASA and SRON (the Netherlands Institute for Space Research). We perform aerosol retrievals from different multi-angle polarimeters employed during the ACEPOL campaign and evaluate them against ground-based AERONET measurements and High Spectral Resolution Lidar-2 (HSRL-2) measurements.
Share