Articles | Volume 9, issue 5
https://doi.org/10.5194/amt-9-2207-2016
https://doi.org/10.5194/amt-9-2207-2016
Review article
 | 
18 May 2016
Review article |  | 18 May 2016

A review of sources of systematic errors and uncertainties in observations and simulations at 183 GHz

Hélène Brogniez, Stephen English, Jean-François Mahfouf, Andreas Behrendt, Wesley Berg, Sid Boukabara, Stefan Alexander Buehler, Philippe Chambon, Antonia Gambacorta, Alan Geer, William Ingram, E. Robert Kursinski, Marco Matricardi, Tatyana A. Odintsova, Vivienne H. Payne, Peter W. Thorne, Mikhail Yu. Tretyakov, and Junhong Wang

Related authors

General Circulation Models evaluation at different time scales over tropical region using ESA-CCI satellite data records: a case study of water vapour and cloud cover
Cedric Gacial Ngoungue Langue, Helene Brogniez, and Philippe Naveau
EGUsphere, https://doi.org/10.5194/egusphere-2024-3481,https://doi.org/10.5194/egusphere-2024-3481, 2025
This preprint is open for discussion and under review for Atmospheric Measurement Techniques (AMT).
Short summary
Evaluation of total column water vapour products from satellite observations and reanalyses within the GEWEX Water Vapor Assessment
Tim Trent, Marc Schröder, Shu-Peng Ho, Steffen Beirle, Ralf Bennartz, Eva Borbas, Christian Borger, Helene Brogniez, Xavier Calbet, Elisa Castelli, Gilbert P. Compo, Wesley Ebisuzaki, Ulrike Falk, Frank Fell, John Forsythe, Hans Hersbach, Misako Kachi, Shinya Kobayashi, Robert E. Kursinski, Diego Loyola, Zhengzao Luo, Johannes K. Nielsen, Enzo Papandrea, Laurence Picon, Rene Preusker, Anthony Reale, Lei Shi, Laura Slivinski, Joao Teixeira, Tom Vonder Haar, and Thomas Wagner
Atmos. Chem. Phys., 24, 9667–9695, https://doi.org/10.5194/acp-24-9667-2024,https://doi.org/10.5194/acp-24-9667-2024, 2024
Short summary
Evaluation of tropical water vapour from CMIP6 global climate models using the ESA CCI Water Vapour climate data records
Jia He, Helene Brogniez, and Laurence Picon
Atmos. Chem. Phys., 22, 12591–12606, https://doi.org/10.5194/acp-22-12591-2022,https://doi.org/10.5194/acp-22-12591-2022, 2022
Short summary
Novel assessment of numerical forecasting model relative humidity with satellite probabilistic estimates
Chloé Radice, Hélène Brogniez, Pierre-Emmanuel Kirstetter, and Philippe Chambon
Atmos. Chem. Phys., 22, 3811–3825, https://doi.org/10.5194/acp-22-3811-2022,https://doi.org/10.5194/acp-22-3811-2022, 2022
Short summary
Statistical downscaling of water vapour satellite measurements from profiles of tropical ice clouds
Giulia Carella, Mathieu Vrac, Hélène Brogniez, Pascal Yiou, and Hélène Chepfer
Earth Syst. Sci. Data, 12, 1–20, https://doi.org/10.5194/essd-12-1-2020,https://doi.org/10.5194/essd-12-1-2020, 2020
Short summary

Related subject area

Subject: Gases | Technique: Remote Sensing | Topic: Validation and Intercomparisons
Validation of the version 4.5 MAESTRO ozone and NO2 measurements
Paul S. Jeffery, James R. Drummond, C. Thomas McElroy, Kaley A. Walker, and Jiansheng Zou
Atmos. Meas. Tech., 18, 569–602, https://doi.org/10.5194/amt-18-569-2025,https://doi.org/10.5194/amt-18-569-2025, 2025
Short summary
Advancing CH4 and N2O retrieval strategies for NDACC/IRWG high-resolution direct-sun FTIR Observations
Ivan Ortega, James W. Hannigan, Bianca C. Baier, Kathryn McKain, and Dan Smale
EGUsphere, https://doi.org/10.5194/egusphere-2024-3815,https://doi.org/10.5194/egusphere-2024-3815, 2025
Short summary
Long-term evolution of the calibration constant on a mobile/field campaign water vapour Raman lidar
Patrick Chazette, Julien Totems, and Frédéric Laly
EGUsphere, https://doi.org/10.5194/egusphere-2024-3583,https://doi.org/10.5194/egusphere-2024-3583, 2025
Short summary
Benchmarking data-driven inversion methods for the estimation of local CO2 emissions from synthetic satellite images of XCO2 and NO2
Diego Santaren, Janne Hakkarainen, Gerrit Kuhlmann, Erik Koene, Frédéric Chevallier, Iolanda Ialongo, Hannakaisa Lindqvist, Janne Nurmela, Johanna Tamminen, Laia Amorós, Dominik Brunner, and Grégoire Broquet
Atmos. Meas. Tech., 18, 211–239, https://doi.org/10.5194/amt-18-211-2025,https://doi.org/10.5194/amt-18-211-2025, 2025
Short summary
Validation of 12 years (2008–2019) of IASI-A CO with IAGOS aircraft observations
Brice Barret, Pierre Loicq, Eric Le Flochmoën, Yasmine Bennouna, Juliette Hadji-Lazaro, Daniel Hurtmans, and Bastien Sauvage
Atmos. Meas. Tech., 18, 129–149, https://doi.org/10.5194/amt-18-129-2025,https://doi.org/10.5194/amt-18-129-2025, 2025
Short summary

Cited articles

Agusti-Panareda, A., Vasiljevic, D., Beljaars, A., Bock, O., Guichard, F., Nuret, M., Garcia Mendez, A., Andersson, E., Bechtold, P., Fink, A., Hersbach, H., Lafore, J.-P., Ngamini, J.-B., Parker, D. J., Redelsperger, J.-L., and Tompkins, A. M.: Radiosonde humidity bias correction over the West African region for the special AMMA reanalysis at ECMWF, Q. J. Roy. Meteor. Soc., 135, 595–617, https://doi.org/10.1002/qj.396, 2009.
Andersson E., Bauer, P., Beljaars, A., Chevallier, F., Holm, E., Janiskova, M., Kallberg, P., Kelly, G., Lopez, P., McNally, A., Moreau, E., Simmons, A., Thépaut, J.-N., and Tompkins, A.: Assimilation and modeling of the atmospheric hydrological cycle in the ECMWF forecasting system, B. Am. Meteorol. Soc., 86, 3387–402, https://doi.org/10.1175/BAMS-86-3-387, 2005.
Auligné, T., McNally, A. P., and Dee, D. P.: Adaptive bias correction for satellite data in a numerical weather prediction system, Q. J. Roy. Meteor. Soc., 133, 631–642, https://doi.org/10.1002/qj.56, 2007.
Bauer, A., Godon, M., Carlier, J., Ma, Q., and Tipping, R. H.: Absorption by H20 and H20-N2 mixtures at 153 GHz, J. Quant. Spectrosc. Ra. Trans., 50, 463–475, 1993.
Bauer, A., Godon, M., Carlier, J., and Ma, Q.: Water vapor absorption in the atmospheric window at 239  GHz, J. Quant. Spectrosc. Ra. Trans., 53, 411–423, 1995.
Short summary
Because a systematic difference between measurements of water vapor performed by space-borne observing instruments in the microwave spectral domain and their numerical modeling was recently highlighted, this work discusses and gives an overview of the various errors and uncertainties associated with each element in the comparison process. Indeed, the knowledge of absolute errors in any observation of the climate system is key, more specifically because we need to detect small changes.
Share