Articles | Volume 16, issue 10
https://doi.org/10.5194/amt-16-2511-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
https://doi.org/10.5194/amt-16-2511-2023
© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.
the Creative Commons Attribution 4.0 License.
The Far-Infrared Radiation Mobile Observation System (FIRMOS) for spectral characterization of the atmospheric emission
National Institute of Optics, National Research Council, Florence, Italy
Flavio Barbara
Institute of Applied Physics “Nello Carrara”, National Research Council, Florence, Italy
Marco Barucci
National Institute of Optics, National Research Council, Florence, Italy
Giovanni Bianchini
National Institute of Optics, National Research Council, Florence, Italy
Francesco D'Amato
National Institute of Optics, National Research Council, Florence, Italy
Samuele Del Bianco
Institute of Applied Physics “Nello Carrara”, National Research Council, Florence, Italy
Gianluca Di Natale
National Institute of Optics, National Research Council, Florence, Italy
Marco Gai
Institute of Applied Physics “Nello Carrara”, National Research Council, Florence, Italy
Alessio Montori
National Institute of Optics, National Research Council, Florence, Italy
Filippo Pratesi
National Institute of Optics, National Research Council, Florence, Italy
Markus Rettinger
Karlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch–Partenkirchen, Germany
Christian Rolf
Forschungszentrum Jülich, IEK-7 Jülich, Germany
Ralf Sussmann
Karlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch–Partenkirchen, Germany
Thomas Trickl
Karlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch–Partenkirchen, Germany
Silvia Viciani
National Institute of Optics, National Research Council, Florence, Italy
Hannes Vogelmann
Karlsruhe Institute of Technology (KIT), IMK-IFU, Garmisch–Partenkirchen, Germany
Luca Palchetti
National Institute of Optics, National Research Council, Florence, Italy
Related authors
Marco Ridolfi, Cecilia Tirelli, Simone Ceccherini, Claudio Belotti, Ugo Cortesi, and Luca Palchetti
Atmos. Meas. Tech., 15, 6723–6737, https://doi.org/10.5194/amt-15-6723-2022, https://doi.org/10.5194/amt-15-6723-2022, 2022
Short summary
Short summary
Synergistic retrieval (SR) and complete data fusion (CDF) methods exploit the complementarity of coinciding remote-sensing measurements. We assess the performance of the SR and CDF methods on the basis of synthetic measurements of the FORUM and IASI-NG missions. In the case of perfectly matching measurements, SR and CDF results differ by less than 1 / 10 of the error due to measurement noise. In the case of a realistic mismatch, the two methods show differences in the order of their error bars.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Kavitha Mottungan, Chayan Roychoudhury, Vanessa Brocchi, Benjamin Gaubert, Wenfu Tang, Mohammad Amin Mirrezaei, John McKinnon, Yafang Guo, David W. T. Griffith, Dietrich G. Feist, Isamu Morino, Mahesh K. Sha, Manvendra K. Dubey, Martine De Mazière, Nicholas M. Deutscher, Paul O. Wennberg, Ralf Sussmann, Rigel Kivi, Tae-Young Goo, Voltaire A. Velazco, Wei Wang, and Avelino F. Arellano Jr.
Atmos. Meas. Tech., 17, 5861–5885, https://doi.org/10.5194/amt-17-5861-2024, https://doi.org/10.5194/amt-17-5861-2024, 2024
Short summary
Short summary
A combination of data analysis techniques is introduced to separate local and regional influences on observed levels of carbon dioxide, carbon monoxide, and methane from an established ground-based remote sensing network. We take advantage of the covariations in these trace gases to identify the dominant type of sources driving these levels. Applying these methods in conjunction with existing approaches to other datasets can better address uncertainties in identifying sources and sinks.
Pinchas Nürnberg, Sarah A. Strode, and Ralf Sussmann
Atmos. Chem. Phys., 24, 10001–10012, https://doi.org/10.5194/acp-24-10001-2024, https://doi.org/10.5194/acp-24-10001-2024, 2024
Short summary
Short summary
We created a set of scaling factors describing the diurnal increase in stratospheric nitrogen oxides above Zugspitze, Germany. We used these factors to validate recently published model simulation data. On the one hand, this validation enables the use of the validated data to better understand the stratospheric photochemistry. On the other hand, it can improve satellite validation, which has implications for the understanding of urban smog events and other pollution events in the troposphere.
Patrick Konjari, Christian Rolf, Michaela Imelda Hegglin, Susanne Rohs, Yun Li, Andreas Zahn, Harald Bönisch, Martina Krämer, and Andreas Petzold
EGUsphere, https://doi.org/10.5194/egusphere-2024-2360, https://doi.org/10.5194/egusphere-2024-2360, 2024
Short summary
Short summary
This study introduces a new method to deriving adjusted water vapor (H2O) climatologies for the upper tropopshere and lower statosphere (UT/LS) using data from 60,000 flights under the IAGOS program. Biases in the IAGOS water vapor dataset are adjusted, based on the more accurate IAGOS-CARIBIC data. The resulting highly resolved H2O climatologies will contribute to a better understanding of the H2O variability in the UT/LS and its connection to various transport and mixing processes.
Kelley Wells, Dylan Millet, Jared Brewer, Vivienne Payne, Karen Cady-Pereira, Rick Pernak, Susan Kulawik, Corinne Vigouroux, Nicholas Jones, Emmanuel Mahieu, Maria Makarova, Tomoo Nagahama, Ivan Ortega, Mathias Palm, Kimberly Strong, Matthias Schneider, Dan Smale, Ralf Sussmann, and Minqiang Zhou
EGUsphere, https://doi.org/10.5194/egusphere-2024-1551, https://doi.org/10.5194/egusphere-2024-1551, 2024
Short summary
Short summary
Atmospheric volatile organic compounds affect both air quality and climate. Satellite measurements can help us to assess and predict their global impacts. We present new long-term (2012–2023) measurements of four key VOCs: methanol, ethene, ethyne, and hydrogen cyanide (HCN) from the Cross-track Infrared Sounder. The measurements reflect emissions from major forests, wildfires, and industry, and provide new information to advance understanding of these sources and their changes over time.
Hengheng Zhang, Christian Rolf, Ralf Tillmann, Christian Wesolek, Frank Gunther Wienhold, Thomas Leisner, and Harald Saathoff
Aerosol Research, 2, 135–151, https://doi.org/10.5194/ar-2-135-2024, https://doi.org/10.5194/ar-2-135-2024, 2024
Short summary
Short summary
Our study employs advanced tools, including scanning lidar, balloons, and UAVs, to explore aerosol particles in the atmosphere. The scanning lidar offers distinctive near-ground-level insights, enriching our comprehension of aerosol distribution from ground level to the free troposphere. This research provides valuable data for comparing remote sensing and in situ aerosol measurements, advancing our understanding of aerosol impacts on radiative transfer, clouds, and air quality.
Gianluca Di Natale, Marco Ridolfi, and Luca Palchetti
Atmos. Meas. Tech., 17, 3171–3186, https://doi.org/10.5194/amt-17-3171-2024, https://doi.org/10.5194/amt-17-3171-2024, 2024
Short summary
Short summary
This work aims to define a new approach to retrieve the distribution of the main ice crystal shapes occurring inside ice and cirrus clouds from infrared spectral measurements. The capability of retrieving these shapes of the ice crystals from satellites will allow us to extend the currently available climatologies to be used as physical constraints in general circulation models. This could could allow us to improve their accuracy and prediction performance.
Joshua L. Laughner, Geoffrey C. Toon, Joseph Mendonca, Christof Petri, Sébastien Roche, Debra Wunch, Jean-Francois Blavier, David W. T. Griffith, Pauli Heikkinen, Ralph F. Keeling, Matthäus Kiel, Rigel Kivi, Coleen M. Roehl, Britton B. Stephens, Bianca C. Baier, Huilin Chen, Yonghoon Choi, Nicholas M. Deutscher, Joshua P. DiGangi, Jochen Gross, Benedikt Herkommer, Pascal Jeseck, Thomas Laemmel, Xin Lan, Erin McGee, Kathryn McKain, John Miller, Isamu Morino, Justus Notholt, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Haris Riris, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Steven C. Wofsy, Minqiang Zhou, and Paul O. Wennberg
Earth Syst. Sci. Data, 16, 2197–2260, https://doi.org/10.5194/essd-16-2197-2024, https://doi.org/10.5194/essd-16-2197-2024, 2024
Short summary
Short summary
This paper describes a new version, called GGG2020, of a data set containing column-integrated observations of greenhouse and related gases (including CO2, CH4, CO, and N2O) made by ground stations located around the world. Compared to the previous version (GGG2014), improvements have been made toward site-to-site consistency. This data set plays a key role in validating space-based greenhouse gas observations and in understanding the carbon cycle.
Pinchas Nürnberg, Markus Rettinger, and Ralf Sussmann
Atmos. Chem. Phys., 24, 3743–3757, https://doi.org/10.5194/acp-24-3743-2024, https://doi.org/10.5194/acp-24-3743-2024, 2024
Short summary
Short summary
For a better understanding of stratospheric photochemistry, we analyzed long-term data from spectroscopic measurements at Zugspitze and Garmisch, Germany. We provide information about the seasonal cycle of diurnal nitrogen oxide variation in the stratosphere. For the first time we create an experimental data set to validate stratospheric model simulation that can improve satellite validation to gain further insights into ozone depletion and smog prevention.
Jean-François Müller, Trissevgeni Stavrakou, Glenn-Michael Oomen, Beata Opacka, Isabelle De Smedt, Alex Guenther, Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Michel Grutter, James Hannigan, Frank Hase, Rigel Kivi, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Amelie Röhling, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Alan Fried
Atmos. Chem. Phys., 24, 2207–2237, https://doi.org/10.5194/acp-24-2207-2024, https://doi.org/10.5194/acp-24-2207-2024, 2024
Short summary
Short summary
Formaldehyde observations from satellites can be used to constrain the emissions of volatile organic compounds, but those observations have biases. Using an atmospheric model, aircraft and ground-based remote sensing data, we quantify these biases, propose a correction to the data, and assess the consequence of this correction for the evaluation of emissions.
Thomas Trickl, Hannes Vogelmann, Michael D. Fromm, Horst Jäger, Matthias Perfahl, and Wolfgang Steinbrecht
Atmos. Chem. Phys., 24, 1997–2021, https://doi.org/10.5194/acp-24-1997-2024, https://doi.org/10.5194/acp-24-1997-2024, 2024
Short summary
Short summary
In 2023, the lidar team at Garmisch-Partenkirchen (Germany) celebrated its 50th year of aerosol profiling. The highlight of these activities has been the lidar measurements of stratospheric aerosol carried out since 1976. The observations since 2017 are characterized by severe smoke from several big fires in North America and Siberia and three volcanic eruptions. The sudden increase in the frequency of such strong fire events is difficult to understand.
Thomas Trickl, Martin Adelwart, Dina Khordakova, Ludwig Ries, Christian Rolf, Michael Sprenger, Wolfgang Steinbrecht, and Hannes Vogelmann
Atmos. Meas. Tech., 16, 5145–5165, https://doi.org/10.5194/amt-16-5145-2023, https://doi.org/10.5194/amt-16-5145-2023, 2023
Short summary
Short summary
Tropospheric ozone have been measured for more than a century. Highly quantitative ozone measurements have been made at monitoring stations. However, deficits have been reported for vertical sounding systems. Here, we report a thorough intercomparison effort between a differential-absorption lidar system and two types of balloon-borne ozone sondes, also using ozone sensors at nearby mountain sites as references. The sondes agree very well with the lidar after offset corrections.
Francesco Cairo, Martina Krämer, Armin Afchine, Guido Di Donfrancesco, Luca Di Liberto, Sergey Khaykin, Lorenza Lucaferri, Valentin Mitev, Max Port, Christian Rolf, Marcel Snels, Nicole Spelten, Ralf Weigel, and Stephan Borrmann
Atmos. Meas. Tech., 16, 4899–4925, https://doi.org/10.5194/amt-16-4899-2023, https://doi.org/10.5194/amt-16-4899-2023, 2023
Short summary
Short summary
Cirrus clouds have been observed over the Himalayan region between 10 km and the tropopause at 17–18 km. Data from backscattersonde, hygrometers, and particle cloud spectrometers have been compared to assess their consistency. Empirical relationships between optical parameters accessible with remote sensing lidars and cloud microphysical parameters (such as ice water content, particle number and surface area density, and particle aspherical fraction) have been established.
Paul Konopka, Christian Rolf, Marc von Hobe, Sergey M. Khaykin, Benjamin Clouser, Elisabeth Moyer, Fabrizio Ravegnani, Francesco D'Amato, Silvia Viciani, Nicole Spelten, Armin Afchine, Martina Krämer, Fred Stroh, and Felix Ploeger
Atmos. Chem. Phys., 23, 12935–12947, https://doi.org/10.5194/acp-23-12935-2023, https://doi.org/10.5194/acp-23-12935-2023, 2023
Short summary
Short summary
We studied water vapor in a critical region of the atmosphere, the Asian summer monsoon anticyclone, using rare in situ observations. Our study shows that extremely high water vapor values observed in the stratosphere within the Asian monsoon anticyclone still undergo significant freeze-drying and that water vapor concentrations set by the Lagrangian dry point are a better proxy for the stratospheric water vapor budget than rare observations of enhanced water mixing ratios.
Thomas Trickl, Cédric Couret, Ludwig Ries, and Hannes Vogelmann
Atmos. Chem. Phys., 23, 8403–8427, https://doi.org/10.5194/acp-23-8403-2023, https://doi.org/10.5194/acp-23-8403-2023, 2023
Short summary
Short summary
Downward atmospheric transport from the stratosphere (STT) is the most important natural source of tropospheric ozone. We analyse the stratospheric influence on the long-term series of ozone and carbon monoxide measured on the Zugspitze in the Bavarian Alps (2962 m a.s.l.). Since the 1970s, there has been a pronounced ozone rise that has been ascribed to an increase in STT. We determine the stratospheric influence from the observational data alone (humidity and 7Be).
Yifan Guan, Gretchen Keppel-Aleks, Scott C. Doney, Christof Petri, Dave Pollard, Debra Wunch, Frank Hase, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Kim Strong, Rigel Kivi, Matthias Buschmann, Nicholas Deutscher, Paul Wennberg, Ralf Sussmann, Voltaire A. Velazco, and Yao Té
Atmos. Chem. Phys., 23, 5355–5372, https://doi.org/10.5194/acp-23-5355-2023, https://doi.org/10.5194/acp-23-5355-2023, 2023
Short summary
Short summary
We characterize spatial–temporal patterns of interannual variability (IAV) in atmospheric CO2 based on NASA’s Orbiting Carbon Observatory-2 (OCO-2). CO2 variation is strongly impacted by climate events, with higher anomalies during El Nino years. We show high correlation in IAV between space-based and ground-based CO2 from long-term sites. Because OCO-2 has near-global coverage, our paper provides a roadmap to study IAV where in situ observation is sparse, such as open oceans and remote lands.
Georgios Dekoutsidis, Silke Groß, Martin Wirth, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 23, 3103–3117, https://doi.org/10.5194/acp-23-3103-2023, https://doi.org/10.5194/acp-23-3103-2023, 2023
Short summary
Short summary
Cirrus clouds affect Earth's atmosphere, deeming our study important. Here we use water vapor measurements by lidar and study the relative humidity (RHi) within and around midlatitude cirrus clouds. We find high supersaturations in the cloud-free air and within the clouds, especially near the cloud top. We study two cloud types with different formation processes. Finally, we conclude that the shape of the distribution of RHi can be used as an indicator of different cloud evolutionary stages.
Stefano Della Fera, Federico Fabiano, Piera Raspollini, Marco Ridolfi, Ugo Cortesi, Flavio Barbara, and Jost von Hardenberg
Geosci. Model Dev., 16, 1379–1394, https://doi.org/10.5194/gmd-16-1379-2023, https://doi.org/10.5194/gmd-16-1379-2023, 2023
Short summary
Short summary
The long-term comparison between observed and simulated outgoing longwave radiances represents a strict test to evaluate climate model performance. In this work, 9 years of synthetic spectrally resolved radiances, simulated online on the basis of the atmospheric fields predicted by the EC-Earth global climate model (v3.3.3) in clear-sky conditions, are compared to IASI spectral radiance climatology in order to detect model biases in temperature and humidity at different atmospheric levels.
Andreas Marsing, Ralf Meerkötter, Romy Heller, Stefan Kaufmann, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, and Christiane Voigt
Atmos. Chem. Phys., 23, 587–609, https://doi.org/10.5194/acp-23-587-2023, https://doi.org/10.5194/acp-23-587-2023, 2023
Short summary
Short summary
We employ highly resolved aircraft measurements of profiles of the ice water content (IWC) in Arctic cirrus clouds in winter and spring, when solar irradiation is low. Using radiation transfer calculations, we assess the cloud radiative effect over different surfaces like snow or ocean. The variability in the IWC of the clouds affects their overall radiative effect and drives internal processes. This helps understand the role of cirrus in a rapidly changing Arctic environment.
Gianluca Di Natale, David D. Turner, Giovanni Bianchini, Massimo Del Guasta, Luca Palchetti, Alessandro Bracci, Luca Baldini, Tiziano Maestri, William Cossich, Michele Martinazzo, and Luca Facheris
Atmos. Meas. Tech., 15, 7235–7258, https://doi.org/10.5194/amt-15-7235-2022, https://doi.org/10.5194/amt-15-7235-2022, 2022
Short summary
Short summary
In this paper, we describe a new approach to test the consistency of the precipitating ice cloud optical and microphysical properties in Antarctica, Dome C, retrieved from hyperspectral measurements in the far-infrared, with the reflectivity detected by a co-located micro rain radar operating at 24 GHz. The retrieved ice crystal sizes were found in accordance with the direct measurements of an optical imager, also installed at Dome C, which can collect the falling ice particles.
Marco Ridolfi, Cecilia Tirelli, Simone Ceccherini, Claudio Belotti, Ugo Cortesi, and Luca Palchetti
Atmos. Meas. Tech., 15, 6723–6737, https://doi.org/10.5194/amt-15-6723-2022, https://doi.org/10.5194/amt-15-6723-2022, 2022
Short summary
Short summary
Synergistic retrieval (SR) and complete data fusion (CDF) methods exploit the complementarity of coinciding remote-sensing measurements. We assess the performance of the SR and CDF methods on the basis of synthetic measurements of the FORUM and IASI-NG missions. In the case of perfectly matching measurements, SR and CDF results differ by less than 1 / 10 of the error due to measurement noise. In the case of a realistic mismatch, the two methods show differences in the order of their error bars.
Sophie Godin-Beekmann, Niramson Azouz, Viktoria F. Sofieva, Daan Hubert, Irina Petropavlovskikh, Peter Effertz, Gérard Ancellet, Doug A. Degenstein, Daniel Zawada, Lucien Froidevaux, Stacey Frith, Jeannette Wild, Sean Davis, Wolfgang Steinbrecht, Thierry Leblanc, Richard Querel, Kleareti Tourpali, Robert Damadeo, Eliane Maillard Barras, René Stübi, Corinne Vigouroux, Carlo Arosio, Gerald Nedoluha, Ian Boyd, Roeland Van Malderen, Emmanuel Mahieu, Dan Smale, and Ralf Sussmann
Atmos. Chem. Phys., 22, 11657–11673, https://doi.org/10.5194/acp-22-11657-2022, https://doi.org/10.5194/acp-22-11657-2022, 2022
Short summary
Short summary
An updated evaluation up to 2020 of stratospheric ozone profile long-term trends at extrapolar latitudes based on satellite and ground-based records is presented. Ozone increase in the upper stratosphere is confirmed, with significant trends at most latitudes. In this altitude region, a very good agreement is found with trends derived from chemistry–climate model simulations. Observed and modelled trends diverge in the lower stratosphere, but the differences are non-significant.
Clare E. Singer, Benjamin W. Clouser, Sergey M. Khaykin, Martina Krämer, Francesco Cairo, Thomas Peter, Alexey Lykov, Christian Rolf, Nicole Spelten, Armin Afchine, Simone Brunamonti, and Elisabeth J. Moyer
Atmos. Meas. Tech., 15, 4767–4783, https://doi.org/10.5194/amt-15-4767-2022, https://doi.org/10.5194/amt-15-4767-2022, 2022
Short summary
Short summary
In situ measurements of water vapor in the upper troposphere are necessary to study cloud formation and hydration of the stratosphere but challenging due to cold–dry conditions. We compare measurements from three water vapor instruments from the StratoClim campaign in 2017. In clear sky (clouds), point-by-point differences were <1.5±8 % (<1±8 %). This excellent agreement allows detection of fine-scale structures required to understand the impact of convection on stratospheric water vapor.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Oliver Schneising, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Robert J. Parker, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Markus Rettinger, Coleen Roehl, Constantina Rousogenous, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, and Thorsten Warneke
Atmos. Meas. Tech., 15, 3401–3437, https://doi.org/10.5194/amt-15-3401-2022, https://doi.org/10.5194/amt-15-3401-2022, 2022
Short summary
Short summary
We present a new version (v3) of the GOSAT and GOSAT-2 FOCAL products.
In addition to an increased number of XCO2 data, v3 also includes products for XCH4 (full-physics and proxy), XH2O and the relative ratio of HDO to H2O (δD). For GOSAT-2, we also present first XCO and XN2O results. All FOCAL data products show reasonable spatial distribution and temporal variations and agree well with TCCON. Global XN2O maps show a gradient from the tropics to higher latitudes on the order of 15 ppb.
Andreas Wieser, Andreas Güntner, Peter Dietrich, Jan Handwerker, Dina Khordakova, Uta Ködel, Martin Kohler, Hannes Mollenhauer, Bernhard Mühr, Erik Nixdorf, Marvin Reich, Christian Rolf, Martin Schrön, Claudia Schütze, and Ute Weber
Hydrol. Earth Syst. Sci. Discuss., https://doi.org/10.5194/hess-2022-131, https://doi.org/10.5194/hess-2022-131, 2022
Preprint withdrawn
Short summary
Short summary
We present an event-triggered observation concept which covers the entire process chain from heavy precipitation to flooding at the catchment scale. It combines flexible and mobile observing systems out of the fields of meteorology, hydrology and geophysics with stationary networks to capture atmospheric transport processes, heterogeneous precipitation patterns, land surface and subsurface storage processes, and runoff dynamics.
Piera Raspollini, Enrico Arnone, Flavio Barbara, Massimo Bianchini, Bruno Carli, Simone Ceccherini, Martyn P. Chipperfield, Angelika Dehn, Stefano Della Fera, Bianca Maria Dinelli, Anu Dudhia, Jean-Marie Flaud, Marco Gai, Michael Kiefer, Manuel López-Puertas, David P. Moore, Alessandro Piro, John J. Remedios, Marco Ridolfi, Harjinder Sembhi, Luca Sgheri, and Nicola Zoppetti
Atmos. Meas. Tech., 15, 1871–1901, https://doi.org/10.5194/amt-15-1871-2022, https://doi.org/10.5194/amt-15-1871-2022, 2022
Short summary
Short summary
The MIPAS instrument onboard the ENVISAT satellite provided 10 years of measurements of the atmospheric emission al limb that allow for the retrieval of latitude- and altitude-resolved atmospheric composition. We describe the improvements implemented in the retrieval algorithm used for the full mission reanalysis, which allows for the generation of the global distributions of 21 atmospheric constituents plus temperature with increased accuracy with respect to previously generated data.
Helmut Ziereis, Peter Hoor, Jens-Uwe Grooß, Andreas Zahn, Greta Stratmann, Paul Stock, Michael Lichtenstern, Jens Krause, Vera Bense, Armin Afchine, Christian Rolf, Wolfgang Woiwode, Marleen Braun, Jörn Ungermann, Andreas Marsing, Christiane Voigt, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Chem. Phys., 22, 3631–3654, https://doi.org/10.5194/acp-22-3631-2022, https://doi.org/10.5194/acp-22-3631-2022, 2022
Short summary
Short summary
Airborne observations were conducted in the lowermost Arctic stratosphere during the winter of 2015/2016. The observed distribution of reactive nitrogen shows clear indications of nitrification in mid-winter and denitrification in late winter. This was caused by the formation of polar stratospheric cloud particles, which were observed during several flights. The sedimentation and evaporation of these particles and the descent of air masses cause a redistribution of reactive nitrogen.
Sergey M. Khaykin, Elizabeth Moyer, Martina Krämer, Benjamin Clouser, Silvia Bucci, Bernard Legras, Alexey Lykov, Armin Afchine, Francesco Cairo, Ivan Formanyuk, Valentin Mitev, Renaud Matthey, Christian Rolf, Clare E. Singer, Nicole Spelten, Vasiliy Volkov, Vladimir Yushkov, and Fred Stroh
Atmos. Chem. Phys., 22, 3169–3189, https://doi.org/10.5194/acp-22-3169-2022, https://doi.org/10.5194/acp-22-3169-2022, 2022
Short summary
Short summary
The Asian monsoon anticyclone is the key contributor to the global annual maximum in lower stratospheric water vapour. We investigate the impact of deep convection on the lower stratospheric water using a unique set of observations aboard the high-altitude M55-Geophysica aircraft deployed in Nepal in summer 2017 within the EU StratoClim project. We find that convective plumes of wet air can persist within the Asian anticyclone for weeks, thereby enhancing the occurrence of high-level clouds.
Luca Sgheri, Claudio Belotti, Maya Ben-Yami, Giovanni Bianchini, Bernardo Carnicero Dominguez, Ugo Cortesi, William Cossich, Samuele Del Bianco, Gianluca Di Natale, Tomás Guardabrazo, Dulce Lajas, Tiziano Maestri, Davide Magurno, Hilke Oetjen, Piera Raspollini, and Cristina Sgattoni
Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, https://doi.org/10.5194/amt-15-573-2022, 2022
Short summary
Short summary
The FORUM instrument will look at the Earth's atmosphere from a satellite, covering a spectral range responsible for about 95 % of the radiation lost by our planet. FORUM helps to measure the imbalance between incoming and outgoing radiation that is responsible for the increasing average temperatures on Earth. The end-to-end simulator is a chain of codes that simulates the FORUM measurement process. The goal of the project is to study how the instrument reacts to different retrieval conditions.
Thomas E. Taylor, Christopher W. O'Dell, David Crisp, Akhiko Kuze, Hannakaisa Lindqvist, Paul O. Wennberg, Abhishek Chatterjee, Michael Gunson, Annmarie Eldering, Brendan Fisher, Matthäus Kiel, Robert R. Nelson, Aronne Merrelli, Greg Osterman, Frédéric Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Cheng Liu, Martine De Mazière, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Matthias Schneider, Coleen M. Roehl, Mahesh Kumar Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Mihalis Vrekoussis, Thorsten Warneke, and Debra Wunch
Earth Syst. Sci. Data, 14, 325–360, https://doi.org/10.5194/essd-14-325-2022, https://doi.org/10.5194/essd-14-325-2022, 2022
Short summary
Short summary
We provide an analysis of an 11-year record of atmospheric carbon dioxide (CO2) concentrations derived using an optimal estimation retrieval algorithm on measurements made by the GOSAT satellite. The new product (version 9) shows improvement over the previous version (v7.3) as evaluated against independent estimates of CO2 from ground-based sensors and atmospheric inversion systems. We also compare the new GOSAT CO2 values to collocated estimates from NASA's Orbiting Carbon Observatory-2.
Dina Khordakova, Christian Rolf, Jens-Uwe Grooß, Rolf Müller, Paul Konopka, Andreas Wieser, Martina Krämer, and Martin Riese
Atmos. Chem. Phys., 22, 1059–1079, https://doi.org/10.5194/acp-22-1059-2022, https://doi.org/10.5194/acp-22-1059-2022, 2022
Short summary
Short summary
Extreme storms transport humidity from the troposphere to the stratosphere. Here it has a strong impact on the climate. With ongoing global warming, we expect more storms and, hence, an enhancement of this effect. A case study was performed in order to measure the impact of the direct injection of water vapor into the lower stratosphere. The measurements displayed a significant transport of water vapor into the lower stratosphere, and this was supported by satellite and reanalysis data.
Manuel Baumgartner, Christian Rolf, Jens-Uwe Grooß, Julia Schneider, Tobias Schorr, Ottmar Möhler, Peter Spichtinger, and Martina Krämer
Atmos. Chem. Phys., 22, 65–91, https://doi.org/10.5194/acp-22-65-2022, https://doi.org/10.5194/acp-22-65-2022, 2022
Short summary
Short summary
An important mechanism for the appearance of ice particles in the upper troposphere at low temperatures is homogeneous nucleation. This process is commonly described by the
Koop line, predicting the humidity at freezing. However, laboratory measurements suggest that the freezing humidities are above the Koop line, motivating the present study to investigate the influence of different physical parameterizations on the homogeneous freezing with the help of a detailed numerical model.
Bianca Maria Dinelli, Piera Raspollini, Marco Gai, Luca Sgheri, Marco Ridolfi, Simone Ceccherini, Flavio Barbara, Nicola Zoppetti, Elisa Castelli, Enzo Papandrea, Paolo Pettinari, Angelika Dehn, Anu Dudhia, Michael Kiefer, Alessandro Piro, Jean-Marie Flaud, Manuel López-Puertas, David Moore, John Remedios, and Massimo Bianchini
Atmos. Meas. Tech., 14, 7975–7998, https://doi.org/10.5194/amt-14-7975-2021, https://doi.org/10.5194/amt-14-7975-2021, 2021
Short summary
Short summary
The level-2 v8 database from the measurements of the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS), aboard the European Space Agency Envisat satellite, containing atmospheric fields of pressure, temperature, and volume mixing ratio of 21 trace gases, is described in this paper. The database covers all the measurements acquired by MIPAS (from July 2002 to April 2012). The number of species included makes it of particular importance for the studies of stratospheric chemistry.
Paolo Pettinari, Flavio Barbara, Simone Ceccherini, Bianca Maria Dinelli, Marco Gai, Piera Raspollini, Luca Sgheri, Massimo Valeri, Gerald Wetzel, Nicola Zoppetti, and Marco Ridolfi
Atmos. Meas. Tech., 14, 7959–7974, https://doi.org/10.5194/amt-14-7959-2021, https://doi.org/10.5194/amt-14-7959-2021, 2021
Short summary
Short summary
Phosgene (COCl2) is a toxic gas whose presence is a consequence of human activity. Besides its direct injection in the troposphere, stratospheric COCl2 is produced from the decomposition of CCl4, an anthropogenic gas regulated by the Montreal Protocol. As a consequence, COCl2 negative trends characterize the lower and part of the middle stratosphere. However, we find positive trends in the upper troposphere, demonstrating the non-negligible role of other Cl-containing species not yet regulated.
Gianluca Di Natale, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Francesco D'Amato, Samuele Del Bianco, Marco Gai, Alessio Montori, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Luca Palchetti
Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, https://doi.org/10.5194/amt-14-6749-2021, 2021
Short summary
Short summary
The importance of cirrus and mixed-phase clouds in the Earth radiation budget has been proven by many studies. In this paper the properties that characterize these clouds are retrieved from lidar and far-infrared spectral measurements performed in winter 2018/19 on the Zugspitze (Germany). The synergy of lidar and spectrometer measurements allowed us to assess the exponent k of the power-law relationship between the backscattering and the extinction coefficients.
Christoph Mahnke, Ralf Weigel, Francesco Cairo, Jean-Paul Vernier, Armin Afchine, Martina Krämer, Valentin Mitev, Renaud Matthey, Silvia Viciani, Francesco D'Amato, Felix Ploeger, Terry Deshler, and Stephan Borrmann
Atmos. Chem. Phys., 21, 15259–15282, https://doi.org/10.5194/acp-21-15259-2021, https://doi.org/10.5194/acp-21-15259-2021, 2021
Short summary
Short summary
In 2017, in situ aerosol measurements were conducted aboard the M55 Geophysica in the Asian monsoon region. The vertical particle mixing ratio profiles show a distinct layer (15–18.5 km), the Asian tropopause aerosol layer (ATAL). The backscatter ratio (BR) was calculated based on the aerosol size distributions and compared with the BRs detected by a backscatter probe and a lidar aboard M55, and by the CALIOP lidar. All four methods show enhanced BRs in the ATAL altitude range (max. at 17.5 km).
Mahesh Kumar Sha, Bavo Langerock, Jean-François L. Blavier, Thomas Blumenstock, Tobias Borsdorff, Matthias Buschmann, Angelika Dehn, Martine De Mazière, Nicholas M. Deutscher, Dietrich G. Feist, Omaira E. García, David W. T. Griffith, Michel Grutter, James W. Hannigan, Frank Hase, Pauli Heikkinen, Christian Hermans, Laura T. Iraci, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Nicolas Kumps, Jochen Landgraf, Alba Lorente, Emmanuel Mahieu, Maria V. Makarova, Johan Mellqvist, Jean-Marc Metzger, Isamu Morino, Tomoo Nagahama, Justus Notholt, Hirofumi Ohyama, Ivan Ortega, Mathias Palm, Christof Petri, David F. Pollard, Markus Rettinger, John Robinson, Sébastien Roche, Coleen M. Roehl, Amelie N. Röhling, Constantina Rousogenous, Matthias Schneider, Kei Shiomi, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, Osamu Uchino, Voltaire A. Velazco, Corinne Vigouroux, Mihalis Vrekoussis, Pucai Wang, Thorsten Warneke, Tyler Wizenberg, Debra Wunch, Shoma Yamanouchi, Yang Yang, and Minqiang Zhou
Atmos. Meas. Tech., 14, 6249–6304, https://doi.org/10.5194/amt-14-6249-2021, https://doi.org/10.5194/amt-14-6249-2021, 2021
Short summary
Short summary
This paper presents, for the first time, Sentinel-5 Precursor methane and carbon monoxide validation results covering a period from November 2017 to September 2020. For this study, we used global TCCON and NDACC-IRWG network data covering a wide range of atmospheric and surface conditions across different terrains. We also show the influence of a priori alignment, smoothing uncertainties and the sensitivity of the validation results towards the application of advanced co-location criteria.
Julia Schneider, Kristina Höhler, Robert Wagner, Harald Saathoff, Martin Schnaiter, Tobias Schorr, Isabelle Steinke, Stefan Benz, Manuel Baumgartner, Christian Rolf, Martina Krämer, Thomas Leisner, and Ottmar Möhler
Atmos. Chem. Phys., 21, 14403–14425, https://doi.org/10.5194/acp-21-14403-2021, https://doi.org/10.5194/acp-21-14403-2021, 2021
Short summary
Short summary
Homogeneous freezing is a relevant mechanism for the formation of cirrus clouds in the upper troposphere. Based on an extensive set of homogeneous freezing experiments at the AIDA chamber with aqueous sulfuric acid aerosol, we provide a new fit line for homogeneous freezing onset conditions of sulfuric acid aerosol focusing on cirrus temperatures. In the atmosphere, homogeneous freezing thresholds have important implications on the cirrus cloud occurrence and related cloud radiative effects.
William Cossich, Tiziano Maestri, Davide Magurno, Michele Martinazzo, Gianluca Di Natale, Luca Palchetti, Giovanni Bianchini, and Massimo Del Guasta
Atmos. Chem. Phys., 21, 13811–13833, https://doi.org/10.5194/acp-21-13811-2021, https://doi.org/10.5194/acp-21-13811-2021, 2021
Short summary
Short summary
The presence of clouds over Concordia, in the Antarctic Plateau, is investigated. Results are obtained by applying a machine learning algorithm to measurements of the infrared radiation emitted by the atmosphere toward the surface. The clear-sky, ice cloud, and mixed-phase cloud occurrence at different timescales is studied. A comparison with satellite measurements highlights the ability of the algorithm to identify multiple cloud conditions and study their variability at different timescales.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Martina Krämer, Peter Spichtinger, Nicole Spelten, Armin Afchine, Christian Rolf, Silvia Viciani, Francesco D'Amato, Holger Tost, and Stephan Borrmann
Atmos. Chem. Phys., 21, 13455–13481, https://doi.org/10.5194/acp-21-13455-2021, https://doi.org/10.5194/acp-21-13455-2021, 2021
Short summary
Short summary
In July and August 2017, the StratoClim mission took place in Nepal with eight flights of the M-55 Geophysica at up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) next to cloud ice was detected in situ by abundant nucleation-mode aerosols (> 6 nm) along with ice particles (> 3 µm). NPF was observed mainly below the tropopause, down to 15 % being non-volatile residues. Observed intra-cloud NPF indicates its importance for the composition in the tropical tropopause layer.
Luca Palchetti, Marco Barucci, Claudio Belotti, Giovanni Bianchini, Bertrand Cluzet, Francesco D'Amato, Samuele Del Bianco, Gianluca Di Natale, Marco Gai, Dina Khordakova, Alessio Montori, Hilke Oetjen, Markus Rettinger, Christian Rolf, Dirk Schuettemeyer, Ralf Sussmann, Silvia Viciani, Hannes Vogelmann, and Frank Gunther Wienhold
Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, https://doi.org/10.5194/essd-13-4303-2021, 2021
Short summary
Short summary
The FIRMOS far-infrared (IR) prototype, developed for the preparation of the ESA FORUM mission, was deployed for the first time at Mt. Zugspitze at 3000 m altitude to measure the far-IR spectrum of atmospheric emissions. The measurements, including co-located radiometers, lidars, radio soundings, weather, and surface properties, provide a unique dataset to study radiative properties of water vapour, cirrus clouds, and snow emissivity over the IR emissions, including the under-explored far-IR.
Ralf Weigel, Christoph Mahnke, Manuel Baumgartner, Antonis Dragoneas, Bärbel Vogel, Felix Ploeger, Silvia Viciani, Francesco D'Amato, Silvia Bucci, Bernard Legras, Beiping Luo, and Stephan Borrmann
Atmos. Chem. Phys., 21, 11689–11722, https://doi.org/10.5194/acp-21-11689-2021, https://doi.org/10.5194/acp-21-11689-2021, 2021
Short summary
Short summary
In July and August 2017, eight StratoClim mission flights of the Geophysica reached up to 20 km in the Asian monsoon anticyclone. New particle formation (NPF) was identified in situ by abundant nucleation-mode aerosols (6–15 nm in diameter) with mixing ratios of up to 50 000 mg−1. NPF occurred most frequently at 12–16 km with fractions of non-volatile residues of down to 15 %. Abundance and productivity of observed NPF indicate its ability to promote the Asian tropopause aerosol layer.
Lukas Krasauskas, Jörn Ungermann, Peter Preusse, Felix Friedl-Vallon, Andreas Zahn, Helmut Ziereis, Christian Rolf, Felix Plöger, Paul Konopka, Bärbel Vogel, and Martin Riese
Atmos. Chem. Phys., 21, 10249–10272, https://doi.org/10.5194/acp-21-10249-2021, https://doi.org/10.5194/acp-21-10249-2021, 2021
Short summary
Short summary
A Rossby wave (RW) breaking event was observed over the North Atlantic during the WISE measurement campaign in October 2017. Infrared limb sounding measurements of trace gases in the lower stratosphere, including high-resolution 3-D tomographic reconstruction, revealed complex spatial structures in stratospheric tracers near the polar jet related to previous RW breaking events. Backward-trajectory analysis and tracer correlations were used to study mixing and stratosphere–troposphere exchange.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Martin Keller, Daven K. Henze, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Atmos. Chem. Phys., 21, 9545–9572, https://doi.org/10.5194/acp-21-9545-2021, https://doi.org/10.5194/acp-21-9545-2021, 2021
Short summary
Short summary
We explore the utility of a weak-constraint (WC) four-dimensional variational (4D-Var) data assimilation scheme for mitigating systematic errors in methane simulation in the GEOS-Chem model. We use data from the Greenhouse Gases Observing Satellite (GOSAT) and show that, compared to the traditional 4D-Var approach, the WC scheme improves the agreement between the model and independent observations. We find that the WC corrections to the model provide insight into the source of the errors.
Stefan Noël, Maximilian Reuter, Michael Buchwitz, Jakob Borchardt, Michael Hilker, Heinrich Bovensmann, John P. Burrows, Antonio Di Noia, Hiroshi Suto, Yukio Yoshida, Matthias Buschmann, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, James R. Podolske, David F. Pollard, Mahesh Kumar Sha, Kei Shiomi, Ralf Sussmann, Yao Té, Voltaire A. Velazco, and Thorsten Warneke
Atmos. Meas. Tech., 14, 3837–3869, https://doi.org/10.5194/amt-14-3837-2021, https://doi.org/10.5194/amt-14-3837-2021, 2021
Short summary
Short summary
We present the first GOSAT and GOSAT-2 XCO2 data derived with the FOCAL retrieval algorithm. Comparisons of the GOSAT-FOCAL product with other data reveal long-term agreement within about 1 ppm over 1 decade, differences in seasonal variations of about 0.5 ppm, and a mean regional bias to ground-based TCCON data of 0.56 ppm with a mean scatter of 1.89 ppm. GOSAT-2-FOCAL data are preliminary only, but first comparisons show that they compare well with the GOSAT-FOCAL results and TCCON.
Nicola Zoppetti, Simone Ceccherini, Bruno Carli, Samuele Del Bianco, Marco Gai, Cecilia Tirelli, Flavio Barbara, Rossana Dragani, Antti Arola, Jukka Kujanpää, Jacob C. A. van Peet, Ronald van der A, and Ugo Cortesi
Atmos. Meas. Tech., 14, 2041–2053, https://doi.org/10.5194/amt-14-2041-2021, https://doi.org/10.5194/amt-14-2041-2021, 2021
Short summary
Short summary
The new platforms for Earth observation from space will provide an enormous amount of data that can be hard to exploit as a whole. The Complete Data Fusion algorithm can reduce the data volume while retaining the information of the full dataset. In this work, we applied the Complete Data Fusion algorithm to simulated ozone profiles, and the results show that the fused products are characterized by higher information content compared to individual L2 products.
Thomas Blumenstock, Frank Hase, Axel Keens, Denis Czurlok, Orfeo Colebatch, Omaira Garcia, David W. T. Griffith, Michel Grutter, James W. Hannigan, Pauli Heikkinen, Pascal Jeseck, Nicholas Jones, Rigel Kivi, Erik Lutsch, Maria Makarova, Hamud K. Imhasin, Johan Mellqvist, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Uwe Raffalski, Markus Rettinger, John Robinson, Matthias Schneider, Christian Servais, Dan Smale, Wolfgang Stremme, Kimberly Strong, Ralf Sussmann, Yao Té, and Voltaire A. Velazco
Atmos. Meas. Tech., 14, 1239–1252, https://doi.org/10.5194/amt-14-1239-2021, https://doi.org/10.5194/amt-14-1239-2021, 2021
Short summary
Short summary
This study investigates the level of channeling (optical resonances) of each FTIR spectrometer within the Network for the Detection of Atmospheric Composition Change (NDACC). Since the air gap of the beam splitter is a significant source of channeling, we propose new beam splitters with an increased wedge of the air gap. This study shows the potential for reducing channeling in the FTIR spectrometers operated by the NDACC, thereby increasing the quality of recorded spectra across the network.
Lisa Klanner, Katharina Höveler, Dina Khordakova, Matthias Perfahl, Christian Rolf, Thomas Trickl, and Hannes Vogelmann
Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, https://doi.org/10.5194/amt-14-531-2021, 2021
Short summary
Short summary
The importance of water vapour as the most influential greenhouse gas and for air composition calls for detailed investigations. The details of the highly inhomogeneous distribution of water vapour can be determined with lidar, the very low concentrations at high altitudes imposing a major challenge. An existing water-vapour lidar in the Bavarian Alps was recently complemented by a powerful Raman lidar that provides water vapour up to 20 km and temperature up to 90 km within just 1 h.
Johannes Schneider, Ralf Weigel, Thomas Klimach, Antonis Dragoneas, Oliver Appel, Andreas Hünig, Sergej Molleker, Franziska Köllner, Hans-Christian Clemen, Oliver Eppers, Peter Hoppe, Peter Hoor, Christoph Mahnke, Martina Krämer, Christian Rolf, Jens-Uwe Grooß, Andreas Zahn, Florian Obersteiner, Fabrizio Ravegnani, Alexey Ulanovsky, Hans Schlager, Monika Scheibe, Glenn S. Diskin, Joshua P. DiGangi, John B. Nowak, Martin Zöger, and Stephan Borrmann
Atmos. Chem. Phys., 21, 989–1013, https://doi.org/10.5194/acp-21-989-2021, https://doi.org/10.5194/acp-21-989-2021, 2021
Short summary
Short summary
During five aircraft missions, we detected aerosol particles containing meteoric material in the lower stratosphere. The stratospheric measurements span a latitude range from 15 to 68° N, and we find that at potential temperature levels of more than 40 K above the tropopause; particles containing meteoric material occur at similar abundance fractions across latitudes and seasons. We conclude that meteoric material is efficiently distributed between high and low latitudes by isentropic mixing.
Jörn Ungermann, Irene Bartolome, Sabine Griessbach, Reinhold Spang, Christian Rolf, Martina Krämer, Michael Höpfner, and Martin Riese
Atmos. Meas. Tech., 13, 7025–7045, https://doi.org/10.5194/amt-13-7025-2020, https://doi.org/10.5194/amt-13-7025-2020, 2020
Short summary
Short summary
This study examines the potential of new IR limb imager instruments and tomographic methods for cloud detection purposes. Simple color-ratio-based methods are examined and compared against more involved nonlinear convex optimization. In a second part, 3-D measurements of the airborne limb sounder GLORIA taken during the Wave-driven ISentropic Exchange campaign are used to exemplarily derive the location and extent of small-scale cirrus clouds with high spatial accuracy.
Robert J. Parker, Alex Webb, Hartmut Boesch, Peter Somkuti, Rocio Barrio Guillo, Antonio Di Noia, Nikoleta Kalaitzi, Jasdeep S. Anand, Peter Bergamaschi, Frederic Chevallier, Paul I. Palmer, Liang Feng, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Rigel Kivi, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, Christof Petri, David F. Pollard, Coleen Roehl, Mahesh K. Sha, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Yao Té, Voltaire A. Velazco, Thorsten Warneke, Paul O. Wennberg, and Debra Wunch
Earth Syst. Sci. Data, 12, 3383–3412, https://doi.org/10.5194/essd-12-3383-2020, https://doi.org/10.5194/essd-12-3383-2020, 2020
Short summary
Short summary
This work presents the latest release of the University of Leicester GOSAT methane data and acts as the definitive description of this dataset. We detail the processing, validation and evaluation involved in producing these data and highlight its many applications. With now over a decade of global atmospheric methane observations, this dataset has helped, and will continue to help, us better understand the global methane budget and investigate how it may respond to a future changing climate.
Thomas Trickl, Helmuth Giehl, Frank Neidl, Matthias Perfahl, and Hannes Vogelmann
Atmos. Meas. Tech., 13, 6357–6390, https://doi.org/10.5194/amt-13-6357-2020, https://doi.org/10.5194/amt-13-6357-2020, 2020
Short summary
Short summary
Lidar sounding of ozone and other atmospheric constituents has proved to be an invaluable tool for atmospheric studies. The ozone lidar systems developed at Garmisch-Partenkirchen have reached an accuracy level almost matching that of in situ sensors. Since the late 1990s numerous important scientific discoveries have been made, such as the first observation of intercontinental transport of ozone and the very high occurrence of intrusions of stratospheric air into the troposphere.
Erik Lutsch, Kimberly Strong, Dylan B. A. Jones, Thomas Blumenstock, Stephanie Conway, Jenny A. Fisher, James W. Hannigan, Frank Hase, Yasuko Kasai, Emmanuel Mahieu, Maria Makarova, Isamu Morino, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Anatoly V. Poberovskii, Ralf Sussmann, and Thorsten Warneke
Atmos. Chem. Phys., 20, 12813–12851, https://doi.org/10.5194/acp-20-12813-2020, https://doi.org/10.5194/acp-20-12813-2020, 2020
Short summary
Short summary
This paper describes the use of a network of 10 Arctic and midlatitude ground-based FTIR measurement sites to detect enhancements of the wildfire tracers carbon monoxide, hydrogen cyanide, and ethane from 2003 to 2018. A tagged CO GEOS-Chem simulation is used for source attribution and to evaluate the relative contribution of CO sources to the FTIR measurements. The use of FTIR measurements allowed for the emission ratios of hydrogen cyanide and ethane to be quantified.
Martina Krämer, Christian Rolf, Nicole Spelten, Armin Afchine, David Fahey, Eric Jensen, Sergey Khaykin, Thomas Kuhn, Paul Lawson, Alexey Lykov, Laura L. Pan, Martin Riese, Andrew Rollins, Fred Stroh, Troy Thornberry, Veronika Wolf, Sarah Woods, Peter Spichtinger, Johannes Quaas, and Odran Sourdeval
Atmos. Chem. Phys., 20, 12569–12608, https://doi.org/10.5194/acp-20-12569-2020, https://doi.org/10.5194/acp-20-12569-2020, 2020
Short summary
Short summary
To improve the representations of cirrus clouds in climate predictions, extended knowledge of their properties and geographical distribution is required. This study presents extensive airborne in situ and satellite remote sensing climatologies of cirrus and humidity, which serve as a guide to cirrus clouds. Further, exemplary radiative characteristics of cirrus types and also in situ observations of tropical tropopause layer cirrus and humidity in the Asian monsoon anticyclone are shown.
Silvia Bucci, Bernard Legras, Pasquale Sellitto, Francesco D'Amato, Silvia Viciani, Alessio Montori, Antonio Chiarugi, Fabrizio Ravegnani, Alexey Ulanovsky, Francesco Cairo, and Fred Stroh
Atmos. Chem. Phys., 20, 12193–12210, https://doi.org/10.5194/acp-20-12193-2020, https://doi.org/10.5194/acp-20-12193-2020, 2020
Short summary
Short summary
The paper presents and evaluates a transport analysis method to study the convective injection of air in the upper troposphere–lower stratosphere of the Asian monsoon anticyclone region. The approach is thereby used to analyse the trace gas data collected during the StratoClim aircraft campaign. The results showed that fresh convective air can be injected fast at a high level of the atmosphere (above 17 km), with potential impacts on the stratospheric chemistry of the Northern Hemisphere.
Ilya Stanevich, Dylan B. A. Jones, Kimberly Strong, Robert J. Parker, Hartmut Boesch, Debra Wunch, Justus Notholt, Christof Petri, Thorsten Warneke, Ralf Sussmann, Matthias Schneider, Frank Hase, Rigel Kivi, Nicholas M. Deutscher, Voltaire A. Velazco, Kaley A. Walker, and Feng Deng
Geosci. Model Dev., 13, 3839–3862, https://doi.org/10.5194/gmd-13-3839-2020, https://doi.org/10.5194/gmd-13-3839-2020, 2020
Short summary
Short summary
Systematic errors in atmospheric models pose a challenge for inverse modeling studies of methane (CH4) emissions. We evaluated the CH4 simulation in the GEOS-Chem model at the horizontal resolutions of 4° × 5° and 2° × 2.5°. Our analysis identified resolution-dependent biases in the model, which we attributed to discrepancies between the two model resolutions in vertical transport in the troposphere and in stratosphere–troposphere exchange.
Corinne Vigouroux, Bavo Langerock, Carlos Augusto Bauer Aquino, Thomas Blumenstock, Zhibin Cheng, Martine De Mazière, Isabelle De Smedt, Michel Grutter, James W. Hannigan, Nicholas Jones, Rigel Kivi, Diego Loyola, Erik Lutsch, Emmanuel Mahieu, Maria Makarova, Jean-Marc Metzger, Isamu Morino, Isao Murata, Tomoo Nagahama, Justus Notholt, Ivan Ortega, Mathias Palm, Gaia Pinardi, Amelie Röhling, Dan Smale, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, Michel van Roozendael, Pucai Wang, and Holger Winkler
Atmos. Meas. Tech., 13, 3751–3767, https://doi.org/10.5194/amt-13-3751-2020, https://doi.org/10.5194/amt-13-3751-2020, 2020
Short summary
Short summary
We validate the TROPOMI HCHO product with ground-based FTIR (Fourier-transform infrared) measurements from 25 stations. We find that TROPOMI overestimates HCHO under clean conditions, while it underestimates it at high HCHO levels. Both TROPOMI precision and accuracy reach the pre-launch requirements, and its precision can even be 2 times better. The observed TROPOMI seasonal variability is in agreement with the FTIR data. The TROPOMI random uncertainty and data filtering should be refined.
Mattia Righi, Johannes Hendricks, Ulrike Lohmann, Christof Gerhard Beer, Valerian Hahn, Bernd Heinold, Romy Heller, Martina Krämer, Michael Ponater, Christian Rolf, Ina Tegen, and Christiane Voigt
Geosci. Model Dev., 13, 1635–1661, https://doi.org/10.5194/gmd-13-1635-2020, https://doi.org/10.5194/gmd-13-1635-2020, 2020
Short summary
Short summary
A new cloud microphysical scheme is implemented in the global EMAC-MADE3 aerosol model and evaluated. The new scheme features a detailed parameterization for aerosol-driven ice formation in cirrus clouds, accounting for the competition between homogeneous and heterogeneous ice formation processes. The comparison against satellite data and in situ measurements shows that the model performance is in line with similar global coupled models featuring ice cloud parameterizations.
Sabine Griessbach, Lars Hoffmann, Reinhold Spang, Peggy Achtert, Marc von Hobe, Nina Mateshvili, Rolf Müller, Martin Riese, Christian Rolf, Patric Seifert, and Jean-Paul Vernier
Atmos. Meas. Tech., 13, 1243–1271, https://doi.org/10.5194/amt-13-1243-2020, https://doi.org/10.5194/amt-13-1243-2020, 2020
Short summary
Short summary
In this paper we study the cloud top height derived from MIPAS measurements. Previous studies showed contradictory results with respect to MIPAS, both underestimating and overestimating cloud top height. We used simulations and found that overestimation and/or underestimation depend on cloud extinction. To support our findings we compared MIPAS cloud top heights of volcanic sulfate aerosol with measurements from CALIOP, ground-based lidar, and ground-based twilight measurements.
Maximilian Reuter, Michael Buchwitz, Oliver Schneising, Stefan Noël, Heinrich Bovensmann, John P. Burrows, Hartmut Boesch, Antonio Di Noia, Jasdeep Anand, Robert J. Parker, Peter Somkuti, Lianghai Wu, Otto P. Hasekamp, Ilse Aben, Akihiko Kuze, Hiroshi Suto, Kei Shiomi, Yukio Yoshida, Isamu Morino, David Crisp, Christopher W. O'Dell, Justus Notholt, Christof Petri, Thorsten Warneke, Voltaire A. Velazco, Nicholas M. Deutscher, David W. T. Griffith, Rigel Kivi, David F. Pollard, Frank Hase, Ralf Sussmann, Yao V. Té, Kimberly Strong, Sébastien Roche, Mahesh K. Sha, Martine De Mazière, Dietrich G. Feist, Laura T. Iraci, Coleen M. Roehl, Christian Retscher, and Dinand Schepers
Atmos. Meas. Tech., 13, 789–819, https://doi.org/10.5194/amt-13-789-2020, https://doi.org/10.5194/amt-13-789-2020, 2020
Short summary
Short summary
We present new satellite-derived data sets of atmospheric carbon dioxide (CO2) and methane (CH4). The data products are column-averaged dry-air mole fractions of CO2 and CH4, denoted XCO2 and XCH4. The products cover the years 2003–2018 and are merged Level 2 (satellite footprints) and merged Level 3 (gridded at monthly time and 5° x 5° spatial resolution) products obtained from combining several individual sensor products. We present the merging algorithms and product validation results.
Jonas Simon Wilzewski, Anke Roiger, Johan Strandgren, Jochen Landgraf, Dietrich G. Feist, Voltaire A. Velazco, Nicholas M. Deutscher, Isamu Morino, Hirofumi Ohyama, Yao Té, Rigel Kivi, Thorsten Warneke, Justus Notholt, Manvendra Dubey, Ralf Sussmann, Markus Rettinger, Frank Hase, Kei Shiomi, and André Butz
Atmos. Meas. Tech., 13, 731–745, https://doi.org/10.5194/amt-13-731-2020, https://doi.org/10.5194/amt-13-731-2020, 2020
Short summary
Short summary
Through spectral degradation of GOSAT measurements in the 1.6 and 2.0 μm spectral bands, we mimic a single-band, passive satellite sensor for monitoring of CO2 emissions at fine spatial scales. We compare retrievals of XCO2 from these bands to TCCON and native GOSAT retrievals. At spectral resolutions near 1.3 nm, XCO2 retrievals from both bands show promising performance, but the 2.0 μm band is favorable due to better noise performance and the potential to retrieve some aerosol information.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, and Michael Sprenger
Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, https://doi.org/10.5194/acp-20-243-2020, 2020
Short summary
Short summary
Ozone transfer from the stratosphere to the troposphere seems to to have grown over the past decade, parallel to global warming. Lidar measurements, carried out in Garmisch-Partenkirchen, Germany, between 2007 and 2016 show a considerable stratospheric influence in the free troposphere over these sites, with observations of stratospheric layers in the troposphere on 84 % of the measurement days. This high fraction is almost reached also in North America, but frequently not throughout the year.
Oliver Schneising, Michael Buchwitz, Maximilian Reuter, Heinrich Bovensmann, John P. Burrows, Tobias Borsdorff, Nicholas M. Deutscher, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Christian Hermans, Laura T. Iraci, Rigel Kivi, Jochen Landgraf, Isamu Morino, Justus Notholt, Christof Petri, David F. Pollard, Sébastien Roche, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Voltaire A. Velazco, Thorsten Warneke, and Debra Wunch
Atmos. Meas. Tech., 12, 6771–6802, https://doi.org/10.5194/amt-12-6771-2019, https://doi.org/10.5194/amt-12-6771-2019, 2019
Short summary
Short summary
We introduce an algorithm that is used to simultaneously derive the abundances of the important atmospheric constituents carbon monoxide and methane from the TROPOMI instrument onboard the Sentinel-5 Precursor satellite, which enables the determination of both gases with an unprecedented level of detail on a global scale. The quality of the resulting data sets is assessed and the first results are presented.
Holger Baars, Albert Ansmann, Kevin Ohneiser, Moritz Haarig, Ronny Engelmann, Dietrich Althausen, Ingrid Hanssen, Michael Gausa, Aleksander Pietruczuk, Artur Szkop, Iwona S. Stachlewska, Dongxiang Wang, Jens Reichardt, Annett Skupin, Ina Mattis, Thomas Trickl, Hannes Vogelmann, Francisco Navas-Guzmán, Alexander Haefele, Karen Acheson, Albert A. Ruth, Boyan Tatarov, Detlef Müller, Qiaoyun Hu, Thierry Podvin, Philippe Goloub, Igor Veselovskii, Christophe Pietras, Martial Haeffelin, Patrick Fréville, Michaël Sicard, Adolfo Comerón, Alfonso Javier Fernández García, Francisco Molero Menéndez, Carmen Córdoba-Jabonero, Juan Luis Guerrero-Rascado, Lucas Alados-Arboledas, Daniele Bortoli, Maria João Costa, Davide Dionisi, Gian Luigi Liberti, Xuan Wang, Alessia Sannino, Nikolaos Papagiannopoulos, Antonella Boselli, Lucia Mona, Giuseppe D'Amico, Salvatore Romano, Maria Rita Perrone, Livio Belegante, Doina Nicolae, Ivan Grigorov, Anna Gialitaki, Vassilis Amiridis, Ourania Soupiona, Alexandros Papayannis, Rodanthi-Elisaveth Mamouri, Argyro Nisantzi, Birgit Heese, Julian Hofer, Yoav Y. Schechner, Ulla Wandinger, and Gelsomina Pappalardo
Atmos. Chem. Phys., 19, 15183–15198, https://doi.org/10.5194/acp-19-15183-2019, https://doi.org/10.5194/acp-19-15183-2019, 2019
Susan S. Kulawik, Sean Crowell, David Baker, Junjie Liu, Kathryn McKain, Colm Sweeney, Sebastien C. Biraud, Steve Wofsy, Christopher W. O'Dell, Paul O. Wennberg, Debra Wunch, Coleen M. Roehl, Nicholas M. Deutscher, Matthäus Kiel, David W. T. Griffith, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Mazière, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, Dave F. Pollard, Isamu Morino, Osamu Uchino, Frank Hase, Dietrich G. Feist, Sébastien Roche, Kimberly Strong, Rigel Kivi, Laura Iraci, Kei Shiomi, Manvendra K. Dubey, Eliezer Sepulveda, Omaira Elena Garcia Rodriguez, Yao Té, Pascal Jeseck, Pauli Heikkinen, Edward J. Dlugokencky, Michael R. Gunson, Annmarie Eldering, David Crisp, Brendan Fisher, and Gregory B. Osterman
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2019-257, https://doi.org/10.5194/amt-2019-257, 2019
Publication in AMT not foreseen
Short summary
Short summary
This paper provides a benchmark of OCO-2 v8 and ACOS-GOSAT v7.3 XCO2 and lowermost tropospheric (LMT) errors. The paper focuses on the systematic errors and subtracts out validation, co-location, and random errors, looks at the correlation scale-length (spatially and temporally) of systematic errors, finding that the scale lengths are similar to bias correction scale-lengths. The assimilates of the bias correction term is used to place an error on fluxes estimates.
Jacob K. Hedelius, Tai-Long He, Dylan B. A. Jones, Bianca C. Baier, Rebecca R. Buchholz, Martine De Mazière, Nicholas M. Deutscher, Manvendra K. Dubey, Dietrich G. Feist, David W. T. Griffith, Frank Hase, Laura T. Iraci, Pascal Jeseck, Matthäus Kiel, Rigel Kivi, Cheng Liu, Isamu Morino, Justus Notholt, Young-Suk Oh, Hirofumi Ohyama, David F. Pollard, Markus Rettinger, Sébastien Roche, Coleen M. Roehl, Matthias Schneider, Kei Shiomi, Kimberly Strong, Ralf Sussmann, Colm Sweeney, Yao Té, Osamu Uchino, Voltaire A. Velazco, Wei Wang, Thorsten Warneke, Paul O. Wennberg, Helen M. Worden, and Debra Wunch
Atmos. Meas. Tech., 12, 5547–5572, https://doi.org/10.5194/amt-12-5547-2019, https://doi.org/10.5194/amt-12-5547-2019, 2019
Short summary
Short summary
We seek ways to improve the accuracy of column measurements of carbon monoxide (CO) – an important tracer of pollution – made from the MOPITT satellite instrument. We devise a filtering scheme which reduces the scatter and also eliminates bias among the MOPITT detectors. Compared to ground-based observations, MOPITT measurements are about 6 %–8 % higher. When MOPITT data are implemented in a global assimilation model, they tend to reduce the model mismatch with aircraft measurements.
Tobias Borsdorff, Joost aan de Brugh, Andreas Schneider, Alba Lorente, Manfred Birk, Georg Wagner, Rigel Kivi, Frank Hase, Dietrich G. Feist, Ralf Sussmann, Markus Rettinger, Debra Wunch, Thorsten Warneke, and Jochen Landgraf
Atmos. Meas. Tech., 12, 5443–5455, https://doi.org/10.5194/amt-12-5443-2019, https://doi.org/10.5194/amt-12-5443-2019, 2019
Short summary
Short summary
The study presents possible improvements of the TROPOMI CO dataset, which is a primary product of ESA's Sentinel-5P mission. We discuss the use of different molecular spectroscopic databases in the CO retrieval, the induced biases between TROPOMI CO and TCCON validation measurements, and the latitudinally dependent bias between TROPOMI CO and the CAMS-IFS model. Additionally, two methods for the stripe correction of single TROPOMI CO orbits are presented.
Keun-Ok Lee, Thibaut Dauhut, Jean-Pierre Chaboureau, Sergey Khaykin, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 19, 11803–11820, https://doi.org/10.5194/acp-19-11803-2019, https://doi.org/10.5194/acp-19-11803-2019, 2019
Short summary
Short summary
This study focuses on the hydration patch that was measured during the StratoClim field campaign and the corresponding convective overshoots over the Sichuan Basin. Through analysis using airborne and spaceborne measurements and the numerical simulation using a non-hydrostatic model, we show the key hydration process and pathway of the hydration patch in tropical tropopause layer.
Christophe Bellisario, Helen E. Brindley, Simon F. B. Tett, Rolando Rizzi, Gianluca Di Natale, Luca Palchetti, and Giovanni Bianchini
Atmos. Chem. Phys., 19, 7927–7937, https://doi.org/10.5194/acp-19-7927-2019, https://doi.org/10.5194/acp-19-7927-2019, 2019
Short summary
Short summary
We explore the possibility of inferring far-infrared downwelling radiances from mid-infrared observations to better constrain radiation schemes in climate models. Our results imply that while it is feasible to use this type of approach, the quality of the extension will be strongly dependent on the noise characteristics of the observations and on the accurate characterisation of the atmospheric state.
Simone Ceccherini, Nicola Zoppetti, Bruno Carli, Ugo Cortesi, Samuele Del Bianco, and Cecilia Tirelli
Atmos. Meas. Tech., 12, 2967–2977, https://doi.org/10.5194/amt-12-2967-2019, https://doi.org/10.5194/amt-12-2967-2019, 2019
Short summary
Short summary
We have analytically calculated the expected value and the variance of the cost function that is minimized in the complete data fusion and propose a procedure that uses these quantities to constrain the values of the inconsistency covariance matrices. These matrices have to be added to the error covariance matrices of the measurements in order to fuse measurements that are inconsistent because of different vertical grids, not perfect time and space coincidence and different forward model errors.
Debra Wunch, Dylan B. A. Jones, Geoffrey C. Toon, Nicholas M. Deutscher, Frank Hase, Justus Notholt, Ralf Sussmann, Thorsten Warneke, Jeroen Kuenen, Hugo Denier van der Gon, Jenny A. Fisher, and Joannes D. Maasakkers
Atmos. Chem. Phys., 19, 3963–3980, https://doi.org/10.5194/acp-19-3963-2019, https://doi.org/10.5194/acp-19-3963-2019, 2019
Short summary
Short summary
We used five atmospheric observatories in Europe measuring total column dry-air mole fractions of methane and carbon monoxide to infer methane emissions in the area between the observatories. We find that the methane emissions are overestimated by the state-of-the-art inventories, and that this is likely due, at least in part, to the inventory disaggregation. We find that there is significant uncertainty in the carbon monoxide inventories that requires further investigation.
Giovanni Bianchini, Francesco Castagnoli, Gianluca Di Natale, and Luca Palchetti
Atmos. Meas. Tech., 12, 619–635, https://doi.org/10.5194/amt-12-619-2019, https://doi.org/10.5194/amt-12-619-2019, 2019
Short summary
Short summary
The characterization of infrared radiation emitted by the atmosphere is a crucial task in the study of the Earth's climate. The Radiation Explorer in the Far Infrared (REFIR) spectroradiometer allows us to perform this task adding the capability of resolving, through spectroscopy, the atmospheric components responsible for the measured radiative effects. The analysis of the measurements also allows us to retrieve the atmospheric structure, making REFIR a complete tool for atmospheric studies.
Ye Yuan, Ludwig Ries, Hannes Petermeier, Thomas Trickl, Michael Leuchner, Cédric Couret, Ralf Sohmer, Frank Meinhardt, and Annette Menzel
Atmos. Chem. Phys., 19, 999–1012, https://doi.org/10.5194/acp-19-999-2019, https://doi.org/10.5194/acp-19-999-2019, 2019
Short summary
Short summary
In this study, we presented a time series analysis of a 36-year composite CO2 measurement record at Mount Zugspitze in Germany. Compared with other GAW observatories, Zugspitze proves to be a highly suitable site for monitoring the background levels of air components using proper data selection procedures. Detailed analyses of long-term trends and seasonality, as well as a thorough study of combined weekly periodicity and diurnal cycles, were conducted.
Christopher W. O'Dell, Annmarie Eldering, Paul O. Wennberg, David Crisp, Michael R. Gunson, Brendan Fisher, Christian Frankenberg, Matthäus Kiel, Hannakaisa Lindqvist, Lukas Mandrake, Aronne Merrelli, Vijay Natraj, Robert R. Nelson, Gregory B. Osterman, Vivienne H. Payne, Thomas E. Taylor, Debra Wunch, Brian J. Drouin, Fabiano Oyafuso, Albert Chang, James McDuffie, Michael Smyth, David F. Baker, Sourish Basu, Frédéric Chevallier, Sean M. R. Crowell, Liang Feng, Paul I. Palmer, Mavendra Dubey, Omaira E. García, David W. T. Griffith, Frank Hase, Laura T. Iraci, Rigel Kivi, Isamu Morino, Justus Notholt, Hirofumi Ohyama, Christof Petri, Coleen M. Roehl, Mahesh K. Sha, Kimberly Strong, Ralf Sussmann, Yao Te, Osamu Uchino, and Voltaire A. Velazco
Atmos. Meas. Tech., 11, 6539–6576, https://doi.org/10.5194/amt-11-6539-2018, https://doi.org/10.5194/amt-11-6539-2018, 2018
Veronika Wolf, Thomas Kuhn, Mathias Milz, Peter Voelger, Martina Krämer, and Christian Rolf
Atmos. Chem. Phys., 18, 17371–17386, https://doi.org/10.5194/acp-18-17371-2018, https://doi.org/10.5194/acp-18-17371-2018, 2018
Short summary
Short summary
Balloon-borne measurements of microphysical properties of Arctic ice clouds have been performed with an in situ particle imager and been analyzed for the first time with respect to how the ice particles have formed. Ice particle size, shape and number show large variations from cloud to cloud, which cannot be explained with local conditions only, and rather depend on conditions at cloud formation. Taking this into account when parametrizing ice cloud properties may improve retrievals and models.
Stefan Kaufmann, Christiane Voigt, Romy Heller, Tina Jurkat-Witschas, Martina Krämer, Christian Rolf, Martin Zöger, Andreas Giez, Bernhard Buchholz, Volker Ebert, Troy Thornberry, and Ulrich Schumann
Atmos. Chem. Phys., 18, 16729–16745, https://doi.org/10.5194/acp-18-16729-2018, https://doi.org/10.5194/acp-18-16729-2018, 2018
Short summary
Short summary
We present an intercomparison of the airborne water vapor measurements during the ML-CIRRUS mission. Although the agreement of the hygrometers significantly improved compared to studies from recent decades, systematic differences remain under specific meteorological conditions. We compare the measurements to model data, where we observe a model wet bias in the lower stratosphere close to the tropopause, likely caused by a blurred humidity gradient in the model tropopause.
Tobias Borsdorff, Joost aan de Brugh, Haili Hu, Otto Hasekamp, Ralf Sussmann, Markus Rettinger, Frank Hase, Jochen Gross, Matthias Schneider, Omaira Garcia, Wolfgang Stremme, Michel Grutter, Dietrich G. Feist, Sabrina G. Arnold, Martine De Mazière, Mahesh Kumar Sha, David F. Pollard, Matthäus Kiel, Coleen Roehl, Paul O. Wennberg, Geoffrey C. Toon, and Jochen Landgraf
Atmos. Meas. Tech., 11, 5507–5518, https://doi.org/10.5194/amt-11-5507-2018, https://doi.org/10.5194/amt-11-5507-2018, 2018
Short summary
Short summary
On 13 October 2017, the S5-P satellite was launched with TROPOMI as its only payload. One of the primary products is atmospheric CO observed with daily global coverage and spatial resolution of 7 × 7 km2. The new dataset allows the sensing of CO enhancements above cities and industrial areas and can track pollution transport from biomass burning regions. Through validation with ground-based TCCON measurements we show that the CO data product is already well within the mission requirement.
Annette Filges, Christoph Gerbig, Chris W. Rella, John Hoffnagle, Herman Smit, Martina Krämer, Nicole Spelten, Christian Rolf, Zoltán Bozóki, Bernhard Buchholz, and Volker Ebert
Atmos. Meas. Tech., 11, 5279–5297, https://doi.org/10.5194/amt-11-5279-2018, https://doi.org/10.5194/amt-11-5279-2018, 2018
Anne Boynard, Daniel Hurtmans, Katerina Garane, Florence Goutail, Juliette Hadji-Lazaro, Maria Elissavet Koukouli, Catherine Wespes, Corinne Vigouroux, Arno Keppens, Jean-Pierre Pommereau, Andrea Pazmino, Dimitris Balis, Diego Loyola, Pieter Valks, Ralf Sussmann, Dan Smale, Pierre-François Coheur, and Cathy Clerbaux
Atmos. Meas. Tech., 11, 5125–5152, https://doi.org/10.5194/amt-11-5125-2018, https://doi.org/10.5194/amt-11-5125-2018, 2018
Short summary
Short summary
In this paper, we perform a comprehensive validation of the IASI/Metop ozone data using independent observations (satellite, ground-based and ozonesonde). The quality of the IASI total and tropospheric ozone columns in terms of bias and long-term stability is generally good. Compared with ozonesonde data, IASI overestimates (underestimates) the ozone abundance in the stratosphere (troposphere). A negative drift in tropospheric ozone is observed, which is not well understood at this point.
Corinne Vigouroux, Carlos Augusto Bauer Aquino, Maite Bauwens, Cornelis Becker, Thomas Blumenstock, Martine De Mazière, Omaira García, Michel Grutter, César Guarin, James Hannigan, Frank Hase, Nicholas Jones, Rigel Kivi, Dmitry Koshelev, Bavo Langerock, Erik Lutsch, Maria Makarova, Jean-Marc Metzger, Jean-François Müller, Justus Notholt, Ivan Ortega, Mathias Palm, Clare Paton-Walsh, Anatoly Poberovskii, Markus Rettinger, John Robinson, Dan Smale, Trissevgeni Stavrakou, Wolfgang Stremme, Kim Strong, Ralf Sussmann, Yao Té, and Geoffrey Toon
Atmos. Meas. Tech., 11, 5049–5073, https://doi.org/10.5194/amt-11-5049-2018, https://doi.org/10.5194/amt-11-5049-2018, 2018
Short summary
Short summary
A few ground-based stations have provided time series of HCHO columns until now, which was not optimal for providing good diagnostics for satellite or model validation. In this work, HCHO time series have been determined in a harmonized way at 21 stations ensuring, in addition to a better spatial and level of abundances coverage, that internal biases within the network have been minimized. This data set shows consistent good agreement with model data and is ready for future satellite validation.
Sören Johansson, Wolfgang Woiwode, Michael Höpfner, Felix Friedl-Vallon, Anne Kleinert, Erik Kretschmer, Thomas Latzko, Johannes Orphal, Peter Preusse, Jörn Ungermann, Michelle L. Santee, Tina Jurkat-Witschas, Andreas Marsing, Christiane Voigt, Andreas Giez, Martina Krämer, Christian Rolf, Andreas Zahn, Andreas Engel, Björn-Martin Sinnhuber, and Hermann Oelhaf
Atmos. Meas. Tech., 11, 4737–4756, https://doi.org/10.5194/amt-11-4737-2018, https://doi.org/10.5194/amt-11-4737-2018, 2018
Short summary
Short summary
We present two-dimensional cross sections of temperature, HNO3, O3, ClONO2, H2O and CFC-12 from measurements of the GLORIA infrared limb imager during the POLSTRACC/GW-LCYCLE/SALSA aircraft campaigns in the Arctic winter 2015/2016. GLORIA sounded the atmosphere between 5 and 14 km with vertical resolutions of 0.4–1 km. Estimated errors are in the range of 1–2 K (temperature) and 10 %–20 % (trace gases). Comparisons to in situ instruments onboard the aircraft and to Aura/MLS are shown.
Armin Afchine, Christian Rolf, Anja Costa, Nicole Spelten, Martin Riese, Bernhard Buchholz, Volker Ebert, Romy Heller, Stefan Kaufmann, Andreas Minikin, Christiane Voigt, Martin Zöger, Jessica Smith, Paul Lawson, Alexey Lykov, Sergey Khaykin, and Martina Krämer
Atmos. Meas. Tech., 11, 4015–4031, https://doi.org/10.5194/amt-11-4015-2018, https://doi.org/10.5194/amt-11-4015-2018, 2018
Short summary
Short summary
The ice water content (IWC) of cirrus clouds is an essential parameter that determines their radiative properties and is thus important for climate simulations. Experimental investigations of IWCs measured on board research aircraft reveal that their accuracy is influenced by the sampling position. IWCs detected at the aircraft roof deviate significantly from wing, side or bottom IWCs. The reasons are deflections of the gas streamlines and ice particle trajectories behind the aircraft cockpit.
Lianghai Wu, Otto Hasekamp, Haili Hu, Jochen Landgraf, Andre Butz, Joost aan de Brugh, Ilse Aben, Dave F. Pollard, David W. T. Griffith, Dietrich G. Feist, Dmitry Koshelev, Frank Hase, Geoffrey C. Toon, Hirofumi Ohyama, Isamu Morino, Justus Notholt, Kei Shiomi, Laura Iraci, Matthias Schneider, Martine de Mazière, Ralf Sussmann, Rigel Kivi, Thorsten Warneke, Tae-Young Goo, and Yao Té
Atmos. Meas. Tech., 11, 3111–3130, https://doi.org/10.5194/amt-11-3111-2018, https://doi.org/10.5194/amt-11-3111-2018, 2018
Ye Yuan, Ludwig Ries, Hannes Petermeier, Martin Steinbacher, Angel J. Gómez-Peláez, Markus C. Leuenberger, Marcus Schumacher, Thomas Trickl, Cedric Couret, Frank Meinhardt, and Annette Menzel
Atmos. Meas. Tech., 11, 1501–1514, https://doi.org/10.5194/amt-11-1501-2018, https://doi.org/10.5194/amt-11-1501-2018, 2018
Short summary
Short summary
This paper presents a novel statistical method, ADVS, for baseline selection of representative CO2 data at elevated mountain measurement stations. It provides insights on how data processing techniques are critical for measurements and data analyses. Compared with other statistical methods, our method appears to be a good option as a generalized approach with improved comparability, which is important for research on measurement site characteristics and comparisons between stations.
Christian Rolf, Bärbel Vogel, Peter Hoor, Armin Afchine, Gebhard Günther, Martina Krämer, Rolf Müller, Stefan Müller, Nicole Spelten, and Martin Riese
Atmos. Chem. Phys., 18, 2973–2983, https://doi.org/10.5194/acp-18-2973-2018, https://doi.org/10.5194/acp-18-2973-2018, 2018
Short summary
Short summary
The Asian monsoon is a pronounced circulation system linked to rapid vertical transport of surface air from India and east Asia in the summer months. We found, based on aircraft measurements, higher concentration of water vapor in the lowermost stratosphere caused by the Asian monsoon. Enrichment of water vapor concentrations in the lowermost stratosphere impacts the radiation budget and thus climate. Understanding those variations in water vapor is important for climate projections.
Simone Ceccherini, Bruno Carli, Cecilia Tirelli, Nicola Zoppetti, Samuele Del Bianco, Ugo Cortesi, Jukka Kujanpää, and Rossana Dragani
Atmos. Meas. Tech., 11, 1009–1017, https://doi.org/10.5194/amt-11-1009-2018, https://doi.org/10.5194/amt-11-1009-2018, 2018
Short summary
Short summary
Data fusion is an important tool to reduce data volume and to improve data quality.
This paper introduces a generalization of the complete data fusion method, which takes into account interpolation and coincidence errors.
This upgraded algorithm extends the applicability of the technique to a wider range of cases. In fact, it also makes it possible to fuse vertical profiles of atmospheric parameters when they are represented on different altitude grids and refer to different true profiles.
Thomas Trickl, Hannes Vogelmann, Ludwig Ries, Hans-Eckhart Scheel, and Michael Sprenger
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2017-1192, https://doi.org/10.5194/acp-2017-1192, 2018
Revised manuscript not accepted
Antonio Chiarugi, Silvia Viciani, Francesco D'Amato, and Mike Burton
Atmos. Meas. Tech., 11, 329–339, https://doi.org/10.5194/amt-11-329-2018, https://doi.org/10.5194/amt-11-329-2018, 2018
Short summary
Short summary
Assessing emissions of volcanos has a three-fold importance: providing input for climate evolution models (CO2 is one of the major constituents of emissions), quantifying pollutant emissions (HCl, HF and SO2 are released in hundreds of tons/day) and monitoring the status of the magmatic chambers. For these purposes we realized gas analysers based on spectroscopic techniques, which must be sensitive, light and resistant to the emitted gases. This paper reports on the measurement of CO2 and HF.
Zhiting Wang, Thorsten Warneke, Nicholas M. Deutscher, Justus Notholt, Ute Karstens, Marielle Saunois, Matthias Schneider, Ralf Sussmann, Harjinder Sembhi, David W. T. Griffith, Dave F. Pollard, Rigel Kivi, Christof Petri, Voltaire A. Velazco, Michel Ramonet, and Huilin Chen
Atmos. Chem. Phys., 17, 13283–13295, https://doi.org/10.5194/acp-17-13283-2017, https://doi.org/10.5194/acp-17-13283-2017, 2017
Short summary
Short summary
In this paper we separate the biases of atmospheric methane models into stratospheric and tropospheric parts. It is observed in other studies that simulated total columns of atmospheric methane present a latitudinal bias compared to measurements. The latitudinal gradients are considered to be from the stratosphere. However, our results show that the latitudinal biases could come from the troposphere in two of three models evaluated in this study.
Kevin S. Olsen, Kimberly Strong, Kaley A. Walker, Chris D. Boone, Piera Raspollini, Johannes Plieninger, Whitney Bader, Stephanie Conway, Michel Grutter, James W. Hannigan, Frank Hase, Nicholas Jones, Martine de Mazière, Justus Notholt, Matthias Schneider, Dan Smale, Ralf Sussmann, and Naoko Saitoh
Atmos. Meas. Tech., 10, 3697–3718, https://doi.org/10.5194/amt-10-3697-2017, https://doi.org/10.5194/amt-10-3697-2017, 2017
Short summary
Short summary
The primary instrument on the Greenhouse gases Observing SATellite (GOSAT) is the Thermal And Near infrared Sensor for carbon Observations (TANSO) Fourier transform spectrometer (FTS). TANSO-FTS has a thermal infrared channel to retrieve vertical profiles of CO2 and CH4 volume mixing ratios in the troposphere. We compare the retrieved vertical profiles of CH4 from TANSO-FTS with those from two other spaceborne FTSs and with ground-based FTS observatories to assess their quality.
Massimo Valeri, Flavio Barbara, Chris Boone, Simone Ceccherini, Marco Gai, Guido Maucher, Piera Raspollini, Marco Ridolfi, Luca Sgheri, Gerald Wetzel, and Nicola Zoppetti
Atmos. Chem. Phys., 17, 10143–10162, https://doi.org/10.5194/acp-17-10143-2017, https://doi.org/10.5194/acp-17-10143-2017, 2017
Short summary
Short summary
Atmospheric emissions of CCl4 are regulated by the Montreal Protocol due to its role as a strong ozone-depleting substance. The molecule is the subject of recent increased interest as a consequence of the discrepancy between atmospheric observations and reported production and consumption. We use MIPAS/ENVISAT data (2002–2012) to estimate CCl4 trends and lifetime. At 50 hPa we find a decline of about 30–35 % per decade. In the lower stratosphere our lifetime estimate is 47 (39–61) years.
Petra Hausmann, Ralf Sussmann, Thomas Trickl, and Matthias Schneider
Atmos. Chem. Phys., 17, 7635–7651, https://doi.org/10.5194/acp-17-7635-2017, https://doi.org/10.5194/acp-17-7635-2017, 2017
Short summary
Short summary
We present FTIR soundings (2005–15) of water vapor (H2O) and its isotope ratio (δD) at Zugspitze. Significant {H2O, δD} signatures are found for intercontinental transport events and stratospheric air intrusions to central Europe using backward trajectories and validation by lidar and in situ data. Our results show that {H2O, δD} observations at Zugspitze can serve as indicators for moisture pathways and long-range-transport events, potentially impacting central European climate and air quality.
Debra Wunch, Paul O. Wennberg, Gregory Osterman, Brendan Fisher, Bret Naylor, Coleen M. Roehl, Christopher O'Dell, Lukas Mandrake, Camille Viatte, Matthäus Kiel, David W. T. Griffith, Nicholas M. Deutscher, Voltaire A. Velazco, Justus Notholt, Thorsten Warneke, Christof Petri, Martine De Maziere, Mahesh K. Sha, Ralf Sussmann, Markus Rettinger, David Pollard, John Robinson, Isamu Morino, Osamu Uchino, Frank Hase, Thomas Blumenstock, Dietrich G. Feist, Sabrina G. Arnold, Kimberly Strong, Joseph Mendonca, Rigel Kivi, Pauli Heikkinen, Laura Iraci, James Podolske, Patrick W. Hillyard, Shuji Kawakami, Manvendra K. Dubey, Harrison A. Parker, Eliezer Sepulveda, Omaira E. García, Yao Te, Pascal Jeseck, Michael R. Gunson, David Crisp, and Annmarie Eldering
Atmos. Meas. Tech., 10, 2209–2238, https://doi.org/10.5194/amt-10-2209-2017, https://doi.org/10.5194/amt-10-2209-2017, 2017
Short summary
Short summary
This paper describes the comparisons between NASA's Orbiting Carbon Observatory (OCO-2) column-averaged dry-air mole fractions of CO2 with its primary ground-based validation network, the Total Carbon Column Observing Network (TCCON). The paper shows that while the standard bias correction reduces much of the spurious variability in the satellite measurements, residual biases remain.
Rebecca R. Buchholz, Merritt N. Deeter, Helen M. Worden, John Gille, David P. Edwards, James W. Hannigan, Nicholas B. Jones, Clare Paton-Walsh, David W. T. Griffith, Dan Smale, John Robinson, Kimberly Strong, Stephanie Conway, Ralf Sussmann, Frank Hase, Thomas Blumenstock, Emmanuel Mahieu, and Bavo Langerock
Atmos. Meas. Tech., 10, 1927–1956, https://doi.org/10.5194/amt-10-1927-2017, https://doi.org/10.5194/amt-10-1927-2017, 2017
Short summary
Short summary
The study presents the first systematic use of ground-based remote-sensing data from the Network for the Detection of Atmospheric Composition Change (NDACC) to validate satellite-based Measurements of Pollution in the Troposphere (MOPITT) total column carbon monoxide (CO). MOPITT generally shows low bias with respect to the ground-based instruments. The geographic and temporal dependence of validation results are determined. Our findings inform some recommendations for using MOPITT measurements.
Liang Feng, Paul I. Palmer, Hartmut Bösch, Robert J. Parker, Alex J. Webb, Caio S. C. Correia, Nicholas M. Deutscher, Lucas G. Domingues, Dietrich G. Feist, Luciana V. Gatti, Emanuel Gloor, Frank Hase, Rigel Kivi, Yi Liu, John B. Miller, Isamu Morino, Ralf Sussmann, Kimberly Strong, Osamu Uchino, Jing Wang, and Andreas Zahn
Atmos. Chem. Phys., 17, 4781–4797, https://doi.org/10.5194/acp-17-4781-2017, https://doi.org/10.5194/acp-17-4781-2017, 2017
Short summary
Short summary
We use the GEOS-Chem global 3-D model of atmospheric chemistry and transport and an ensemble Kalman filter to simultaneously infer regional fluxes of methane (CH4) and carbon dioxide (CO2) directly from GOSAT retrievals of XCH4:XCO2, using sparse ground-based CH4 and CO2 mole fraction data to anchor the ratio. Our results show that assimilation of GOSAT data significantly reduced the posterior uncertainty and changed the a priori spatial distribution of CH4 emissions.
Gianluca Di Natale, Luca Palchetti, Giovanni Bianchini, and Massimo Del Guasta
Atmos. Meas. Tech., 10, 825–837, https://doi.org/10.5194/amt-10-825-2017, https://doi.org/10.5194/amt-10-825-2017, 2017
Short summary
Short summary
We evaluate the simultaneous remote sensing of atmospheric vertical profiles of water vapour and temperature along with some micro-physical parameters, such as ice-particle effective diameter and ice water content of cirrus clouds, using far infrared spectral measurements of the downwelling longwave radiation. The developed methodology allows to retrieve the atmospheric state with good accuracy and high repetition rate, about 12 min, opening the capability to identify fast atmospheric events.
Whitney Bader, Benoît Bovy, Stephanie Conway, Kimberly Strong, Dan Smale, Alexander J. Turner, Thomas Blumenstock, Chris Boone, Martine Collaud Coen, Ancelin Coulon, Omaira Garcia, David W. T. Griffith, Frank Hase, Petra Hausmann, Nicholas Jones, Paul Krummel, Isao Murata, Isamu Morino, Hideaki Nakajima, Simon O'Doherty, Clare Paton-Walsh, John Robinson, Rodrigue Sandrin, Matthias Schneider, Christian Servais, Ralf Sussmann, and Emmanuel Mahieu
Atmos. Chem. Phys., 17, 2255–2277, https://doi.org/10.5194/acp-17-2255-2017, https://doi.org/10.5194/acp-17-2255-2017, 2017
Short summary
Short summary
An increase of 0.31 ± 0.03 % year−1 of atmospheric methane is reported using 10 years of solar observations performed at 10 ground-based stations since 2005. These trend agree with a GEOS-Chem-tagged simulation that accounts for the contribution of each emission source and one sink in the total methane. The GEOS-Chem simulation shows that anthropogenic emissions from coal mining and gas and oil transport and exploration have played a major role in the increase methane since 2005.
Ulrich Schumann, Christoph Kiemle, Hans Schlager, Ralf Weigel, Stephan Borrmann, Francesco D'Amato, Martina Krämer, Renaud Matthey, Alain Protat, Christiane Voigt, and C. Michael Volk
Atmos. Chem. Phys., 17, 2311–2346, https://doi.org/10.5194/acp-17-2311-2017, https://doi.org/10.5194/acp-17-2311-2017, 2017
Short summary
Short summary
A long-lived (1 h) contrail and overshooting convection were observed in the tropics, near Darwin, Australia. The data are used to study the contrail life cycle at low temperatures and cirrus from deep overturning convection in the lower tropical stratosphere. Airborne in situ, lidar, profiler, radar, and satellite data, as well as a photo, are used to distinguish contrail cirrus from convective cirrus and to study the origin of the observed ice and aerosol, up to 2.3 km above the tropopause.
Dmitry A. Belikov, Shamil Maksyutov, Alexander Ganshin, Ruslan Zhuravlev, Nicholas M. Deutscher, Debra Wunch, Dietrich G. Feist, Isamu Morino, Robert J. Parker, Kimberly Strong, Yukio Yoshida, Andrey Bril, Sergey Oshchepkov, Hartmut Boesch, Manvendra K. Dubey, David Griffith, Will Hewson, Rigel Kivi, Joseph Mendonca, Justus Notholt, Matthias Schneider, Ralf Sussmann, Voltaire A. Velazco, and Shuji Aoki
Atmos. Chem. Phys., 17, 143–157, https://doi.org/10.5194/acp-17-143-2017, https://doi.org/10.5194/acp-17-143-2017, 2017
Bärbel Vogel, Gebhard Günther, Rolf Müller, Jens-Uwe Grooß, Armin Afchine, Heiko Bozem, Peter Hoor, Martina Krämer, Stefan Müller, Martin Riese, Christian Rolf, Nicole Spelten, Gabriele P. Stiller, Jörn Ungermann, and Andreas Zahn
Atmos. Chem. Phys., 16, 15301–15325, https://doi.org/10.5194/acp-16-15301-2016, https://doi.org/10.5194/acp-16-15301-2016, 2016
Short summary
Short summary
The identification of transport pathways from the Asian monsoon anticyclone into the lower stratosphere is unclear. Global simulations with the CLaMS model demonstrate that source regions in Asia and in the Pacific Ocean have a significant impact on the chemical composition of the lower stratosphere of the Northern Hemisphere by flooding the extratropical lower stratosphere with young moist air masses. Two main horizontal transport pathways from the Asian monsoon anticyclone are identified.
Massimo Carlotti, Bianca Maria Dinelli, Giada Innocenti, and Luca Palchetti
Atmos. Meas. Tech., 9, 5853–5867, https://doi.org/10.5194/amt-9-5853-2016, https://doi.org/10.5194/amt-9-5853-2016, 2016
Short summary
Short summary
We introduce a strategy for the measurement of CO2 in the stratosphere. We use an orbiting limb sounder to measure both the thermal infrared (TIR) and far-infrared (FIR) atmospheric emissions. The rotational transitions of O2 in the FIR are exploited to derive the temperature and pressure fields that are needed to retrieve the CO2 from its spectrum in the TIR. The proposed experiment can determine two-dimensional distributions of the CO2 with precision of 1 ppm at altitudes between 10 and 50 km.
Katherine M. Saad, Debra Wunch, Nicholas M. Deutscher, David W. T. Griffith, Frank Hase, Martine De Mazière, Justus Notholt, David F. Pollard, Coleen M. Roehl, Matthias Schneider, Ralf Sussmann, Thorsten Warneke, and Paul O. Wennberg
Atmos. Chem. Phys., 16, 14003–14024, https://doi.org/10.5194/acp-16-14003-2016, https://doi.org/10.5194/acp-16-14003-2016, 2016
Short summary
Short summary
Current approaches to constrain the global methane budget assimilate total column measurements into models, but model biases can impact results. We use tropospheric methane columns to evaluate model transport errors and identify a seasonal time lag in the Northern Hemisphere troposphere masked by stratospheric compensating effects. We find systematic biases in the stratosphere will alias into model-derived emissions estimates, especially those in the high Northern latitudes that vary seasonally.
Andreas Ostler, Ralf Sussmann, Prabir K. Patra, Sander Houweling, Marko De Bruine, Gabriele P. Stiller, Florian J. Haenel, Johannes Plieninger, Philippe Bousquet, Yi Yin, Marielle Saunois, Kaley A. Walker, Nicholas M. Deutscher, David W. T. Griffith, Thomas Blumenstock, Frank Hase, Thorsten Warneke, Zhiting Wang, Rigel Kivi, and John Robinson
Atmos. Meas. Tech., 9, 4843–4859, https://doi.org/10.5194/amt-9-4843-2016, https://doi.org/10.5194/amt-9-4843-2016, 2016
Short summary
Short summary
Our evaluation of column-averaged methane (XCH4) in models and TCCON reveals latitudinal biases between 0.4 % and 2.1 % originating from an inter-model spread in stratospheric CH4. Substituting model stratospheric CH4 fields by satellite data significantly reduces the large XCH4 bias observed for one model. For other models, showing only minor biases, the impact is ambiguous; i.e., the satellite uncertainty range hinders a more accurate model evaluation needed to improve inverse modeling.
Ralf Sussmann, Andreas Reichert, and Markus Rettinger
Atmos. Chem. Phys., 16, 11649–11669, https://doi.org/10.5194/acp-16-11649-2016, https://doi.org/10.5194/acp-16-11649-2016, 2016
Short summary
Short summary
Quantitative knowledge of infrared absorption by water vapor is crucial for remote sensing and climate simulations. Under cold atmospheric conditions this information can only be attained via field experiments. Therefore, we set upa radiative closure study covering 1.28–25 µm at the Zugspitze (47° N, 2964 m a.s.l.). We describe the setup and elaborate on the radiance uncertainty budget. Water vapor continuum quantification in the far infrared shows consistency with the MT_CKD continuum model.
Andreas Reichert and Ralf Sussmann
Atmos. Chem. Phys., 16, 11671–11686, https://doi.org/10.5194/acp-16-11671-2016, https://doi.org/10.5194/acp-16-11671-2016, 2016
Short summary
Short summary
Quantitative knowledge of water vapor infrared absorption is crucial for remote sensing and climate simulations. The water vapor continuum is a major contribution to atmospheric absorption in the near infrared (NIR), but recent laboratory studies show inconsistent results and cannot be transferred to atmospheric conditions. Therefore, we performed atmospheric measurements of the NIR continuum (2500–7800 cm−1) and found significant differences relative to the MT_CKD model and laboratory studies.
Andreas Reichert, Markus Rettinger, and Ralf Sussmann
Atmos. Meas. Tech., 9, 4673–4686, https://doi.org/10.5194/amt-9-4673-2016, https://doi.org/10.5194/amt-9-4673-2016, 2016
Short summary
Short summary
Quantitative knowledge of infrared absorption by water vapor is crucial for remote sensing and climate simulations. Near-infrared (NIR) continuum absorption currently still lacks quantification by atmospheric measurements but can be investigated with radiative closure experiments using radiometrically calibrated solar spectra. We demonstrate for the first time a calibration method with sufficient accuracy (1.0–1.7 %) for continuum quantification in the 2500 to 7800 cm−1spectral range.
Stefan Müller, Peter Hoor, Heiko Bozem, Ellen Gute, Bärbel Vogel, Andreas Zahn, Harald Bönisch, Timo Keber, Martina Krämer, Christian Rolf, Martin Riese, Hans Schlager, and Andreas Engel
Atmos. Chem. Phys., 16, 10573–10589, https://doi.org/10.5194/acp-16-10573-2016, https://doi.org/10.5194/acp-16-10573-2016, 2016
Short summary
Short summary
In situ airborne measurements performed during TACTS/ESMVal 2012 were analysed to investigate the chemical compostion of the upper troposphere and lower stratosphere. N2O, CO and O3 data show an increase in tropospherically affected air masses within the extratropical stratosphere from August to September 2012, which originate from the Asian monsoon region. Thus, the Asian monsoon anticyclone significantly affected the chemical composition of the extratropical stratosphere during summer 2012.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Frank Gabarrot
Atmos. Meas. Tech., 9, 4029–4049, https://doi.org/10.5194/amt-9-4029-2016, https://doi.org/10.5194/amt-9-4029-2016, 2016
Short summary
Short summary
This article prescribes two standardized formulations for the reporting of vertical resolution of lidar ozone and temperature profiles across an entire atmospheric observation network. Thanks to these standardized definitions, profiles from various instruments and techniques can be compared without ambiguity when interpreting their ability to resolve vertically fine geophysical structures.
Thierry Leblanc, Robert J. Sica, Joanna A. E. van Gijsel, Sophie Godin-Beekmann, Alexander Haefele, Thomas Trickl, Guillaume Payen, and Gianluigi Liberti
Atmos. Meas. Tech., 9, 4051–4078, https://doi.org/10.5194/amt-9-4051-2016, https://doi.org/10.5194/amt-9-4051-2016, 2016
Short summary
Short summary
This article proposes a standardized approach for the treatment of uncertainty in the ozone differential absorption lidar data processing algorithms. The recommendations are designed to be used homogeneously across large atmospheric observation networks such as NDACC, and allow a clear understanding of the uncertainty budget of multiple lidar datasets for a large spectrum of ozone-related science applications (e.g., climatology, long-term trends, air quality).
Makoto Inoue, Isamu Morino, Osamu Uchino, Takahiro Nakatsuru, Yukio Yoshida, Tatsuya Yokota, Debra Wunch, Paul O. Wennberg, Coleen M. Roehl, David W. T. Griffith, Voltaire A. Velazco, Nicholas M. Deutscher, Thorsten Warneke, Justus Notholt, John Robinson, Vanessa Sherlock, Frank Hase, Thomas Blumenstock, Markus Rettinger, Ralf Sussmann, Esko Kyrö, Rigel Kivi, Kei Shiomi, Shuji Kawakami, Martine De Mazière, Sabrina G. Arnold, Dietrich G. Feist, Erica A. Barrow, James Barney, Manvendra Dubey, Matthias Schneider, Laura T. Iraci, James R. Podolske, Patrick W. Hillyard, Toshinobu Machida, Yousuke Sawa, Kazuhiro Tsuboi, Hidekazu Matsueda, Colm Sweeney, Pieter P. Tans, Arlyn E. Andrews, Sebastien C. Biraud, Yukio Fukuyama, Jasna V. Pittman, Eric A. Kort, and Tomoaki Tanaka
Atmos. Meas. Tech., 9, 3491–3512, https://doi.org/10.5194/amt-9-3491-2016, https://doi.org/10.5194/amt-9-3491-2016, 2016
Short summary
Short summary
In this study, we correct the biases of GOSAT XCO2 and XCH4 using TCCON data. To evaluate the effectiveness of our correction method, uncorrected/corrected GOSAT data are compared to independent XCO2 and XCH4 data derived from aircraft measurements. Consequently, we suggest that this method is effective for reducing the biases of the GOSAT data. We consider that our work provides GOSAT data users with valuable information and contributes to the further development of studies on greenhouse gases.
Wolfgang Woiwode, Michael Höpfner, Lei Bi, Michael C. Pitts, Lamont R. Poole, Hermann Oelhaf, Sergej Molleker, Stephan Borrmann, Marcus Klingebiel, Gennady Belyaev, Andreas Ebersoldt, Sabine Griessbach, Jens-Uwe Grooß, Thomas Gulde, Martina Krämer, Guido Maucher, Christof Piesch, Christian Rolf, Christian Sartorius, Reinhold Spang, and Johannes Orphal
Atmos. Chem. Phys., 16, 9505–9532, https://doi.org/10.5194/acp-16-9505-2016, https://doi.org/10.5194/acp-16-9505-2016, 2016
Short summary
Short summary
The analysis of spectral signatures of a polar stratospheric cloud in airborne infrared remote sensing observations in the Arctic in combination with further collocated measurements supports the view that the observed cloud consisted of highly aspherical nitric acid trihydrate particles. A characteristic "shoulder-like" spectral signature may be exploited for identification of large, highly aspherical nitric acid trihydrate particles involved in denitrification of the polar winter stratosphere.
Thomas Trickl, Hannes Vogelmann, Andreas Fix, Andreas Schäfler, Martin Wirth, Bertrand Calpini, Gilbert Levrat, Gonzague Romanens, Arnoud Apituley, Keith M. Wilson, Robert Begbie, Jens Reichardt, Holger Vömel, and Michael Sprenger
Atmos. Chem. Phys., 16, 8791–8815, https://doi.org/10.5194/acp-16-8791-2016, https://doi.org/10.5194/acp-16-8791-2016, 2016
Short summary
Short summary
A rather homogeneous deep stratospheric intrusion event was mapped by vertical sounding over central Europe and by model calculations along the transport path. The very low minimum H2O mixing ratios demonstrate almost negligible mixing with tropospheric air during the downward transport. The vertical distributions of O3 and aerosol were transferred from the source region to Europe without major change. A rather shallow outflow from the stratosphere was found.
Erika Kienast-Sjögren, Christian Rolf, Patric Seifert, Ulrich K. Krieger, Bei P. Luo, Martina Krämer, and Thomas Peter
Atmos. Chem. Phys., 16, 7605–7621, https://doi.org/10.5194/acp-16-7605-2016, https://doi.org/10.5194/acp-16-7605-2016, 2016
Short summary
Short summary
We present a climatology of mid-latitude cirrus cloud properties based on 13 000 hours of automatically analyzed lidar measurements at three different sites. Jungfraujoch,
situated at 3580 m a.s.l., is found to be ideal to measure high and optically thin
cirrus. We use our retrieved optical properties together with a radiation model and
estimate the radiative forcing by mid-latitude cirrus.
All cirrus clouds detected here have a positive net radiative effect.
Ugo Cortesi, Samuele Del Bianco, Simone Ceccherini, Marco Gai, Bianca Maria Dinelli, Elisa Castelli, Hermann Oelhaf, Wolfgang Woiwode, Michael Höpfner, and Daniel Gerber
Atmos. Meas. Tech., 9, 2267–2289, https://doi.org/10.5194/amt-9-2267-2016, https://doi.org/10.5194/amt-9-2267-2016, 2016
Anna E. Luebke, Armin Afchine, Anja Costa, Jens-Uwe Grooß, Jessica Meyer, Christian Rolf, Nicole Spelten, Linnea M. Avallone, Darrel Baumgardner, and Martina Krämer
Atmos. Chem. Phys., 16, 5793–5809, https://doi.org/10.5194/acp-16-5793-2016, https://doi.org/10.5194/acp-16-5793-2016, 2016
Short summary
Short summary
In this study, we present observational evidence to show that two distinct types of cirrus clouds exist – in situ origin and liquid origin cirrus. These two types differ by their formation mechanism and other properties. Airborne, in-cloud measurements of cloud ice water content (IWC), ice crystal concentration (Nice), and ice crystal size from the 2014 ML-CIRRUS campaign provide cloud samples that have been divided and analyzed according to their origin type.
Martina Krämer, Christian Rolf, Anna Luebke, Armin Afchine, Nicole Spelten, Anja Costa, Jessica Meyer, Martin Zöger, Jessica Smith, Robert L. Herman, Bernhard Buchholz, Volker Ebert, Darrel Baumgardner, Stephan Borrmann, Marcus Klingebiel, and Linnea Avallone
Atmos. Chem. Phys., 16, 3463–3483, https://doi.org/10.5194/acp-16-3463-2016, https://doi.org/10.5194/acp-16-3463-2016, 2016
Short summary
Short summary
A guide to cirrus clouds is compiled from extensive model simulations and aircraft observations. Two types of cirrus are found: rather thin in situ cirrus that form directly as ice and thicker liquid origin cirrus consisting of uplifted frozen liquid drops. Over Europe, thinner in situ and liquid origin cirrus occur often together with frontal systems, while over the US and the Tropics, thick liquid origin cirrus formed in large convective systems are detected more frequently.
Petra Hausmann, Ralf Sussmann, and Dan Smale
Atmos. Chem. Phys., 16, 3227–3244, https://doi.org/10.5194/acp-16-3227-2016, https://doi.org/10.5194/acp-16-3227-2016, 2016
Short summary
Short summary
After a period of stagnation, atmospheric methane started to rise again in 2007. The main drivers are assumed to be increased wetland emissions and fossil fuel production. Here, we quantify the oil and natural gas emission contribution. Our estimate is inferred from ground-based column observations of methane and ethane. We find a significant oil-gas contribution of at least 39% (18%, 73%) in three emission scenarios, calling for emission reduction strategies in growing oil and gas industries.
Ulla Wandinger, Volker Freudenthaler, Holger Baars, Aldo Amodeo, Ronny Engelmann, Ina Mattis, Silke Groß, Gelsomina Pappalardo, Aldo Giunta, Giuseppe D'Amico, Anatoli Chaikovsky, Fiodor Osipenko, Alexander Slesar, Doina Nicolae, Livio Belegante, Camelia Talianu, Ilya Serikov, Holger Linné, Friedhelm Jansen, Arnoud Apituley, Keith M. Wilson, Martin de Graaf, Thomas Trickl, Helmut Giehl, Mariana Adam, Adolfo Comerón, Constantino Muñoz-Porcar, Francesc Rocadenbosch, Michaël Sicard, Sergio Tomás, Diego Lange, Dhiraj Kumar, Manuel Pujadas, Francisco Molero, Alfonso J. Fernández, Lucas Alados-Arboledas, Juan Antonio Bravo-Aranda, Francisco Navas-Guzmán, Juan Luis Guerrero-Rascado, María José Granados-Muñoz, Jana Preißler, Frank Wagner, Michael Gausa, Ivan Grigorov, Dimitar Stoyanov, Marco Iarlori, Vincenco Rizi, Nicola Spinelli, Antonella Boselli, Xuan Wang, Teresa Lo Feudo, Maria Rita Perrone, Ferdinando De Tomasi, and Pasquale Burlizzi
Atmos. Meas. Tech., 9, 1001–1023, https://doi.org/10.5194/amt-9-1001-2016, https://doi.org/10.5194/amt-9-1001-2016, 2016
Short summary
Short summary
We introduce the quality-assurance efforts of the European Aerosol Research Lidar Network (EARLINET) at instrument level. Within several campaigns, 21 EARLINET systems from 18 EARLINET stations were intercompared. A comprehensive strategy for campaign setup and data evaluation was established. The intercomparisons have reinforced our confidence in the EARLINET data quality and allowed us to draw conclusions on necessary system improvements and to identify major challenges for our future work.
Susan Kulawik, Debra Wunch, Christopher O'Dell, Christian Frankenberg, Maximilian Reuter, Tomohiro Oda, Frederic Chevallier, Vanessa Sherlock, Michael Buchwitz, Greg Osterman, Charles E. Miller, Paul O. Wennberg, David Griffith, Isamu Morino, Manvendra K. Dubey, Nicholas M. Deutscher, Justus Notholt, Frank Hase, Thorsten Warneke, Ralf Sussmann, John Robinson, Kimberly Strong, Matthias Schneider, Martine De Mazière, Kei Shiomi, Dietrich G. Feist, Laura T. Iraci, and Joyce Wolf
Atmos. Meas. Tech., 9, 683–709, https://doi.org/10.5194/amt-9-683-2016, https://doi.org/10.5194/amt-9-683-2016, 2016
Short summary
Short summary
To accurately estimate source and sink locations of carbon dioxide, systematic errors in satellite measurements and models must be characterized. This paper examines two satellite data sets (GOSAT, launched 2009, and SCIAMACHY, launched 2002), and two models (CarbonTracker and MACC) vs. the TCCON CO2 validation data set. We assess biases and errors by season and latitude, satellite performance under averaging, and diurnal variability. Our findings are useful for assimilation of satellite data.
Sébastien Massart, Anna Agustí-Panareda, Jens Heymann, Michael Buchwitz, Frédéric Chevallier, Maximilian Reuter, Michael Hilker, John P. Burrows, Nicholas M. Deutscher, Dietrich G. Feist, Frank Hase, Ralf Sussmann, Filip Desmet, Manvendra K. Dubey, David W. T. Griffith, Rigel Kivi, Christof Petri, Matthias Schneider, and Voltaire A. Velazco
Atmos. Chem. Phys., 16, 1653–1671, https://doi.org/10.5194/acp-16-1653-2016, https://doi.org/10.5194/acp-16-1653-2016, 2016
Short summary
Short summary
This study presents the European Centre for Medium-Range Weather Forecasts (ECMWF) monitoring of atmospheric CO2 using measurements from the Greenhouse gases Observing Satellite (GOSAT). We show that the modelled CO2 has a better precision than standard CO2 satellite products compared to ground-based measurements. We also present the CO2 forecast based on our best knowledge of the atmospheric CO2 distribution. We show that it has skill to forecast the largest scale CO2 patterns up to day 5.
L. Feng, P. I. Palmer, R. J. Parker, N. M. Deutscher, D. G. Feist, R. Kivi, I. Morino, and R. Sussmann
Atmos. Chem. Phys., 16, 1289–1302, https://doi.org/10.5194/acp-16-1289-2016, https://doi.org/10.5194/acp-16-1289-2016, 2016
Short summary
Short summary
There is an on-going debate on the larger European biospheric uptake inferred from GOSAT XCO2 retrievals than those inferred from in situ data. Using a set of 15 experiments, we found that the elevated uptake over Europe could largely be explained by mis-fitting data due to regional XCO2 biases: 50–80 % of the elevated European uptake is due to retrievals outside the immediate European; and a varying monthly bias of up to 0.5 ppm for XCO2 retrievals over Europe could explain most of the remainder.
M. Iarlori, F. Madonna, V. Rizi, T. Trickl, and A. Amodeo
Atmos. Meas. Tech., 8, 5157–5176, https://doi.org/10.5194/amt-8-5157-2015, https://doi.org/10.5194/amt-8-5157-2015, 2015
Short summary
Short summary
Smoothing filters applied on lidar profiles reduce the resolution to a value indicated as the effective resolution (ERes). Several approaches to ERes estimation are investigated. The key result is an operative ERes calculation by ready-to-use equations. The presented procedures to assess the ERes are of general validity. The ERes equations are deemed to be used in automatic tools like the Single Calculus Chain. Several filters already employed in the lidar community are also critically analyzed.
H. Lindqvist, C. W. O'Dell, S. Basu, H. Boesch, F. Chevallier, N. Deutscher, L. Feng, B. Fisher, F. Hase, M. Inoue, R. Kivi, I. Morino, P. I. Palmer, R. Parker, M. Schneider, R. Sussmann, and Y. Yoshida
Atmos. Chem. Phys., 15, 13023–13040, https://doi.org/10.5194/acp-15-13023-2015, https://doi.org/10.5194/acp-15-13023-2015, 2015
Short summary
Short summary
Atmospheric carbon dioxide concentration varies seasonally mainly due to plant photosynthesis in the Northern Hemisphere. We found that the satellite GOSAT can capture this variability from space to within 1ppm. We also found that models can differ by more than 1ppm. This implies that the satellite measurements could be useful in evaluating models and their prior estimates of carbon dioxide sources and sinks.
R. J. Parker, H. Boesch, K. Byckling, A. J. Webb, P. I. Palmer, L. Feng, P. Bergamaschi, F. Chevallier, J. Notholt, N. Deutscher, T. Warneke, F. Hase, R. Sussmann, S. Kawakami, R. Kivi, D. W. T. Griffith, and V. Velazco
Atmos. Meas. Tech., 8, 4785–4801, https://doi.org/10.5194/amt-8-4785-2015, https://doi.org/10.5194/amt-8-4785-2015, 2015
Short summary
Short summary
Atmospheric CH4 is an important greenhouse gas. Long-term global observations are necessary to understand its behaviour, with satellite observations playing a key role. The "proxy" retrieval method is one of the most successful but relies on the contribution from atmospheric CO2 models. This work assesses the significance of the uncertainty from the model CO2 within the retrieval and determines that despite this uncertainty the data are still valuable for determining sources and sinks of CH4.
A. Reichert, P. Hausmann, and R. Sussmann
Atmos. Meas. Tech., 8, 3715–3728, https://doi.org/10.5194/amt-8-3715-2015, https://doi.org/10.5194/amt-8-3715-2015, 2015
Short summary
Short summary
A method for quantification of sun-pointing inaccuracies in solar absorption spectrometry is presented along with a correction scheme for the resulting errors in trace gas vertical column or profile retrievals. The mispointing is constrained by combining subsequent measurements of solar line shifts with differing orientations of the solar rotation axis relative to the zenith direction. The implementation and benefits of the method are demonstrated using the Zugspitze XCH4 measurements.
T. Trickl, H. Vogelmann, H. Flentje, and L. Ries
Atmos. Chem. Phys., 15, 9631–9649, https://doi.org/10.5194/acp-15-9631-2015, https://doi.org/10.5194/acp-15-9631-2015, 2015
C. Rolf, A. Afchine, H. Bozem, B. Buchholz, V. Ebert, T. Guggenmoser, P. Hoor, P. Konopka, E. Kretschmer, S. Müller, H. Schlager, N. Spelten, O. Sumińska-Ebersoldt, J. Ungermann, A. Zahn, and M. Krämer
Atmos. Chem. Phys., 15, 9143–9158, https://doi.org/10.5194/acp-15-9143-2015, https://doi.org/10.5194/acp-15-9143-2015, 2015
J. Meyer, C. Rolf, C. Schiller, S. Rohs, N. Spelten, A. Afchine, M. Zöger, N. Sitnikov, T. D. Thornberry, A. W. Rollins, Z. Bozóki, D. Tátrai, V. Ebert, B. Kühnreich, P. Mackrodt, O. Möhler, H. Saathoff, K. H. Rosenlof, and M. Krämer
Atmos. Chem. Phys., 15, 8521–8538, https://doi.org/10.5194/acp-15-8521-2015, https://doi.org/10.5194/acp-15-8521-2015, 2015
A. Ostler, R. Sussmann, P. K. Patra, P. O. Wennberg, N. M. Deutscher, D. W. T. Griffith, T. Blumenstock, F. Hase, R. Kivi, T. Warneke, Z. Wang, M. De Mazière, J. Robinson, and H. Ohyama
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acpd-15-20395-2015, https://doi.org/10.5194/acpd-15-20395-2015, 2015
Preprint withdrawn
Short summary
Short summary
We find that stratospheric model-transport errors are common for chemical transport models that are used for inverse estimates of CH4 emissions. These model-transport errors cause latitudinal as well as seasonal biases in simulated stratospheric and, hence, column-averaged CH4 mixing ratios (XCH4). Such a model bias corresponds to an overestimation of arctic and mid-latitude CH4 emissions if inversion studies do not apply an ad hoc bias correction before inverting fluxes from XCH4 observations.
J. Heymann, M. Reuter, M. Hilker, M. Buchwitz, O. Schneising, H. Bovensmann, J. P. Burrows, A. Kuze, H. Suto, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, S. Kawakami, R. Kivi, I. Morino, C. Petri, C. Roehl, M. Schneider, V. Sherlock, R. Sussmann, V. A. Velazco, T. Warneke, and D. Wunch
Atmos. Meas. Tech., 8, 2961–2980, https://doi.org/10.5194/amt-8-2961-2015, https://doi.org/10.5194/amt-8-2961-2015, 2015
Short summary
Short summary
Long-term data sets of global atmospheric carbon dioxide concentrations based on observations from different satellite instruments may suffer from inconsistencies originating from the use of different retrieval algorithms. This issue has been addressed by applying the Bremen Optimal Estimation DOAS retrieval algorithm to SCIAMACHY and TANSO-FTS observations. Detailed comparisons with TCCON and CarbonTracker show good consistency between the SCIAMACHY and TANSO-FTS data sets.
A. J. Turner, D. J. Jacob, K. J. Wecht, J. D. Maasakkers, E. Lundgren, A. E. Andrews, S. C. Biraud, H. Boesch, K. W. Bowman, N. M. Deutscher, M. K. Dubey, D. W. T. Griffith, F. Hase, A. Kuze, J. Notholt, H. Ohyama, R. Parker, V. H. Payne, R. Sussmann, C. Sweeney, V. A. Velazco, T. Warneke, P. O. Wennberg, and D. Wunch
Atmos. Chem. Phys., 15, 7049–7069, https://doi.org/10.5194/acp-15-7049-2015, https://doi.org/10.5194/acp-15-7049-2015, 2015
J. Ungermann, J. Blank, M. Dick, A. Ebersoldt, F. Friedl-Vallon, A. Giez, T. Guggenmoser, M. Höpfner, T. Jurkat, M. Kaufmann, S. Kaufmann, A. Kleinert, M. Krämer, T. Latzko, H. Oelhaf, F. Olchewski, P. Preusse, C. Rolf, J. Schillings, O. Suminska-Ebersoldt, V. Tan, N. Thomas, C. Voigt, A. Zahn, M. Zöger, and M. Riese
Atmos. Meas. Tech., 8, 2473–2489, https://doi.org/10.5194/amt-8-2473-2015, https://doi.org/10.5194/amt-8-2473-2015, 2015
Short summary
Short summary
The GLORIA sounder is an airborne infrared limb-imager combining a two-dimensional infrared detector with a Fourier transform spectrometer. It was operated aboard the new German Gulfstream G550 research aircraft HALO during the TACTS and ESMVAL campaigns in summer 2012. This paper describes the retrieval of temperature, as well as H2O, HNO3, and O3 cross sections from GLORIA dynamics mode spectra. A high correlation is achieved between the remote sensing and the in situ trace gas measurements.
W. Frey, R. Schofield, P. Hoor, D. Kunkel, F. Ravegnani, A. Ulanovsky, S. Viciani, F. D'Amato, and T. P. Lane
Atmos. Chem. Phys., 15, 6467–6486, https://doi.org/10.5194/acp-15-6467-2015, https://doi.org/10.5194/acp-15-6467-2015, 2015
Short summary
Short summary
This study examines the simulated downward transport and mixing of stratospheric air into the upper tropical troposphere as observed on a research flight during the SCOUT-O3 campaign in connection with a deep convective system, using the WRF model. Passive tracers are initialised to study the impact of the deep convection on the tracers and water vapour. We use the model to explain the processes causing the transport and also expose areas of inconsistencies between the model and observations.
H. Vogelmann, R. Sussmann, T. Trickl, and A. Reichert
Atmos. Chem. Phys., 15, 3135–3148, https://doi.org/10.5194/acp-15-3135-2015, https://doi.org/10.5194/acp-15-3135-2015, 2015
Short summary
Short summary
We quantitatively analyzed the spatiotemporal variability (minutes to hours, 500m to 10km) of water vapor (IWV and profiles) in the free troposphere recorded at the Zugspitze (Germany) with lidar and solar FTIR. We found that long-range transport of heterogeneous air masses may cause relative short-term variations of the water-vapor density which exceed the impact of local convection by 1 order of magnitude. Our results could be useful for issues of model parametrization and co-location.
D. Tátrai, Z. Bozóki, H. Smit, C. Rolf, N. Spelten, M. Krämer, A. Filges, C. Gerbig, G. Gulyás, and G. Szabó
Atmos. Meas. Tech., 8, 33–42, https://doi.org/10.5194/amt-8-33-2015, https://doi.org/10.5194/amt-8-33-2015, 2015
Short summary
Short summary
Airborne hygrometry is very important in climate research, and the interest in knowing not only water vapor concentration but (cirrus) cloud content as well is increasing. The authors provide a photoacoustic spectroscopy-based dual-channel hygrometer system that can be a good solution for such measurements. The instrument was proven to operate properly from ground level up to the lower stratosphere, giving the possibility even for cirrus cloud studies.
R. Pommrich, R. Müller, J.-U. Grooß, P. Konopka, F. Ploeger, B. Vogel, M. Tao, C. M. Hoppe, G. Günther, N. Spelten, L. Hoffmann, H.-C. Pumphrey, S. Viciani, F. D'Amato, C. M. Volk, P. Hoor, H. Schlager, and M. Riese
Geosci. Model Dev., 7, 2895–2916, https://doi.org/10.5194/gmd-7-2895-2014, https://doi.org/10.5194/gmd-7-2895-2014, 2014
Short summary
Short summary
A version of the chemical transport model CLaMS is presented, which features a simplified (numerically inexpensive) chemistry scheme. The model results using this version of CLaMS show a good representation of anomaly fields of CO, CH4, N2O, and CFC-11 in the lower stratosphere. CO measurements of three instruments (COLD, HAGAR, and Falcon-CO) in the lower tropical stratosphere (during the campaign TROCCINOX in 2005) have been compared and show a good agreement within the error bars.
A. Ostler, R. Sussmann, M. Rettinger, N. M. Deutscher, S. Dohe, F. Hase, N. Jones, M. Palm, and B.-M. Sinnhuber
Atmos. Meas. Tech., 7, 4081–4101, https://doi.org/10.5194/amt-7-4081-2014, https://doi.org/10.5194/amt-7-4081-2014, 2014
Short summary
Short summary
Ground-based FTIR soundings of column-average methane from NDACC and TCCON can be combined without the need to apply an overall calibration factor. NDACC and TCCON measurements complement one another and provide valuable information for satellite validation, evaluation of chemical-transport models, and source-sink inversions. The impact of dynamical variability on NDACC and TCCON retrievals of column-average methane is reflected in different smoothing effects.
T. Trickl, H. Vogelmann, H. Giehl, H.-E. Scheel, M. Sprenger, and A. Stohl
Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, https://doi.org/10.5194/acp-14-9941-2014, 2014
F. Deng, D. B. A. Jones, D. K. Henze, N. Bousserez, K. W. Bowman, J. B. Fisher, R. Nassar, C. O'Dell, D. Wunch, P. O. Wennberg, E. A. Kort, S. C. Wofsy, T. Blumenstock, N. M. Deutscher, D. W. T. Griffith, F. Hase, P. Heikkinen, V. Sherlock, K. Strong, R. Sussmann, and T. Warneke
Atmos. Chem. Phys., 14, 3703–3727, https://doi.org/10.5194/acp-14-3703-2014, https://doi.org/10.5194/acp-14-3703-2014, 2014
F. Hase, B. J. Drouin, C. M. Roehl, G. C. Toon, P. O. Wennberg, D. Wunch, T. Blumenstock, F. Desmet, D. G. Feist, P. Heikkinen, M. De Mazière, M. Rettinger, J. Robinson, M. Schneider, V. Sherlock, R. Sussmann, Y. Té, T. Warneke, and C. Weinzierl
Atmos. Meas. Tech., 6, 3527–3537, https://doi.org/10.5194/amt-6-3527-2013, https://doi.org/10.5194/amt-6-3527-2013, 2013
F. Olschewski, A. Ebersoldt, F. Friedl-Vallon, B. Gutschwager, J. Hollandt, A. Kleinert, C. Monte, C. Piesch, P. Preusse, C. Rolf, P. Steffens, and R. Koppmann
Atmos. Meas. Tech., 6, 3067–3082, https://doi.org/10.5194/amt-6-3067-2013, https://doi.org/10.5194/amt-6-3067-2013, 2013
E. Castelli, B. M. Dinelli, S. Del Bianco, D. Gerber, B. P. Moyna, R. Siddans, B. J. Kerridge, and U. Cortesi
Atmos. Meas. Tech., 6, 2683–2701, https://doi.org/10.5194/amt-6-2683-2013, https://doi.org/10.5194/amt-6-2683-2013, 2013
M. von Hobe, S. Bekki, S. Borrmann, F. Cairo, F. D'Amato, G. Di Donfrancesco, A. Dörnbrack, A. Ebersoldt, M. Ebert, C. Emde, I. Engel, M. Ern, W. Frey, S. Genco, S. Griessbach, J.-U. Grooß, T. Gulde, G. Günther, E. Hösen, L. Hoffmann, V. Homonnai, C. R. Hoyle, I. S. A. Isaksen, D. R. Jackson, I. M. Jánosi, R. L. Jones, K. Kandler, C. Kalicinsky, A. Keil, S. M. Khaykin, F. Khosrawi, R. Kivi, J. Kuttippurath, J. C. Laube, F. Lefèvre, R. Lehmann, S. Ludmann, B. P. Luo, M. Marchand, J. Meyer, V. Mitev, S. Molleker, R. Müller, H. Oelhaf, F. Olschewski, Y. Orsolini, T. Peter, K. Pfeilsticker, C. Piesch, M. C. Pitts, L. R. Poole, F. D. Pope, F. Ravegnani, M. Rex, M. Riese, T. Röckmann, B. Rognerud, A. Roiger, C. Rolf, M. L. Santee, M. Scheibe, C. Schiller, H. Schlager, M. Siciliani de Cumis, N. Sitnikov, O. A. Søvde, R. Spang, N. Spelten, F. Stordal, O. Sumińska-Ebersoldt, A. Ulanovski, J. Ungermann, S. Viciani, C. M. Volk, M. vom Scheidt, P. von der Gathen, K. Walker, T. Wegner, R. Weigel, S. Weinbruch, G. Wetzel, F. G. Wienhold, I. Wohltmann, W. Woiwode, I. A. K. Young, V. Yushkov, B. Zobrist, and F. Stroh
Atmos. Chem. Phys., 13, 9233–9268, https://doi.org/10.5194/acp-13-9233-2013, https://doi.org/10.5194/acp-13-9233-2013, 2013
A. E. Luebke, L. M. Avallone, C. Schiller, J. Meyer, C. Rolf, and M. Krämer
Atmos. Chem. Phys., 13, 6447–6459, https://doi.org/10.5194/acp-13-6447-2013, https://doi.org/10.5194/acp-13-6447-2013, 2013
Y. Yoshida, N. Kikuchi, I. Morino, O. Uchino, S. Oshchepkov, A. Bril, T. Saeki, N. Schutgens, G. C. Toon, D. Wunch, C. M. Roehl, P. O. Wennberg, D. W. T. Griffith, N. M. Deutscher, T. Warneke, J. Notholt, J. Robinson, V. Sherlock, B. Connor, M. Rettinger, R. Sussmann, P. Ahonen, P. Heikkinen, E. Kyrö, J. Mendonca, K. Strong, F. Hase, S. Dohe, and T. Yokota
Atmos. Meas. Tech., 6, 1533–1547, https://doi.org/10.5194/amt-6-1533-2013, https://doi.org/10.5194/amt-6-1533-2013, 2013
T. Trickl, H. Giehl, H. Jäger, and H. Vogelmann
Atmos. Chem. Phys., 13, 5205–5225, https://doi.org/10.5194/acp-13-5205-2013, https://doi.org/10.5194/acp-13-5205-2013, 2013
G. Pappalardo, L. Mona, G. D'Amico, U. Wandinger, M. Adam, A. Amodeo, A. Ansmann, A. Apituley, L. Alados Arboledas, D. Balis, A. Boselli, J. A. Bravo-Aranda, A. Chaikovsky, A. Comeron, J. Cuesta, F. De Tomasi, V. Freudenthaler, M. Gausa, E. Giannakaki, H. Giehl, A. Giunta, I. Grigorov, S. Groß, M. Haeffelin, A. Hiebsch, M. Iarlori, D. Lange, H. Linné, F. Madonna, I. Mattis, R.-E. Mamouri, M. A. P. McAuliffe, V. Mitev, F. Molero, F. Navas-Guzman, D. Nicolae, A. Papayannis, M. R. Perrone, C. Pietras, A. Pietruczuk, G. Pisani, J. Preißler, M. Pujadas, V. Rizi, A. A. Ruth, J. Schmidt, F. Schnell, P. Seifert, I. Serikov, M. Sicard, V. Simeonov, N. Spinelli, K. Stebel, M. Tesche, T. Trickl, X. Wang, F. Wagner, M. Wiegner, and K. M. Wilson
Atmos. Chem. Phys., 13, 4429–4450, https://doi.org/10.5194/acp-13-4429-2013, https://doi.org/10.5194/acp-13-4429-2013, 2013
Related subject area
Subject: Others (Wind, Precipitation, Temperature, etc.) | Technique: Remote Sensing | Topic: Instruments and Platforms
Optimization of a direct-detection UV wind lidar architecture for 3D wind reconstruction at high altitude
The GRAS-2 radio occultation mission
The ALOMAR Rayleigh/Mie/Raman lidar: status after 30 years of operation
Chilean Observation Network De MeteOr Radars (CONDOR): Multi-Static System Configuration & Wind Comparison with Co-located Lidar
The Far-INfrarEd Spectrometer for Surface Emissivity (FINESSE) – Part 1: Instrument description and level 1 radiances
Evaluation of the effects of different lightning protection rods on the data quality of C-band weather radars
Quantitative Error Analysis on Polarimetric Phased Array Radar Weather Measurements to Reveal Radar Performance and Configuration Potential
ScintPi measurements of low-latitude ionospheric irregularity drifts using the spaced-receiver technique and SBAS signals
Wind comparisons between meteor radar and Doppler shifts in airglow emissions using field-widened Michelson interferometers
A new dual-frequency stratospheric–tropospheric and meteor radar: system description and first results
The Doppler wind, temperature, and aerosol RMR lidar system at Kühlungsborn, Germany – Part 1: Technical specifications and capabilities
Directly measuring the power-law exponent and kinetic energy of atmospheric turbulence using coherent Doppler wind lidar
3D wind observations with a compact mobile lidar based on tropo- and stratospheric aerosol backscatter
A novel infrared imager for studies of hydroxyl and oxygen nightglow emissions in the mesopause above northern Scandinavia
Absolute radiance calibration in the UV and visible spectral range using atmospheric observations during twilight
Measurement uncertainties of scanning microwave radiometers and their influence on temperature profiling
Advancing airborne Doppler lidar wind profiling in turbulent boundary layer flow – an LES-based optimization of traditional scanning-beam versus novel fixed-beam measurement systems
Observing atmospheric convection with dual-scanning lidars
Evaluation of error components in rainfall retrieval from collocated commercial microwave links
In-orbit cross-calibration of millimeter conically scanning spaceborne radars
Calibrating radar wind profiler reflectivity factor using surface disdrometer observations
Pseudorandom modulation continuous-wave narrowband sodium temperature and wind lidar
Stratospheric temperature measurements from nanosatellite stellar occultation observations of refractive bending
Airborne coherent wind lidar measurements of the momentum flux profile from orographically induced gravity waves
GNSS radio occultation soundings from commercial off-the-shelf receivers on board balloon platforms
Complementarity of wind measurements from co-located X-band weather radar and Doppler lidar
Evaluation of the New York State Mesonet Profiler Network data
Quantification of motion-induced measurement error on floating lidar systems
Observation error analysis for the WInd VElocity Radar Nephoscope W-band Doppler conically scanning spaceborne radar via end-to-end simulations
Evaluating convective planetary boundary layer height estimations resolved by both active and passive remote sensing instruments during the CHEESEHEAD19 field campaign
Atmospheric precipitable water vapor and its correlation with clear-sky infrared temperature observations
Spectral performance analysis of the Aeolus Fabry–Pérot and Fizeau interferometers during the first years of operation
Moderate spectral resolution solar irradiance measurements, aerosol optical depth, and solar transmission, from 360 to 1070 nm, using the refurbished rotating shadow band spectroradiometer (RSS)
Mitigation of bias sources for atmospheric temperature and humidity in the mobile Raman Weather and Aerosol Lidar (WALI)
Gravity wave instability structures and turbulence from more than 1.5 years of OH* airglow imager observations in Slovenia
ALADIN laser frequency stability and its impact on the Aeolus wind error
A compact static birefringent interferometer for the measurement of upper atmospheric winds: concept, design and lab performance
The COTUR project: remote sensing of offshore turbulence for wind energy application
Characterization of dark current signal measurements of the ACCDs used on board the Aeolus satellite
Relationship between wind observation accuracy and the ascending node of the sun-synchronous orbit for the Aeolus-type spaceborne Doppler wind lidar
A new lidar design for operational atmospheric wind and cloud/aerosol survey from space
VAHCOLI, a new concept for lidars: technical setup, science applications, and first measurements
A Compact Rayleigh Autonomous Lidar (CORAL) for the middle atmosphere
Measurement characteristics of an airborne microwave temperature profiler (MTP)
Towards accurate and practical drone-based wind measurements with an ultrasonic anemometer
Atmospheric observations with E-band microwave links – challenges and opportunities
Tomographic retrieval algorithm of OH concentration profiles using double spatial heterodyne spectrometers
Wuhan MST radar: technical features and validation of wind observations
Joint analysis of convective structure from the APR-2 precipitation radar and the DAWN Doppler wind lidar during the 2017 Convective Processes Experiment (CPEX)
First observations of the McMurdo–South Pole oblique ionospheric HF channel
Thibault Boulant, Tomline Michel, and Matthieu Valla
Atmos. Meas. Tech., 17, 7049–7064, https://doi.org/10.5194/amt-17-7049-2024, https://doi.org/10.5194/amt-17-7049-2024, 2024
Short summary
Short summary
This paper presents a design of a UV wind lidar, made with a UV fiber laser and a Quadri Mach-Zehnder interferometer as a spectral analyzer, used to measure the wind in front of future low-consumption aircraft. The article details the optimization of the different elements of the instrument with simulations. This paper also presents a method to optimize laser angles for determining wind direction and strength and shows a 50 % improvement over the current angles used.
Joel Rasch, Anders Carlström, Jacob Christensen, and Thomas Liljegren
Atmos. Meas. Tech., 17, 6213–6222, https://doi.org/10.5194/amt-17-6213-2024, https://doi.org/10.5194/amt-17-6213-2024, 2024
Short summary
Short summary
Soon the MetOp Second Generation (Metop-SG) series of polar orbiting meteorological satellites will be launched. On these satellites, the GRAS-2 instrument will be mounted. It will provide GNSS radio occultation measurements with unsurpassed accuracy. The occultation measurements are used routinely for numerical weather prognosis, i.e. predicting the weather. In this paper, we describe the design of this new instrument and the novel methods developed to process the data.
Jens Fiedler and Gerd Baumgarten
Atmos. Meas. Tech., 17, 5841–5859, https://doi.org/10.5194/amt-17-5841-2024, https://doi.org/10.5194/amt-17-5841-2024, 2024
Short summary
Short summary
This article describes the current status of a lidar installed at ALOMAR in northern Norway. It has investigated the Arctic middle atmosphere on a climatological basis for 30 years. We discuss major upgrades of the system implemented during recent years, including methods for reliable remote operation of this complex lidar. We also show examples that illustrate the performance of the lidar during measurements at different altitude ranges and timescales.
Zishun Qiao, Alan Z. Liu, Gunter Stober, Javier Fuentes, Fabio Vargas, Christian L. Adami, and Iain M. Reid
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-126, https://doi.org/10.5194/amt-2024-126, 2024
Preprint under review for AMT
Short summary
Short summary
This paper describes the installation of the Chilean Observation Network De MeteOr Radars (CONDOR) and its initial results. The routine winds are point-to-point comparable to the co-located lidar winds. The retrievals of spatially resolved horizontal wind fields, vertical winds, and temperatures are also facilitated benefiting from the extensive meteor detections. The successful deployment and maintenance of CONDOR provide 24/7 and state-of-the-art wind measurements to the research community.
Jonathan E. Murray, Laura Warwick, Helen Brindley, Alan Last, Patrick Quigley, Andy Rochester, Alexander Dewar, and Daniel Cummins
Atmos. Meas. Tech., 17, 4757–4775, https://doi.org/10.5194/amt-17-4757-2024, https://doi.org/10.5194/amt-17-4757-2024, 2024
Short summary
Short summary
The Far INfrarEd Spectrometer for Surface Emissivity, FINESSE, is designed to measure the ability of natural surfaces to emit infrared radiation. FINESSE combines a commercial instrument with custom-built optics to view a surface from different angles with complementary views of the sky. Its choice of internal components means it can cover a wide range of wavelengths, extending into the far-infrared. We characterize FINESSE’s uncertainty budget and provide examples of its measurement capability.
Cornelius Hald, Maximilian Schaper, Annette Böhm, Michael Frech, Jan Petersen, Bertram Lange, and Benjamin Rohrdantz
Atmos. Meas. Tech., 17, 4695–4707, https://doi.org/10.5194/amt-17-4695-2024, https://doi.org/10.5194/amt-17-4695-2024, 2024
Short summary
Short summary
Weather radars should use lightning protection to be safe from damage, but the rods can reduce the quality of the radar measurements. This study presents three new solutions for lightning protection for weather radars and evaluates their influence on data quality. The results are compared to the current system. All tested ones have very little effect on data, and a new lightning protection system with four rods is recommended for the German Meteorological Service.
Junho Ho, Zhe Li, and Guifu Zhang
Atmos. Meas. Tech. Discuss., https://doi.org/10.5194/amt-2024-118, https://doi.org/10.5194/amt-2024-118, 2024
Revised manuscript accepted for AMT
Short summary
Short summary
This study quantitatively analyzes and compares weather measurements from planar (PPPAR) and cylindrical polarimetric phased array radars (CPPAR). It examines data quality, potential problems, and clarifies misunderstandings between the configurations. The findings highlight 2D PPPAR’s challenges in making accurate weather measurements when the beam steers off broadside. CPPAR shows promise in obtaining high-quality polarimetric data because of its azimuthal scan invariant beam characteristics.
Josemaria Gomez Socola, Fabiano Rodrigues, Isaac Wrigth, Igo Paulino, and Ricardo Buriti
EGUsphere, https://doi.org/10.5194/egusphere-2024-2262, https://doi.org/10.5194/egusphere-2024-2262, 2024
Short summary
Short summary
New low-cost, off-the-shelf GNSS receivers enable the estimation of zonal ionospheric irregularity drifts using the "scintillation spaced receiver" technique, which was previously tested only with commercial GNSS receivers. Despite their low C/No resolution (1 dB-Hz), we demonstrate that the raw data obtained from the receivers can be used to estimate irregularity velocities. Furthermore, our observations are consistent with the behavior of an empirical model of the thermospheric winds.
Samuel K. Kristoffersen, William E. Ward, and Chris E. Meek
Atmos. Meas. Tech., 17, 3995–4014, https://doi.org/10.5194/amt-17-3995-2024, https://doi.org/10.5194/amt-17-3995-2024, 2024
Short summary
Short summary
In this paper, the relationship between observations from two instruments, a meteor radar and a field-widened Michelson interferometer (ERWIN) which provide complementary information on this region, is investigated. On average the ratio of ERWIN winds to meteor radar winds is ∼ 0.7. Differences between the wind observations may be caused by variations in the airglow brightness associated with dissipating gravity waves.
Qingchen Xu, Iain Murray Reid, Bing Cai, Christian Adami, Zengmao Zhang, Mingliang Zhao, and Wen Li
Atmos. Meas. Tech., 17, 2957–2975, https://doi.org/10.5194/amt-17-2957-2024, https://doi.org/10.5194/amt-17-2957-2024, 2024
Short summary
Short summary
To have better understanding of the dynamics of the lower and middle atmosphere, we installed a newly designed dual-frequency radar system that uses 53.8 MHz for near-ground to 20 km wind measurements and 35.0 MHz for 70 to 100 km wind measurements. The initial results show its good performance, along with the analysis of typical winter gravity wave activities.
Michael Gerding, Robin Wing, Eframir Franco-Diaz, Gerd Baumgarten, Jens Fiedler, Torsten Köpnick, and Reik Ostermann
Atmos. Meas. Tech., 17, 2789–2809, https://doi.org/10.5194/amt-17-2789-2024, https://doi.org/10.5194/amt-17-2789-2024, 2024
Short summary
Short summary
This paper describes a new lidar system developed in Germany intended to study wind and temperature at night in the middle atmosphere. The paper explains how we have set up the system to work automatically and gives technical details for anyone who wants to build a similar system. We present a case study showing temperatures and winds at different altitudes. In a future article, we will present how we process the data and deal with uncertainties.
Jinhong Xian, Chao Lu, Xiaoling Lin, Honglong Yang, Ning Zhang, and Li Zhang
Atmos. Meas. Tech., 17, 1837–1850, https://doi.org/10.5194/amt-17-1837-2024, https://doi.org/10.5194/amt-17-1837-2024, 2024
Short summary
Short summary
Improving the monitoring capability of atmospheric turbulence can help unravel the mystery of turbulence. Based on some assumptions, scientists have proposed various detection methods. However, these assumptions limit their applicability. We abandoned these assumptions and proposed a more accurate method, revealing some new results. Our method can provide more accurate three-dimensional features of turbulence, which will have a huge driving effect on the development of turbulence.
Thorben H. Mense, Josef Höffner, Gerd Baumgarten, Ronald Eixmann, Jan Froh, Alsu Mauer, Alexander Munk, Robin Wing, and Franz-Josef Lübken
Atmos. Meas. Tech., 17, 1665–1677, https://doi.org/10.5194/amt-17-1665-2024, https://doi.org/10.5194/amt-17-1665-2024, 2024
Short summary
Short summary
A novel lidar system with five beams measured horizontal and vertical winds together, reaching altitudes up to 25 km. Developed in Germany, it revealed accurate horizontal wind data compared to forecasts, but vertical wind estimates differed. The lidar's capability to detect small-scale wind patterns was highlighted, advancing atmospheric research.
Peter Dalin, Urban Brändström, Johan Kero, Peter Voelger, Takanori Nishiyama, Trond Trondsen, Devin Wyatt, Craig Unick, Vladimir Perminov, Nikolay Pertsev, and Jonas Hedin
Atmos. Meas. Tech., 17, 1561–1576, https://doi.org/10.5194/amt-17-1561-2024, https://doi.org/10.5194/amt-17-1561-2024, 2024
Short summary
Short summary
A novel infrared imaging instrument (OH imager) was put into operation in November 2022 at the Swedish Institute of Space Physics in Kiruna (Sweden). The OH imager is dedicated to the study of nightglow emissions coming from the hydroxyl (OH) and molecular oxygen (O2) layers in the mesopause (80–100 km). Based on a brightness ratio of two OH emission lines, the neutral temperature is estimated at around 87 km. The average daily winter temperature for the period January–April 2023 is 203±10 K.
Thomas Wagner and Jānis Puķīte
Atmos. Meas. Tech., 17, 277–297, https://doi.org/10.5194/amt-17-277-2024, https://doi.org/10.5194/amt-17-277-2024, 2024
Short summary
Short summary
We present a radiance calibration method based on the comparison of measurements and radiative transfer simulations of the zenith-scattered sun radiance during twilight. Cloud-free conditions are required. The method can be applied to measurements in the filed, and no laboratory measurements are required. The accuracy is estimated to range from about 4 % at 340 nm to about 10 % at 700 nm.
Tobias Böck, Bernhard Pospichal, and Ulrich Löhnert
Atmos. Meas. Tech., 17, 219–233, https://doi.org/10.5194/amt-17-219-2024, https://doi.org/10.5194/amt-17-219-2024, 2024
Short summary
Short summary
In this study, measurement uncertainties from microwave radiometers and their impact on temperature profiling are analyzed. These measurement uncertainties include horizontal inhomogeneities of the atmosphere, pointing errors or tilts of the instrument, physical obstacles which are in the line of sight of the radiometer, and radio frequency interferences. Impacts on temperature profiles from these uncertainties are usually small in real-life scenarios and when obstacles are far enough away.
Philipp Gasch, James Kasic, Oliver Maas, and Zhien Wang
Atmos. Meas. Tech., 16, 5495–5523, https://doi.org/10.5194/amt-16-5495-2023, https://doi.org/10.5194/amt-16-5495-2023, 2023
Short summary
Short summary
This paper rethinks airborne wind measurements and investigates a new design for airborne Doppler lidar systems. Recent advances in lidar technology allow the use of multiple lidar systems with fixed viewing directions instead of a single lidar attached to a scanner. Our simulation results show that the proposed new design offers great potential for both higher accuracy and higher-resolution airborne wind measurements.
Christiane Duscha, Juraj Pálenik, Thomas Spengler, and Joachim Reuder
Atmos. Meas. Tech., 16, 5103–5123, https://doi.org/10.5194/amt-16-5103-2023, https://doi.org/10.5194/amt-16-5103-2023, 2023
Short summary
Short summary
We combine observations from two scanning Doppler lidars to obtain new and unique insights into the dynamic processes inherent to atmospheric convection. The approach complements and enhances conventional methods to probe convection and has the potential to substantially deepen our understanding of this complex process, which is crucial to improving our weather and climate models.
Anna Špačková, Martin Fencl, and Vojtěch Bareš
Atmos. Meas. Tech., 16, 3865–3879, https://doi.org/10.5194/amt-16-3865-2023, https://doi.org/10.5194/amt-16-3865-2023, 2023
Short summary
Short summary
Commercial microwave links as rainfall sensors have been investigated and evaluated in numerous studies with gauge-adjusted radar used for reference for rainfall observations. We evaluate collocated commercial microwave links, which are thus exposed to identical atmospheric conditions. This set-up enables the exploration of inconsistencies in observations of independent sensors using data from a real telecommunication network. The sensors are in agreement and are homogeneous in their behaviour.
Alessandro Battaglia, Filippo Emilio Scarsi, Kamil Mroz, and Anthony Illingworth
Atmos. Meas. Tech., 16, 3283–3297, https://doi.org/10.5194/amt-16-3283-2023, https://doi.org/10.5194/amt-16-3283-2023, 2023
Short summary
Short summary
Some of the new generation of cloud and precipitation spaceborne radars will adopt conical scanning. This will make some of the standard calibration techniques impractical. This work presents a methodology to cross-calibrate radars in orbits by matching the reflectivity probability density function of ice clouds observed by the to-be-calibrated and by the reference radar in quasi-coincident locations. Results show that cross-calibration within 1 dB (26 %) is feasible.
Christopher R. Williams, Joshua Barrio, Paul E. Johnston, Paytsar Muradyan, and Scott E. Giangrande
Atmos. Meas. Tech., 16, 2381–2398, https://doi.org/10.5194/amt-16-2381-2023, https://doi.org/10.5194/amt-16-2381-2023, 2023
Short summary
Short summary
This study uses surface disdrometer observations to calibrate 8 years of 915 MHz radar wind profiler deployed in the central United States in northern Oklahoma. This study had two key findings. First, the radar wind profiler sensitivity decreased approximately 3 to 4 dB/year as the hardware aged. Second, this drift was slow enough that calibration can be performed using 3-month intervals. Calibrated radar wind profiler observations and Python processing code are available on public repositories.
Xin Fang, Feng Li, Lei-lei Sun, and Tao Li
Atmos. Meas. Tech., 16, 2263–2272, https://doi.org/10.5194/amt-16-2263-2023, https://doi.org/10.5194/amt-16-2263-2023, 2023
Short summary
Short summary
We successfully developed the first pseudorandom modulation continuous-wave narrowband sodium lidar (PMCW-NSL) system for simultaneous measurements of the mesopause region's temperature and wind. Based on the innovative decoded technique and algorithm for CW lidar, both the main and residual lights modulated by M-code are used and directed to the atmosphere in the vertical and eastward directions, tilted 20° from the zenith. The PMCW-NSL system can applied to airborne and space-borne purposes.
Dana L. McGuffin, Philip J. Cameron-Smith, Matthew A. Horsley, Brian J. Bauman, Wim De Vries, Denis Healy, Alex Pertica, Chris Shaffer, and Lance M. Simms
Atmos. Meas. Tech., 16, 2129–2144, https://doi.org/10.5194/amt-16-2129-2023, https://doi.org/10.5194/amt-16-2129-2023, 2023
Short summary
Short summary
This work demonstrates the viability of a remote sensing technique using nanosatellites to measure stratospheric temperature. This measurement technique can probe the stratosphere and mesosphere at a fine vertical scale around the globe unlike other high-altitude measurement techniques, which would provide an opportunity to observe atmospheric gravity waves and turbulence. We analyze observations from two satellite platforms to provide a proof of concept and characterize measurement uncertainty.
Benjamin Witschas, Sonja Gisinger, Stephan Rahm, Andreas Dörnbrack, David C. Fritts, and Markus Rapp
Atmos. Meas. Tech., 16, 1087–1101, https://doi.org/10.5194/amt-16-1087-2023, https://doi.org/10.5194/amt-16-1087-2023, 2023
Short summary
Short summary
In this paper, a novel scan technique is applied to an airborne coherent Doppler wind lidar, enabling us to measure the vertical wind speed and the horizontal wind speed along flight direction simultaneously with a horizontal resolution of about 800 m and a vertical resolution of 100 m. The performed observations are valuable for gravity wave characterization as they allow us to calculate the leg-averaged momentum flux profile and, with that, the propagation direction of excited gravity waves.
Kevin J. Nelson, Feiqin Xie, Bryan C. Chan, Ashish Goel, Jonathan Kosh, Tyler G. R. Reid, Corey R. Snyder, and Paul M. Tarantino
Atmos. Meas. Tech., 16, 941–954, https://doi.org/10.5194/amt-16-941-2023, https://doi.org/10.5194/amt-16-941-2023, 2023
Short summary
Short summary
Global Navigation Satellite System (GNSS) radio occultation (RO) remote sensing is effective for atmospheric profiling. The capability of a low-cost and scalable commercial off-the-shelf (COTS) GNSS receiver on board high-altitude balloons is tested in two campaigns. Preliminary results demonstrate high-quality refractivity observations from the COTS RO receiver, which is worth further improvement for dense atmospheric observations over a targeted region.
Jenna Ritvanen, Ewan O'Connor, Dmitri Moisseev, Raisa Lehtinen, Jani Tyynelä, and Ludovic Thobois
Atmos. Meas. Tech., 15, 6507–6519, https://doi.org/10.5194/amt-15-6507-2022, https://doi.org/10.5194/amt-15-6507-2022, 2022
Short summary
Short summary
Doppler lidars and weather radars provide accurate wind measurements, with Doppler lidar usually performing better in dry weather conditions and weather radar performing better when there is precipitation. Operating both instruments together should therefore improve the overall performance. We investigate how well a co-located Doppler lidar and X-band radar perform with respect to various weather conditions, including changes in horizontal visibility, cloud altitude, and precipitation.
Bhupal Shrestha, Jerald A. Brotzge, and Junhong Wang
Atmos. Meas. Tech., 15, 6011–6033, https://doi.org/10.5194/amt-15-6011-2022, https://doi.org/10.5194/amt-15-6011-2022, 2022
Short summary
Short summary
The NYS Mesonet Profiler Network is comprised of 17 profiler sites, each equipped with a Doppler lidar, microwave radiometer, and sun photometer. This study presents a multi-year, multi-station evaluation based on well-defined reference measurements. Results demonstrate robust technologies that can aid real-time weather operations and a network test bed that can be used for further expansion, evaluation, and integration of such technologies at a large scale.
Felix Kelberlau and Jakob Mann
Atmos. Meas. Tech., 15, 5323–5341, https://doi.org/10.5194/amt-15-5323-2022, https://doi.org/10.5194/amt-15-5323-2022, 2022
Short summary
Short summary
Floating lidar systems are used for measuring wind speeds offshore, and their motion influences the measurements. This study describes the motion-induced bias on mean wind speed estimates by simulating the lidar sampling pattern of a moving lidar. An analytic model is used to validate the simulations. The bias is low and depends on amplitude and frequency of motion as well as on wind shear. It has been estimated for the example of the Fugro SEAWATCH wind lidar buoy carrying a ZX 300M lidar.
Alessandro Battaglia, Paolo Martire, Eric Caubet, Laurent Phalippou, Fabrizio Stesina, Pavlos Kollias, and Anthony Illingworth
Atmos. Meas. Tech., 15, 3011–3030, https://doi.org/10.5194/amt-15-3011-2022, https://doi.org/10.5194/amt-15-3011-2022, 2022
Short summary
Short summary
We present an instrument simulator for a new sensor, WIVERN (WInd VElocity Radar Nephoscope), a conically scanning radar payload with Doppler capabilities, recently down-selected as one of the four candidates for the European Space Agency Earth Explorer 11 program. The mission aims at measuring horizontal winds in cloudy areas. The simulator is instrumental in the definition and consolidation of the mission requirements and the evaluation of mission performances.
James B. Duncan Jr., Laura Bianco, Bianca Adler, Tyler Bell, Irina V. Djalalova, Laura Riihimaki, Joseph Sedlar, Elizabeth N. Smith, David D. Turner, Timothy J. Wagner, and James M. Wilczak
Atmos. Meas. Tech., 15, 2479–2502, https://doi.org/10.5194/amt-15-2479-2022, https://doi.org/10.5194/amt-15-2479-2022, 2022
Short summary
Short summary
In this study, several ground-based remote sensing instruments are used to estimate the height of the convective planetary boundary layer, and their performance is compared against independent boundary layer depth estimates obtained from radiosondes launched as part of the CHEESEHEAD19 field campaign. The impact of clouds (particularly boundary layer clouds) on the estimation of the boundary layer depth is also investigated.
Vicki Kelsey, Spencer Riley, and Kenneth Minschwaner
Atmos. Meas. Tech., 15, 1563–1576, https://doi.org/10.5194/amt-15-1563-2022, https://doi.org/10.5194/amt-15-1563-2022, 2022
Short summary
Short summary
In the interior western USA there are distances of hundreds of kilometers between weather balloon launch sites for weather forecasting. Satellite coverage can also be sparse or with poor resolution. Using infrared thermometers, clear-sky temperatures were collected and compared with data from weather balloons. A correlation between clear-sky temperatures and precipitable water measurements from weather balloons was found. This means that citizen scientists can collect data.
Benjamin Witschas, Christian Lemmerz, Oliver Lux, Uwe Marksteiner, Oliver Reitebuch, Fabian Weiler, Frederic Fabre, Alain Dabas, Thomas Flament, Dorit Huber, and Michael Vaughan
Atmos. Meas. Tech., 15, 1465–1489, https://doi.org/10.5194/amt-15-1465-2022, https://doi.org/10.5194/amt-15-1465-2022, 2022
Short summary
Short summary
In August 2018, the ESA launched the first Doppler wind lidar into space. In order to calibrate the instrument and to monitor the overall instrument conditions, instrument spectral registration measurements have been performed with Aeolus on a weekly basis. Based on these measurements, the alignment drift of the Aeolus satellite instrument is estimated by applying tools and mathematical model functions to analyze the spectrometer transmission curves.
Joseph J. Michalsky and Peter W. Kiedron
Atmos. Meas. Tech., 15, 353–364, https://doi.org/10.5194/amt-15-353-2022, https://doi.org/10.5194/amt-15-353-2022, 2022
Short summary
Short summary
This paper describes an instrument that measures spectrally from 360 nm (ultraviolet) to 1070 nm (near-infrared) at 1002 separate wavelengths. The measurements were made every minute from the late summer of 2009 to the winter of 2014 at a site in northern Oklahoma (USA; 36.605° N, 97.486° W). Methods are described that enable the normalized transmission across the spectrum to be measured and, subsequently, used to calculate the aerosol optical depth and spectra irradiance.
Julien Totems, Patrick Chazette, and Alexandre Baron
Atmos. Meas. Tech., 14, 7525–7544, https://doi.org/10.5194/amt-14-7525-2021, https://doi.org/10.5194/amt-14-7525-2021, 2021
Short summary
Short summary
We describe in detail the design and calibration of the new Raman channels for the WALI system, going over the important sources of bias and uncertainty on retrieved temperature profiles. For the first time, their impact is investigated using horizontal shots in a homogenous atmosphere: the magnitude of the highlighted biases can be much larger than the targeted absolute accuracy of 1° C. Actual measurement errors are quantified using radiosoundings launched close to the lidar site.
René Sedlak, Patrick Hannawald, Carsten Schmidt, Sabine Wüst, Michael Bittner, and Samo Stanič
Atmos. Meas. Tech., 14, 6821–6833, https://doi.org/10.5194/amt-14-6821-2021, https://doi.org/10.5194/amt-14-6821-2021, 2021
Short summary
Short summary
High-resolution images of the OH* airglow layer (ca. 87 km height) acquired at Otlica Observatory, Slovenia, have been analysed. A statistical analysis of small-scale wave structures with horizontal wavelengths up to 4.5 km suggests strong presence of instability features in the upper mesosphere or lower thermosphere. The dissipated energy of breaking gravity waves is derived from observations of turbulent vortices. It is concluded that dynamical heating plays a vital role in the atmosphere.
Oliver Lux, Christian Lemmerz, Fabian Weiler, Thomas Kanitz, Denny Wernham, Gonçalo Rodrigues, Andrew Hyslop, Olivier Lecrenier, Phil McGoldrick, Frédéric Fabre, Paolo Bravetti, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 6305–6333, https://doi.org/10.5194/amt-14-6305-2021, https://doi.org/10.5194/amt-14-6305-2021, 2021
Short summary
Short summary
The work assesses the frequency stability of the laser transmitters on board Aeolus and discusses its influence on the quality of the global wind data. Excellent frequency stability of the space lasers is evident, although enhanced frequency noise occurs at certain locations along the orbit due to micro-vibrations that are introduced by the satellite’s reaction wheels. The study elaborates on this finding and investigates the extent to which the enhanced frequency noise increases the wind error.
Tingyu Yan, Jeffery A. Langille, William E. Ward, William A. Gault, Alan Scott, Andrew Bell, Driss Touahiri, Sheng-Hai Zheng, and Chunmin Zhang
Atmos. Meas. Tech., 14, 6213–6232, https://doi.org/10.5194/amt-14-6213-2021, https://doi.org/10.5194/amt-14-6213-2021, 2021
Short summary
Short summary
High-resolution interferometers are routinely used to measure upper atmospheric motions by measuring small Doppler shifts in spectrally isolated airglow emissions. The birefringent interferometer presented in this paper has similar capabilities as several existing state-of-the-art instruments but is smaller and less complex to construct and operate. This paper presents the measurement technique and characterization of a lab prototype and examines the performance of the instrument.
Etienne Cheynet, Martin Flügge, Joachim Reuder, Jasna B. Jakobsen, Yngve Heggelund, Benny Svardal, Pablo Saavedra Garfias, Charlotte Obhrai, Nicolò Daniotti, Jarle Berge, Christiane Duscha, Norman Wildmann, Ingrid H. Onarheim, and Marte Godvik
Atmos. Meas. Tech., 14, 6137–6157, https://doi.org/10.5194/amt-14-6137-2021, https://doi.org/10.5194/amt-14-6137-2021, 2021
Short summary
Short summary
The COTUR campaign explored the structure of wind turbulence above the ocean to improve the design of future multi-megawatt offshore wind turbines. Deploying scientific instruments offshore is both a financial and technological challenge. Therefore, lidar technology was used to remotely measure the wind above the ocean from instruments located on the seaside. The experimental setup is tailored to the study of the spatial correlation of wind gusts, which governs the wind loading on structures.
Fabian Weiler, Thomas Kanitz, Denny Wernham, Michael Rennie, Dorit Huber, Marc Schillinger, Olivier Saint-Pe, Ray Bell, Tommaso Parrinello, and Oliver Reitebuch
Atmos. Meas. Tech., 14, 5153–5177, https://doi.org/10.5194/amt-14-5153-2021, https://doi.org/10.5194/amt-14-5153-2021, 2021
Short summary
Short summary
This paper reports on dark current signal anomalies of the detectors used on board the ESA's Earth Explorer satellite Aeolus during the first 1.5 years in orbit. After introducing sophisticated algorithms to classify dark current anomalies according to their characteristics, the impact of the different kinds of anomalies on wind measurements is discussed. In addition, mitigation approaches for the wind retrieval are presented and potential root causes are discussed.
Chuanliang Zhang, Xuejin Sun, Wen Lu, Yingni Shi, Naiying Dou, and Shaohui Li
Atmos. Meas. Tech., 14, 4787–4803, https://doi.org/10.5194/amt-14-4787-2021, https://doi.org/10.5194/amt-14-4787-2021, 2021
Short summary
Short summary
The first spaceborne doppler wind lidar (DWL) Aeolus operates on sun-synchronous dawn–dusk orbit to lower the impact of solar background radiation (SBR) on wind observation accuracy. Increased SBR leads to an increment of averaged wind observation uncertainties from 0.19 to 0.27 m s-1 comparing Aeolus and two added spaceborne DWLs operating on orbits with local ascending times of 15:00 and 12:00 LT. A quantitative design of laser pulse energy according to accuracy requirements is also proposed.
Didier Bruneau and Jacques Pelon
Atmos. Meas. Tech., 14, 4375–4402, https://doi.org/10.5194/amt-14-4375-2021, https://doi.org/10.5194/amt-14-4375-2021, 2021
Short summary
Short summary
Taking advantage of Aeolus success and of our airborne lidar system expertise, we present a new spaceborne wind lidar design for operational Aeolus follow-on missions, keeping most of the initial lidar system but relying on a single Mach–Zehnder interferometer to relax operational constraints and reduce measurement bias. System parameters are optimized. Random and systematic errors are shown to be compliant with the initial mission requirements. In addition, the system allows unbiased retrieval.
Franz-Josef Lübken and Josef Höffner
Atmos. Meas. Tech., 14, 3815–3836, https://doi.org/10.5194/amt-14-3815-2021, https://doi.org/10.5194/amt-14-3815-2021, 2021
Short summary
Short summary
We present a new concept for a cluster of lidars that allows us to measure time-resolved profiles of temperatures, winds, and aerosols in the entire middle atmosphere for the first time, also covering regional horizontal scales (
four-dimensional coverage). Measurements are performed during day and night. The essential component is a newly developed laser with unprecedented performance. We present the first measurements. New observational capabilities in atmospheric physics are established.
Bernd Kaifler and Natalie Kaifler
Atmos. Meas. Tech., 14, 1715–1732, https://doi.org/10.5194/amt-14-1715-2021, https://doi.org/10.5194/amt-14-1715-2021, 2021
Short summary
Short summary
This paper describes the Compact Rayleigh Autonomous Lidar (CORAL), which is the first lidar instrument to make fully automatic high-resolution measurements of atmospheric density and temperature between 15 and 90 km altitude. CORAL achieves a much larger measurement cadence than conventional lidars and thus facilitates studies of rare atmospheric phenomena.
Mareike Heckl, Andreas Fix, Matthias Jirousek, Franz Schreier, Jian Xu, and Markus Rapp
Atmos. Meas. Tech., 14, 1689–1713, https://doi.org/10.5194/amt-14-1689-2021, https://doi.org/10.5194/amt-14-1689-2021, 2021
William Thielicke, Waldemar Hübert, Ulrich Müller, Michael Eggert, and Paul Wilhelm
Atmos. Meas. Tech., 14, 1303–1318, https://doi.org/10.5194/amt-14-1303-2021, https://doi.org/10.5194/amt-14-1303-2021, 2021
Short summary
Short summary
We developed a wind-measuring drone with exceptional measuring accuracy and a very long flight time. Measurements are extensively validated at different levels. A comparison with a bistatic lidar reveals very small bias and RMSEs. We also present a demonstration measurement in the wake of a wind turbine. We think that our solution is a significant enhancement to existing designs, and other researchers can benefit from the details that we are giving in the paper.
Martin Fencl, Michal Dohnal, Pavel Valtr, Martin Grabner, and Vojtěch Bareš
Atmos. Meas. Tech., 13, 6559–6578, https://doi.org/10.5194/amt-13-6559-2020, https://doi.org/10.5194/amt-13-6559-2020, 2020
Short summary
Short summary
Commercial microwave links operating at E-band frequencies are increasingly being updated and are frequently replacing older infrastructure. We show that E-band microwave links are able to observe even light rainfalls, a feat practically impossible to achieve by older 15–40 GHz devices. Furthermore, water vapor retrieval may be possible from long E-band microwave links, although the efficient separation of gaseous attenuation from other signal losses will be challenging in practice.
Yuan An, Jinji Ma, Yibo Gao, Wei Xiong, and Xianhua Wang
Atmos. Meas. Tech., 13, 6521–6542, https://doi.org/10.5194/amt-13-6521-2020, https://doi.org/10.5194/amt-13-6521-2020, 2020
Short summary
Short summary
The hydroxyl radical (OH) plays a significant role in atmospheric chemical and physical reactions. The superiority and feasibility of a new satellite sensor, which consists of two spatial heterodyne spectrometers in the orthogonal layout to monitor OH in the middle and upper atmosphere, is proved by the forward model. An inversion algorithm to obtain OH concentrations based on the simulated observation data of sensors and the errors in results are also given.
Lei Qiao, Gang Chen, Shaodong Zhang, Qi Yao, Wanlin Gong, Mingkun Su, Feilong Chen, Erxiao Liu, Weifan Zhang, Huangyuan Zeng, Xuesi Cai, Huina Song, Huan Zhang, and Liangliang Zhang
Atmos. Meas. Tech., 13, 5697–5713, https://doi.org/10.5194/amt-13-5697-2020, https://doi.org/10.5194/amt-13-5697-2020, 2020
F. Joseph Turk, Svetla Hristova-Veleva, Stephen L. Durden, Simone Tanelli, Ousmane Sy, G. David Emmitt, Steve Greco, and Sara Q. Zhang
Atmos. Meas. Tech., 13, 4521–4537, https://doi.org/10.5194/amt-13-4521-2020, https://doi.org/10.5194/amt-13-4521-2020, 2020
Short summary
Short summary
The mechanisms linking convection and air motion are major factors in much of the uncertainty in weather prediction, but complementary measurements of these quantities are rarely taken in close proximity. These quantities are shown from the 2017 Convective Processes Experiment (CPEX), wherein cloud and vertical air motion winds derived from the APR-2 airborne Doppler radar are combined with joint Doppler wind lidar (DAWN) measurements in the aerosol-rich regions surrounding the convection.
Alex T. Chartier, Juha Vierinen, and Geonhwa Jee
Atmos. Meas. Tech., 13, 3023–3031, https://doi.org/10.5194/amt-13-3023-2020, https://doi.org/10.5194/amt-13-3023-2020, 2020
Short summary
Short summary
A novel oblique ionospheric radio sounder has been developed and demonstrated in Antarctica. The transmitter was located at McMurdo and the receiver at the South Pole (1356 km great-circle path). The system cycled through 12 frequencies each minute and recorded signal time of flight, intensity, and Doppler. This allowed for the estimation of peak ionospheric electron density, which validated well against independent data from the nearby Jang Bogo ionosonde and GPS TEC.
Cited articles
Bellisario, C., Brindley, H. E., Tett, S. F. B., Rizzi, R., Di Natale, G., Palchetti, L., and Bianchini, G.: Can downwelling far-infrared radiances over Antarctica be estimated from mid-infrared information?, Atmos. Chem. Phys., 19, 7927–7937, https://doi.org/10.5194/acp-19-7927-2019, 2019. a
Bhawar, R., Bianchini, G., Bozzo, A., Cacciani, M., Calvello, M. R., Carlotti, M., Castagnoli, F., Cuomo, V., Di Girolamo, P., Di Iorio, T., Di Liberto, L., di Sarra, A., Esposito, F., Fiocco, G., Fuà, D., Grieco, G., Maestri, T., Masiello, G., Muscari, G., Palchetti, L., Papandrea, E., Pavese, G., Restieri, R., Rizzi, R., Romano, F., Serio, C., Summa, D., Todini, G., and Tosi, E.: Spectrally resolved observations of atmospheric emitted radiance in the H2O rotation band, Geophys. Res. Lett., 35, L04812, https://doi.org/10.1029/2007GL032207, 2008. a
Bianchini, G., Carli, B., Cortesi, U., Del Bianco, S., Gai, M., and Palchetti, L.: Test of far-infrared atmospheric spectroscopy using wide-band balloon-borne measurements of the upwelling radiance, J. Quant. Spectrosc. Ra., 109, 1030–1042, https://doi.org/10.1016/j.jqsrt.2007.11.010, 2008. a, b, c
Bianchini, G., Castagnoli, F., Di Natale, G., and Palchetti, L.: A Fourier transform spectroradiometer for ground-based remote sensing of the atmospheric downwelling long-wave radiance, Atmos. Meas. Tech., 12, 619–635, https://doi.org/10.5194/amt-12-619-2019, 2019. a, b, c, d
Carli, B., Bazzini, G., Castelli, E., Cecchi-Pestellini, C., Del Bianco, S., Dinelli, B. M., Gai, M., Magnani, L., Ridolfi, M., and Santurri, L.: MARC: A code for the retrieval of atmospheric parameters from millimetre-wave limb measurements, J. Quant. Spectrosc. Ra., 105, 476–491, https://doi.org/10.1016/j.jqsrt.2006.11.011, 2007. a
Carlotti, M., Brizzi, G., Papandrea, E., Prevedelli, M., Ridolfi, M., Dinelli, B. M., and Magnani, L.: GMTR: Two-dimensional geo-fit multitarget retrieval model for Michelson Interferometer for Passive Atmospheric Sounding/Environmental Satellite observations, Appl. Optics., 45, 716–727, https://doi.org/10.1364/AO.45.000716, 2006. a
Clough, S. A., Shephard, M. W., Mlawer, E. J., Delamere, J. S., Iacono, M. J., Cady-Pereira, K., Boukabara, S., and Brown, P. D.: Atmospheric radiative transfer modeling: a summary of the AER codes, Short Communication, J. Quant. Spectrosc. Ra., 91, 233–244, 2005. a
Cox, C. V., Harries, J. E., Taylor, J. P., Green, P. D., Baran, A. J.,
Pickering, J. C., Last, A. E., and Murray, J. E.: Measurement and simulation
of mid- and far-infrared spectra in the presence of cirrus, Q. J. Roy. Meteor. Soc., 136, 718–739, https://doi.org/10.1002/qj.596, 2010. a
Del Bianco, S., Carli, B., Gai, M., Laurenza, L. M., and Cortesi, U.: XCO2 retrieved from IASI using KLIMA algorithm, Ann. Geophys., 56, https://doi.org/10.4401/ag-6331, 2013. a
Delamere, J. S., Clough, S. A., Payne, V. H., Mlawer, E. J., Turner, D. D., and Gamache, R. R.: A far-infrared radiative closure study in the Arctic: Application to water vapor, J. Geophys. Res.-Atmos., 115, D17106, https://doi.org/10.1029/2009JD012968, 2010. a
Di Natale, G., Palchetti, L., Bianchini, G., and Del Guasta, M.: Simultaneous retrieval of water vapour, temperature and cirrus clouds properties from measurements of far infrared spectral radiance over the Antarctic Plateau, Atmos. Meas. Tech., 10, 825–837, https://doi.org/10.5194/amt-10-825-2017, 2017. a
Di Natale, G., Barucci, M., Belotti, C., Bianchini, G., D'Amato, F., Del Bianco, S., Gai, M., Montori, A., Sussmann, R., Viciani, S., Vogelmann, H., and Palchetti, L.: Comparison of mid-latitude single- and mixed-phase cloud optical depth from co-located infrared spectrometer and backscatter lidar measurements, Atmos. Meas. Tech., 14, 6749–6758, https://doi.org/10.5194/amt-14-6749-2021, 2021. a, b
ESA: FORUM Report for Mission Selection, Tech. Rep. ESA-EOPSM-FORM-RP-3549, European Space Agency, Noordwijk, the Netherlands, https://esamultimedia.esa.int/docs/EarthObservation/EE9-FORUM-RfMS-ESA-v1.0-FINAL.pdf (last access: 16 March 2023), 2019. a
Harries, J., Carli, B., Rizzi, R., Serio, C., Mlynczak, M., Palchetti, L., Maestri, T., Brindley, H., and Masiello, G.: The Far-infrared Earth, Rev. Geophys., 46, RG4004, https://doi.org/10.1029/2007RG000233, 2008. a
Kanamitsu, M., Ebisuzaki, W., Woollen, J., Yang, S.-K., Hnilo, J. J., Fiorino, M., and Potter, G. L.: NCEP?DOE AMIP-II Reanalysis (R-2), B. Am. Meteorol. Soc., 83, 1631–1644, https://doi.org/10.1175/BAMS-83-11-1631, 2002. a
Klanner, L., Höveler, K., Khordakova, D., Perfahl, M., Rolf, C., Trickl, T., and Vogelmann, H.: A powerful lidar system capable of 1 h measurements of water vapour in the troposphere and the lower stratosphere as well as the temperature in the upper stratosphere and mesosphere, Atmos. Meas. Tech., 14, 531–555, https://doi.org/10.5194/amt-14-531-2021, 2021. a, b, c
Maestri, T., Rizzi, R., Tosi, E., Veglio, P., Palchetti, L., Bianchini, G., Di Girolamo, P., Masiello, G., Serio, C., and Summa, D.: Analysis of cirrus cloud spectral signatures in the far infrared, J. Quant. Spectrosc. Ra., 141, 49–64, https://doi.org/10.1016/j.jqsrt.2014.02.030, 2014. a
Mast, J. C., Mlynczak, M. G., Cageao, R. P., Kratz, D. P., Latvakoski, H., Johnson, D. G., Turner, D. D., and Mlawer, E. J.: Measurements of downwelling far-infrared radiance during the RHUBC-II campaign at Cerro Toco, Chile and comparisons with line-by-line radiative transfer calculations, J. Quant. Spectrosc. Ra., 198, 25–39, https://doi.org/10.1016/j.jqsrt.2017.04.028, 2017. a
Mlawer, E. J., Turner, D. D., Paine, S. N., Palchetti, L., Bianchini, G., Payne, V. H., Cady-Pereira, K. E., Pernak, R. L., Alvarado, M. J., Gombos, D., Delamere, J. S., Mlynczak, M. G., and Mast, J. C.: Analysis of water vapor absorption in the far-infrared and submillimeter regions using surface radiometric measurements from extremely dry locations, J. Geophys. Res.-Atmos., 124, 8134–8160, https://doi.org/10.1029/2018JD029508, 2019. a, b
Mlynczak, M. and Johnson, D.: INFLAME: In-situ net flux within the atmosphere of the Earth, AGU Fall Meeting 2006, San Francisco USA, 11–15 December 2006, EOS Trans. AGU, vol. 87, issue 52, Fall Meeting Supplement, Abstract IN23B-04, 2006. a
Mlynczak, M. G., Cageao, R. P., Mast, J. C., Kratz, D. P., Latvakoski, H., and Johnson, D. G.: Observations of downwelling far-infrared emission at Table Mountain California made by the FIRST instrument, J. Quant. Spectrosc. Ra., 170, 90–105, https://doi.org/10.1016/j.jqsrt.2015.10.017, 2016. a
Palchetti, L., Belotti, C., Bianchini, G., Castagnoli, F., Carli, B., Cortesi, U., Pellegrini, M., Camy-Peyret, C., Jeseck, P., and Té, Y.: Technical note: First spectral measurement of the Earth's upwelling emission using an uncooled wideband Fourier transform spectrometer, Atmos. Chem. Phys., 6, 5025–5030, https://doi.org/10.5194/acp-6-5025-2006, 2006. a
Palchetti, L., Barucci, M., Belotti, C., Bianchini, G., Cluzet, B., D'Amato, F., Del Bianco, S., Di Natale, G., Gai, M., Khordakova, D., Montori, A., Oetjen, H., Rettinger, M., Rolf, C., Schuettemeyer, D., Sussmann, R., Viciani, S., Vogelmann, H., Wienhold, F. G.: FIRMOS – Technical Assistance for a Far-Infrared Radiation Mobile Observation System (EE9 Forum), ESA Earth Observation [data set], https://doi.org/10.5270/ESA-38034ee, 2020a. a
Palchetti, L., Brindley, H., Bantges, R., Buehler, S. A., Camy-Peyret, C., Carli, B., Cortesi, U., Bianco, S. D., Natale, G. D., Dinelli, B. M., Feldman, D., Huang, X. L., C.-Labonnote, L., Libois, Q., Maestri, T., Mlynczak, M. G., Murray, J. E., Oetjen, H., Ridolfi, M., Riese, M., Russell, J., Saunders, R., and Serio, C.: FORUM: Unique Far-Infrared Satellite Observations to Better Understand How Earth Radiates Energy to Space, B. Am. Meteorol. Soc., 101, E2030–E2046, https://doi.org/10.1175/BAMS-D-19-0322.1, 2020b. a, b
Palchetti, L., Barucci, M., Belotti, C., Bianchini, G., Cluzet, B., D'Amato, F., Del Bianco, S., Di Natale, G., Gai, M., Khordakova, D., Montori, A., Oetjen, H., Rettinger, M., Rolf, C., Schuettemeyer, D., Sussmann, R., Viciani, S., Vogelmann, H., and Wienhold, F. G.: Observations of the downwelling far-infrared atmospheric emission at the Zugspitze observatory, Earth Syst. Sci. Data, 13, 4303–4312, https://doi.org/10.5194/essd-13-4303-2021, 2021. a, b, c, d
Ridolfi, M., Del Bianco, S., Di Roma, A., Castelli, E., Belotti, C., Dandini, P., Di Natale, G., Dinelli, B. M., C.-Labonnote, L., and Palchetti, L.: FORUM Earth Explorer 9: Characteristics of Level 2 Products and Synergies with IASI-NG, Remote Sens.-Basel, 12, 1496, https://doi.org/10.3390/rs12091496, 2020. a
Rizzi, R., Arosio, C., Maestri, T., Palchetti, L., Bianchini, G., and Del Guasta, M.: One year of downwelling spectral radiance measurements from 100 to 1400 cm-1 at Dome Concordia: Results in clear conditions, J. Geophys. Res.-Atmos., 121, 10937–10953, https://doi.org/10.1002/2016JD025341, 2016. a
Rizzi, R., Maestri, T., and Arosio, C.: Estimate of Radiosonde Dry Bias From Far-Infrared Measurements on the Antarctic Plateau, J. Geophys. Res.-Atmos., 123, 3205–3211, https://doi.org/10.1002/2017JD027874, 2018. a
Sgheri, L., Belotti, C., Ben-Yami, M., Bianchini, G., Carnicero Dominguez, B., Cortesi, U., Cossich, W., Del Bianco, S., Di Natale, G., Guardabrazo, T., Lajas, D., Maestri, T., Magurno, D., Oetjen, H., Raspollini, P., and Sgattoni, C.: The FORUM end-to-end simulator project: architecture and results, Atmos. Meas. Tech., 15, 573–604, https://doi.org/10.5194/amt-15-573-2022, 2022. a
Sussmann, R., Reichert, A., and Rettinger, M.: The Zugspitze radiative closure experiment for quantifying water vapor absorption over the terrestrial and solar infrared – Part 1: Setup, uncertainty analysis, and assessment of far-infrared water vapor continuum, Atmos. Chem. Phys., 16, 11649–11669, https://doi.org/10.5194/acp-16-11649-2016, 2016. a, b
Tobin, D. C., Revercomb, H. E., Knuteson, R. O., Best, F. A., Smith, W. L., Ciganovich, N. N., Dedecker, R. G., Dutcher, S., Ellington, S. D., Garcia, R. K., Howell, H. B., LaPorte, D. D., Mango, S. A., Pagano, T. S., Taylor, J. K., van Delst, P., Vinson, K. H., and Werner, M. W.: Radiometric and spectral validation of Atmospheric Infrared Sounder observations with the aircraft-based Scanning High-Resolution Interferometer Sounder, J. Geophys. Res.-Atmos., 111, D09S02, https://doi.org/10.1029/2005JD006094, 2006. a, b, c
Trickl, T., Vogelmann, H., Giehl, H., Scheel, H.-E., Sprenger, M., and Stohl, A.: How stratospheric are deep stratospheric intrusions?, Atmos. Chem. Phys., 14, 9941–9961, https://doi.org/10.5194/acp-14-9941-2014, 2014. a
Trickl, T., Giehl, H., Neidl, F., Perfahl, M., and Vogelmann, H.: Three decades of tropospheric ozone lidar development at Garmisch-Partenkirchen, Germany, Atmos. Meas. Tech., 13, 6357–6390, https://doi.org/10.5194/amt-13-6357-2020, 2020a. a
Trickl, T., Vogelmann, H., Ries, L., and Sprenger, M.: Very high stratospheric influence observed in the free troposphere over the northern Alps – just a local phenomenon?, Atmos. Chem. Phys., 20, 243–266, https://doi.org/10.5194/acp-20-243-2020, 2020b. a, b
Turner, D. D. and Löhnert, U.: Information Content and Uncertainties in
Thermodynamic Profiles and Liquid Cloud Properties Retrieved from the
Ground-Based Atmospheric Emitted Radiance Interferometer (AERI), J.
Appl. Meteorol. Clim., 53, 752–771, https://doi.org/10.1175/JAMC-D-13-0126.1, 2014. a
Turner, D. D. and Mlawer, E. J.: The Radiative Heating in Underexplored Bands Campaigns, B. Am. Meteorol. Soc., 91, 911–924, https://doi.org/10.1175/2010BAMS2904.1, 2010. a
Turner, D. D., Mlawer, E. J., Bianchini, G., Cadeddu, M. P., Crewell, S., Delamere, J. S., Knuteson, R. O., Maschwitz, G., Mlynczak, M., Paine, S., Palchetti, L., and Tobin, D. C.: Ground-based high spectral resolution observations of the entire terrestrial spectrum under extremely dry conditions, Geophys. Res. Lett., 39, L10801, https://doi.org/10.1029/2012GL051542, 2012. a
Vogelmann, H., Sussmann, R., Trickl, T., and Borsdorff, T.: Intercomparison of atmospheric water vapor soundings from the differential absorption lidar (DIAL) and the solar FTIR system on Mt. Zugspitze, Atmos. Meas. Tech., 4, 835–841, https://doi.org/10.5194/amt-4-835-2011, 2011. a
Vogelmann, H., Sussmann, R., Trickl, T., and Reichert, A.: Spatiotemporal variability of water vapor investigated using lidar and FTIR vertical soundings above the Zugspitze, Atmos. Chem. Phys., 15, 3135–3148, https://doi.org/10.5194/acp-15-3135-2015, 2015. a
Short summary
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in the far-infrared, developed to support the preparation of the FORUM (Far-infrared Outgoing Radiation Understanding and Monitoring) satellite mission. In this paper, we describe the instrument, its data products, and the results of the comparison with a suite of observations made from a high-altitude site during a field campaign, in winter 2018–2019.
FIRMOS (Far-Infrared Radiation Mobile Observation System) is a spectroradiometer measuring in...